ENCYCLOPEDIA of SOLID EARTH GEOPHYSICS Encyclopedia of Earth Sciences Series

Total Page:16

File Type:pdf, Size:1020Kb

ENCYCLOPEDIA of SOLID EARTH GEOPHYSICS Encyclopedia of Earth Sciences Series ENCYCLOPEDIA of SOLID EARTH GEOPHYSICS Encyclopedia of Earth Sciences Series ENCYCLOPEDIA OF SOLID EARTH GEOPHYSICS Volume Editor Harsh K. Gupta currently holds the prestigious Panikkar Professorship at the National Geophysical Research Institute (NGRI), Council of Scientific & Industrial Research (CSIR), Hyderabad, India. Pursuing a luminous career in a variety of aspects of the Earth Sciences for over four decades, he is globally known for providing the first geophysical evidence of an enormously thick crust below the Himalaya and Tibet Plateau region, identifying the common characteristics of artificial water reservoir triggered earthquakes and discriminating them from normal earthquakes, setting up India’s first permanent station at Antarctica in a record time, and in the recent years, spearheading the designing and commissioning of the Tsunami Warning System for India, after the disastrous tsunami caused by the 26th December 2004 Sumatra earthquake. He has published over 200 papers and written 4 pioneering books, published by Elsevier. Editorial Board Kusumita Arora Ajay Manglik National Geophysical Research Institute National Geophysical Research Institute Council of Scientific and Industrial Research (CSIR) Council of Scientific and Industrial Research (CSIR) Uppal Road Uppal Road Hyderabad 500 606 Hyderabad 500 606 India India Anny Cazenave Sukanta Roy Laboratoire d’Etudes en Géophysique et National Geophysical Research Institute Océanographie Spatiales (LEGOS) Council of Scientific and Industrial Research (CSIR) Centre National d’Etudes Spatiales Uppal Road 18 Avenue Edouard Belin Hyderabad 500 606 31401 Toulouse Cedex 4 India France Kalachand Sain Eric Robert Engdahl National Geophysical Research Institute Center for Imaging the Earth’s Interior Council of Scientific and Industrial Research (CSIR) Department of Physics Uppal Road University of Colorado at Boulder Hyderabad 500 606 Campus Box 390 UCB India Boulder, CO 80309-0390 USA Seiya Uyeda Japan Academy Rainer Kind 7-32, Ueno Park Helmholtz Centre Potsdam Taito-ku, Tokyo 110-0007 GFZ German Research Centre for Geosciences Japan Section 2.4, Seismology Telegrafenberg A3 14473 Potsdam Germany Aims of the Series The Encyclopedia of Earth Sciences Series provides comprehensive and authoritative coverage of all the main areas in the Earth Sciences. Each volume comprises a focused and carefully chosen collection of contributions from leading names in the subject, with copious illustrations and reference lists. These books represent one of the world’s leading resources for the Earth Sciences community. Previous volumes are being updated and new works published so that the volumes will continue to be essential reading for all professional earth scientists, geologists, geophysicists, climatolo- gists, and oceanographers as well as for teachers and students. See the dustjacket of this volume for a current list of titles in the Encyclopedia of Earth Sciences Series. Go to http://www.springerlink.com/reference-works/ to visit the “Earth Sciences Series” online. About the Series Editor Professor Charles W. Finkl has edited and/or contributed to more than eight volumes in the Encyclopedia of Earth Sciences Series. For the past 25 years he has been the Executive Director of the Coastal Education & Research Foundation and Editor-in-Chief of the international Journal of Coastal Research. In addition to these duties, he is Research Professor at Florida Atlantic University in Boca Raton, Florida, USA. He is a graduate of the University of Western Australia (Perth) and previously worked for a wholly owned Australian subsidiary of the International Nickel Company of Canada (INCO). During his career, he acquired field experience in Australia; the Caribbean; South America; SW Pacific islands; southern Africa; Western Europe; and the Pacific Northwest, Midwest, and Southeast USA. Founding Series Editor Professor Rhodes W. Fairbridge (deceased) has edited more than 24 Encyclopedias in the Earth Sciences Series. During his career he has worked as a petroleum geologist in the Middle East, been a WW II intelligence officer in the SW Pacific and led expeditions to the Sahara, Arctic Canada, Arctic Scandinavia, Brazil and New