When Machine Learning Meets Wireless Cellular Networks: Deployment, Challenges, and Applications

Total Page:16

File Type:pdf, Size:1020Kb

When Machine Learning Meets Wireless Cellular Networks: Deployment, Challenges, and Applications When Machine Learning Meets Wireless Cellular Networks: Deployment, Challenges, and Applications Ursula Challita, Henrik Ryden, Hugo Tullberg Ericsson Research, Stockholm, Sweden Email: fursula.challita, henrik.a.ryden, [email protected] Abstract—Artificial intelligence (AI) powered wireless net- such networks to dynamically adapt to the changing network works promise to revolutionize the conventional operation and context in real-time enabling autonomous and self-adaptive structure of current networks from network design to infras- operations. Network devices can implement both reactive and tructure management, cost reduction, and user performance improvement. Empowering future networks with AI functional- proactive approaches, where data driven algorithms would ities will enable a shift from reactive/incident driven operations only replace or complement traditional design algorithms if to proactive/data-driven operations. This paper provides an there is an overall performance gain. In essence, AI techniques overview on the integration of AI functionalities in 5G and can be used to