Guinea. He was Emeritus Professor of Geology at Columbia University and was affiliated with the Goddard Institute for Space Studies. ENCYCLOPEDIA OF EARTH SCIENCES SERIES ENCYCLOPEDIA of SOLID EARTH GEOPHYSICS Volume 1 edited by HARSH K. GUPTA National Geophysical Research Institute Council of Scientific and Industrial Research Hyderabad India Library of Congress Control Number: 2011924208 ISBN: 978-90-481-8701-0 This publication is available also as: Electronic publication under ISBN 978-90-481-8702-7 and Print and electronic bundle under ISBN 978-90-481-8732-4 Published by Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands The original Encyclopedia of Solid Earth Geophysics was compiled by David E. James, and was first published in the Encyclopedia of Earth Sciences Series in 1989. Printed on acid-free paper Cover figure credit: Mineral Physics Institute at Stony Brook University, illustration by Keelin Murphy Every effort has been made to contact the copyright holders of the figures and tables which have been reproduced from other sources. Anyone who has not been properly credited is requested to contact the publishers, so that due acknowledgment may be made in subsequent editions. All Rights Reserved for Contributions on Gravity, Data to Anomalies; Gravity, Global Models; Instrumentation, Electrical Resistivity; Spherical Harmonic Analysis Applied to Potential Fields © Springer Science þ Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Contents Contributors xiii Crustal Reflectivity (Oceanic) and Magma Chamber 78 Satish C. Singh Preface xxxv Curie Temperature 89 Acknowledgments xxxvii Vincenzo Pasquale Absolute Age Determinations: Radiometric 1 Deep Scientific Drilling 91 Richard W. Carlson Ulrich Harms and Harold J. Tobin Archaeomagnetism 8 Deep Seismic Reflection and Refraction Profiling 103 Donald H. Tarling Kabir Roy Chowdhury ’ Archaeoseismology 11 Differential Rotation of the Earth s Inner Core 118 Klaus-Günter Hinzen Xiaodong Song Artificial Water Reservoir Triggered Earthquakes 15 Earth Rotation 123 Harsh K. Gupta Harald Schuh and Sigrid Böhm Earth Tides 129 Biogeophysics 25 John M. Wahr Lee Slater and Estella Atekwana Earth, Density Distribution 133 Body Waves 29 Frank D. Stacey and Paul M. Davis Mahmoud Mohamed Selim Saleh Earth’s Structure, Core 137 Characteristic Earthquakes and Seismic Gaps 37 Lianxing Wen David D. Jackson and Yan Y. Kagan Earth’s Structure, Continental Crust 138 Continental Drift 40 Rolf Meissner and Hartmut Kern Alan G. Smith Earth’s Structure, Global 144 Continental Rifts 41 Jean-Paul Montagner A. M. Celâl Şengör Earth’s Structure, Lower Mantle 154 Core Dynamo 55 Edward J. Garnero, Allen K. McNamara and Ulrich R. Christensen James A. Tyburczy Core-Mantle Coupling 64 Earth’s Structure, Upper Mantle 159 Paul H. Roberts and Jonathan M. Aurnou Guust Nolet vi CONTENTS Earthquake Lights 165 Earthquakes, Volcanogenic 261 John S. Derr, France St-Laurent, J. W. Neuberg Friedemann T. Freund and Robert Thériault Electrical Properties of Rocks 270 Earthquake Precursors and Prediction 168 Takashi Yoshino Seiya Uyeda, Toshiyasu Nagao and Masashi Kamogawa Electrical Resistivity Surveys and Data Interpretation 276 Earthquake Prediction, M8 Algorithm 178 Meng Heng Loke Alik Ismail-Zadeh and Vladimir Kossobokov Electronic Geophysical Year 283 William K. Peterson, Daniel N. Baker, Earthquake Rupture: Inverse Problem 182 Shamita Das C. E. Barton, Peter Fox, M. A. Parsons and Emily A. CoBabe-Ammann Earthquake Sounds 188 Andrew J. Michael Energy Budget of the Earth 285 Jean-Claude Mareschal and Claude Jaupart Earthquake, Aftershocks 192 Energy Partitioning of Seismic Waves 291 Mian Liu and Seth Stein Kalachand Sain Earthquake, Focal Mechanism 194 Equatorial Electrojet 294 Emile A. Okal Archana Bhattacharyya Earthquake, Foreshocks 199 Fractals and Chaos 297 Mian Liu Vijay P. Dimri, Ravi P. Srivastava and Nimisha Vedanti Earthquake, Location Techniques 201 Clifford H. Thurber Free Oscillations of the Earth 302 Sarva Jit Singh and Sunita Rani Earthquake, Magnitude 207 Peter Bormann Geodesy, Figure of the Earth 313 Kusumita Arora Earthquakes and Crustal Deformation 218 Robert McCaffrey Geodesy, Ground Positioning and Leveling 316 Stelios P. Mertikas Earthquakes, Early and Strong Motion Warning 226 Richard M. Allen Geodesy, Networks and Reference Systems 323 Hayo Hase Earthquakes, Energy 233 Domenico Di Giacomo and Peter Bormann Geodesy, Physical 331 V. Chakravarthi Earthquakes, Intensity 237 Gottfried Grünthal Geodetic Pendulums, Horizontal Ultra Broad Band 336 Carla Braitenberg Earthquakes, PAGER 243 David J. Wald Geodynamics 340 Alessandro M. Forte Earthquakes, Shake Map 245 David J. Wald Geoelectromagnetism 341 Antal Ádám and László Szarka Earthquakes, Source Theory 248 Raul Madariaga Geoid 353 Paramesh Banerjee Earthquakes, Strong-Ground Motion 252 Giuliano F. Panza, Cristina La Mura, Geoid Determination, Theory and Principles 356 Fabio Romanelli and Franco Vaccari
Recommended publications
  • Preprint Arxiv:1806.10939, 2018
    Solid Earth Discuss., https://doi.org/10.5194/se-2019-4 Manuscript under review for journal Solid Earth Discussion started: 15 January 2019 c Author(s) 2019. CC BY 4.0 License. Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models Hugo K. H. Olierook1, Richard Scalzo2, David Kohn3, Rohitash Chandra2,4, Ehsan Farahbakhsh2,4, Gregory Houseman3, Chris Clark1, Steven M. Reddy1, R. Dietmar Müller4 5 1School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 2Centre for Translational Data Science, University of Sydney, NSW 2006 Sydney, Australia 3Sydney Informatics Hub, University of Sydney, NSW 2006 Sydney, Australia 4EarthByte Group, School of Geosciences, University of Sydney, NSW 2006 Sydney, Australia Correspondence to: Hugo K. H. Olierook ([email protected]) 10 Abstract. Traditional approaches to develop 3D geological models employ a mix of quantitative and qualitative scientific techniques, which do not fully provide quantification of uncertainty in the constructed models and fail to optimally weight geological field observations against constraints from geophysical data. Here, we demonstrate a Bayesian methodology to fuse geological field observations with aeromagnetic and gravity data to build robust 3D models in a 13.5 × 13.5 km region of the Gascoyne Province, Western Australia. Our approach is validated by comparing model results to independently-constrained 15 geological maps and cross-sections produced by the Geological Survey of Western Australia. By fusing geological field data with magnetics and gravity surveys, we show that at 89% of the modelled region has >95% certainty. The boundaries between geological units are characterized by narrow regions with <95% certainty, which are typically 400–1000 m wide at the Earth’s surface and 500–2000 m wide at depth.
    [Show full text]
  • Geodynamics If the Entire Solid Earth Is Viewed As a Single Dynamic
    http://www.paper.edu.cn Geodynamic Processes and Our Living Environment YANG Wencai, P. Robinson, FU Rongshan and WANG Ying Geological Publishing House: 2001 Geophysical System Yang Wencai, Institute of Geology, CAGS, China Key words: Geophysics, geodynamics, kinetics of the Earth, tectonics, energies of the Earth, driving forces, applied geophysics, sustainable development. Contents: I. About geophysical system II. Kinetics of the Earth III. About plate tectonics and plume tectonics IV. The contents in the topic V. Energies for the dynamic Earth VI. Driving Forces of Plate Tectonics VII. Geophysics and sustainable development of the society I. About geophysical system Rapid advance of sciences during the second half of the twentieth century has enabled man to make a successful star in the exploration of planetary space. The deep interior of the Earth, however, remains as inaccessible as ever. This is the realm of solid-Earth geophysics, which still mainly depends on observations made at or near the Earth's surface. Despite this limitation, a major revolution in knowledge of the Earth's interior has taken place over the last forty years. This has led to a new understanding of the processes which occur within the Earth that produce surface conditions outstandingly different from those of the other inner planets and the moon. How has this come about? It is mainly the results of the introduction of new experimental and computational techniques into geophysics. Geophysics as a major branch of the geosciences has been discussed in Topic 6.16.1. Theoretically and traditionally the geophysical system correlates to physical system, but specified st study the solid Earth, containing sub-branches such as gravitation and Earth-motion correlated with 转载 1 中国科技论文在线 http://www.paper.edu.cn mechanics, geothermics correlated with heat and thermics, seismology with acoustics and wave theory, geoelectricity and geomagnetism.
    [Show full text]
  • Chapter 2 the Solid Materials of the Earth's Surface
    CHAPTER 2 THE SOLID MATERIALS OF THE EARTH’S SURFACE 1. INTRODUCTION 1.1 To a great extent in this course, we will be dealing with processes that act on the solid materials at and near the Earth’s surface. This chapter might better be called “the ground beneath your feet”. This is the place to deal with the nature of the Earth’s surface materials, which in later sections of the chapter I will be calling regolith, sediment, and soil. 1.2 I purposely did not specify any previous knowledge of geology as a prerequisite for this course, so it is important, here in the first part of this chapter, for me to provide you with some background on Earth materials. 1.3 We will be dealing almost exclusively with the Earth’s continental surfaces. There are profound geological differences between the continents and the ocean basins, in terms of origin, age, history, and composition. Here I’ll present, very briefly, some basic things about geology. (For more depth on such matters you would need to take a course like “The Earth: What It Is, How It Works”, given in the Harvard Extension program in the fall semester of 2005– 2006 and likely to be offered again in the not-too-distant future.) 1.4 In a gross sense, the Earth is a layered body (Figure 2-1). To a first approximation, it consists of concentric shells: the core, the mantle, and the crust. Figure 2-1: Schematic cross section through the Earth. 73 The core: The core consists mostly of iron, alloyed with a small percentage of certain other chemical elements.
    [Show full text]
  • Study Plan for the International Masters Programme in Geophysics
    Study Plan for the International Masters Programme in Geophysics Credits 6 12 18 24 30 P1 Mathematical Geophysics P2 Statistical Geophysics P 3 Earth System Science P 4 Geocontinua r e t s e P3.1 Introduction to Earth System Science 1 [2 SWS, 3 ECTS] P2.1 Statistics for Geosciences (Lecture) P4.1 Methods of Geocontinua (Lecture) m e S P1.1 Mathematical Geophysics (Lecture) [4 SWS, 6 ECTS] [2 SWS, 3 ECTS] [2 SWS, 3 ECTS] t P3.2 Introduction to Earth System Science 2 [2 SWS, 3 ECTS] s 1 P1.2 Mathematical Geophysics (Exercise) [2 SWS, 3 ECTS] P2.2 Statistics for Geosciences (Exercise) P4.2 Methods of Geocontinua (Exercise) P3.3 Geophysics Research: Overview on Methods and Open [2 SWS, 3 ECTS] [2 SWS, 3 ECTS] Questions [2 SWS, 3 ECTS] P8 Geophyiscal Data P 5 Computational Geophysics P6 Scientific Programming P7 Advanced Geophysics Acquisition and WP: Specialisation I r Analysis e t s e P7.1 Geodynamics [2 SWS, 3 ECTS] P5.1 Computational Geophysics (Lecture) P6.1 Scientific Programming (Lecture) m e P8.1 Geophysical S [2SWS, 3ECTS] [2SWS, 3 ECTS] d P7.2 Seismology [2 SWS, 3 ECTS] Data Analysis: Elective Module, 6 ECTS n 2 Practical Introduction Choose one of WP1, WP2, WP3 P5.2 Computational Geophysics (Exercise) P6.2 Scientific Programming (Exercise) P7.3 Geo- and Paleomagnetism [2 SWS, 3 ECTS] [2 SWS, 3 ECTS] [2SWS, 3ECTS] [2SWS, 3 ECTS] P9 Research Training P10 Advanced Topics in Geophysics Elective Modules: Interdisciplinarity WP: Specialisation II r e t s P10.1 Tools, Techniques and current Trends e P9.1 Presentation, Communication, in
    [Show full text]
  • Contributors to This Issue
    Contributors to this issue Faruq E. Akbar received his BS (1988) in civil engineering from Xiaofei Chen received his BSc (1982) in geophysics from the Univ- Bangladesh University of Engineering and ersity of Sciences and Technology of China, Technology and his MS (1992) in geophysics MSc (1985) from the Institute of Geophysics of from the University of New Orleans, Louisiana. SSB of China, and PhD (1991) from the He is currently a PhD student in the Department University of Southern California. He was with of Geological Sciences, University of Texas at IG/SSBC from 1985 to 1986. He is currently a Austin. His professional interests are seismic research associate at USC. His main research data processing, modeling, migration, and interests are seismic waves in complex hetero- inversion. geneous media, inversion techniques, and earthquake seismology. Mike D. Dentith is senior lecturer in geophysics at the Department T. Alkhalifah, see biography and photograph in September-October 1995 GEOPHYSICS, p. 1599. of Geology and Geophysics, University of Western Australia. His current research inter- ests include regional geophysical studies to Estelle Blais received her MScA (1994) in mineral engineering from determine the 3-D structure of greenstone belts, Ecole Polytechnique. She is currently working as a junior geophysi- the geometry of the Darling Fault and the min- cist for SIAL Geosciences in Montreal. eralization in the Canning Basin. He has edited ASEG's geophysics publication "Geophysical Fabio Boschetti graduated in geology from the University of Genoa, Signatures of Western Australia Mineral Italy. He then worked for four years with the Deposits." same university's physics department, special- izing in alternative energy assessment, atmos- pheric pollutant diffusion, and climatology.
    [Show full text]
  • Planet Earth in Cross Section by Michael Osborn Fayetteville-Manlius HS
    Planet Earth in Cross Section By Michael Osborn Fayetteville-Manlius HS Objectives Devise a model of the layers of the Earth to scale. Background Planet Earth is organized into layers of varying thickness. This solid, rocky planet becomes denser as one travels into its interior. Gravity has caused the planet to differentiate, meaning that denser material have been pulled towards Earth’s center. Relatively less dense material migrates to the surface. What follows is a brief description1 of each layer beginning at the center of the Earth and working out towards the atmosphere. Inner Core – The solid innermost sphere of the Earth, about 1271 kilometers in radius. Examination of meteorites has led geologists to infer that the inner core is composed of iron and nickel. Outer Core - A layer surrounding the inner core that is about 2270 kilometers thick and which has the properties of a liquid. Mantle – A solid, 2885-kilometer thick layer of ultra-mafic rock located below the crust. This is the thickest layer of the earth. Asthenosphere – A partially melted layer of ultra-mafic rock in the mantle situated below the lithosphere. Tectonic plates slide along this layer. Lithosphere – The solid outer portion of the Earth that is capable of movement. The lithosphere is a rock layer composed of the crust (felsic continental crust and mafic ocean crust) and the portion of the mafic upper mantle situated above the asthenosphere. Hydrosphere – Refers to the water portion at or near Earth’s surface. The hydrosphere is primarily composed of oceans, but also includes, lakes, streams and groundwater.
    [Show full text]
  • Earth's Surface Heat Flux
    Solid Earth, 1, 5–24, 2010 www.solid-earth.net/1/5/2010/ Solid Earth © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Earth’s surface heat flux J. H. Davies1 and D. R. Davies2 1School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF103YE, Wales, UK 2Department of Earth Science & Engineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK Received: 5 November 2009 – Published in Solid Earth Discuss.: 24 November 2009 Revised: 8 February 2010 – Accepted: 10 February 2010 – Published: 22 February 2010 Abstract. We present a revised estimate of Earth’s surface other solid Earth geophysical processes. Consequently, the heat flux that is based upon a heat flow data-set with 38 347 study and interpretation of surface heat flow patterns has be- measurements, which is 55% more than used in previous come a fundamental enterprise in global geophysics (Lee and estimates. Our methodology, like others, accounts for hy- Uyeda, 1965; Williams and Von Herzen, 1974; Pollack et al., drothermal circulation in young oceanic crust by utilising 1993). a half-space cooling approximation. For the rest of Earth’s The global surface heat flux provides constraints on surface, we estimate the average heat flow for different ge- Earth’s present day heat budget and thermal evolution mod- ologic domains as defined by global digital geology maps; els. Such constraints have been used to propose exciting and then produce the global estimate by multiplying it by new hypotheses on mantle dynamics, such as layered con- the total global area of that geologic domain.
    [Show full text]
  • Links Between Solid Earth, Climate Changes, and Biodiversity Through Time: Insights from the Cenozoic
    David Ambrosetti, Jean-Renaud Boisserie, Deresse Ayenachew and Thomas Guindeuil (dir.) Climatic and Environmental Challenges: Learning from the Horn of Africa Centre français des études éthiopiennes Links between Solid Earth, Climate Changes, and Biodiversity through Time: Insights from the Cenozoic Pierre Sepulchre DOI: 10.4000/books.cfee.359 Publisher: Centre français des études éthiopiennes Place of publication: Addis-Abeba Year of publication: 2016 Published on OpenEdition Books: 28 July 2016 Serie: Corne de l’Afrique contemporaine / Contemporary Horn of Africa Electronic ISBN: 9782821873001 http://books.openedition.org Electronic reference SEPULCHRE, Pierre. Links between Solid Earth, Climate Changes, and Biodiversity through Time: Insights from the Cenozoic In: Climatic and Environmental Challenges: Learning from the Horn of Africa [online]. Addis-Abeba: Centre français des études éthiopiennes, 2016 (generated 02 octobre 2020). Available on the Internet: <http://books.openedition.org/cfee/359>. ISBN: 9782821873001. DOI: https://doi.org/ 10.4000/books.cfee.359. This text was automatically generated on 2 October 2020. It is the result of an OCR (optical character recognition) scanning. Links between Solid Earth, Climate Changes, and Biodiversity through Time: In... 1 Links between Solid Earth, Climate Changes, and Biodiversity through Time: Insights from the Cenozoic Pierre Sepulchre 1 The Cenozoic is the most clearly defined geological era in terms of climate and life history. Since the late 60’s, oxygen isotopic values have been measured on benthic foraminifera shells coming from deep-sea records. These values give insights about the evolution of deep-sea temperatures and continental ice volume during the last 65 million years. More than ten years ago, Zachos et al.
    [Show full text]
  • Mathematical Geophysics a Survey of Recent Developments in Seismology and Geodynamics
    Mathematical Geophysics A Survey of Recent Developments in Seismology and Geodynamics edited by N. J. VU\AR G. NOLET M. J. R. WORTEL and S. A. P. L CLOETINGH University of Utrecht, The Netherlands D. Reidel Publishing Company AMEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP Dordrecht / Boston / Lancaster / Tokyo CONTENTS Preface I. SEISMOLOGY AND THREE DIMENSIONAL STRUCTURE OF THE EARTH Waves in a 3-D Earth Chapter 1 G. Masters and M. Rilzwoller Low frequency seismology and three-dimensional structure - observational aspects. 1 Chapter 2 J.Park Free-oscillation coupling theory. 31 Chapter 3 K. Yomogida Surface waves in weakly heterogeneous media. 53 Chapter 4 R. Snieder On the connection between ray theory and scattering theory for surface waves. 11 Chapter 5 A. van den Berg A hybrid solution for wave propagation problems in inhomogeneous media. 85 Large-scale inversion Chapter 6 P. Mora Elastic wavefield inversion and the adjoint operator for the elastic wave equation. 117 Chapter 7 B.L.N. Kennett and P.R. Williamson Subspace methods for large-scale nonlinear inversion. 139 Chapter 8 W. Spakman and G. Nolet Imaging algorithms, accuracy and resolution in delay time tomography. 155 VI CONTENTS II. CONVECTION AND LITHOSPHERIC PROCESSES Geomagnetism Chapter 9 J. Bloxham The determination of fluid flow at the core surface from geomagnetic observations . Mantle convection Chapter 10 G.T. Jarvis and W.R. Peltier Long wavelength features of mantle convection. Chapter 11 F. Quareni and D.A. Yuen Mean-field methods in mantle convection. Chapter 12 P. Machetel and D.A. Yuen Infinite Prandtl number spherical-shell convection .
    [Show full text]
  • Earth, Atmospheric, and Planetary Sciences
    EAPS Earth, Atmospheric, and Planetary Sciences Purdue University GRADUATE PROGRAM REGULATIONS Fall 2014 I. Introduction and General Policies The Earth, Atmospheric, and Planetary Sciences (EAPS) Department offers graduate programs leading to the Master of Science and Doctor of Philosophy degrees in atmospheric science, planetary science, and solid-earth geosciences. A majority of the research conducted within EAPS can be categorized by four research foci: Atmosphere Surface Interactions; Clouds, Climate & Extreme Weather; Geology and Geophysics; and Planetary Sciences. A description of each of these areas can be found on the EAPS website. These programs are designed to develop a broad understanding of physical, chemical, and biological processes occurring in the Earth's atmosphere, oceans, surface and subsurface. Specialization in a specific area is provided by advanced courses, independent study, and thesis research. Owing to the inherent interdisciplinary nature of the EAPS Department’s programs, students enter graduate study with a variety of academic backgrounds. It is recognized that this broad variation requires the development of individualized programs tailored to meet the needs of a specific student. General regulations and requirements established by the Purdue University Graduate School and published Graduate School Policies and Procedures Manual for Administering Graduate Student Programs apply to all graduate students in these programs. This document is a statement of internal regulations and policies applicable to the graduate programs offered by the Department. These regulations and policies have been adopted to provide a necessary degree of development of programs that reflect the differing backgrounds and specializations among students. Concurrently, these rules allow great flexibility for the development of programs that reflect the differing backgrounds and specializations among students.
    [Show full text]
  • Review 2012 I
    Geomagnetism Review 2012 i Geomagnetism Review 2012 Alan W P Thomson (editor) [email protected] Contributors: Orsi Baillie, Ciarán Beggan, Ellen Clarke, Ewan Dawson, Simon Flower, Brian Hamilton, Ted Harris, Gemma Kelly, Susan Macmillan, Sarah Reay, Tom Shanahan, Alan Thomson, Christopher Turbitt The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number 100017897/2012 Key words Geomagnetism. Front cover A snapshot of the electric field strength across the UK during the geomagnetic storm of 17 March 2013. Bibliographical reference THOMSON, A.W.P. ET AL 2013. Geomagnetism Review 2012. British Geological Survey Open Report OR/13/030 44pp. © NERC 2013 Edinburgh British Geological Survey 2013 To Contents Page ii To Contents Page 1 Contents Contents ...................................................................................................... 1 Introduction ................................................................................................ 2 Technical, Observatory and Field Operations .......................................... 8 UK and Overseas Observatories ................................................................................... 8 Geoelectric Field Monitoring ........................................................................................ 10 High Frequency Magnetometers ................................................................................. 12 The BGS contribution to INTERMAGNET ..................................................................
    [Show full text]
  • SP-569, June 2004)
    High-Harmonic Geoid Signatures due to Glacial Isostatic Adjustment, Subduction and Seismic Deformation L.L.A. Vermeersen(1), H. Schotman(1), M.-W. Jansen(1), R. Riva(1) and R. Sabadini(2) (1) DEOS, Fac. Aerospace Engineering, Delft University of Technology, Kluyverweg 1, NL-2629 HS Delft, The Netherlands, (2) Fac. Earth Sciences, University of Milan,Via L. Cicognara 7, I-20129 Milan, Italy 1 ABSTRACT GOCE is expected to increase our knowledge of the higher spherical harmonics of the quasi-static geoid, with "higher" being in the range of about harmonic degree 50 (half-wavelength 400 km) to harmonic degree 250 (half- wavelength 80 km). One of the major challenges in interpreting these high-harmonic (regional-scale) geoid signatures in GOCE solutions will be to discriminate between various solid-earth contributions. Here, emphasis will be placed on three major contributors: remaining deviations from isostasy due to late-Pleistocene ice ages; shallow upper mantle subduction of oceanic lithosphere; and accumulated deformation due to sequences of large earthquakes. However, there are many more possible high-harmonic (shallow) solid-earth contributions, including uncertainties related to isostasy of a chemically and stratigraphically heterogeneous crust and lithosphere; tectonic processes like mounting building, continental plateau and oceanic basin formation; and high-harmonic signatures related to shallow mantle density variations and mantle-based processes as plumes. Discrimination between all these various causes might be accomplished by combining the geoid signal with other (space-)geodetic observables, geological data, seismic models and by 2-D pattern matching. 2 INTRODUCTION The interpretation of GOCE geoid and gravity anomaly maps in terms of structure and dynamics of the Earth is neither simple nor straightforward.
    [Show full text]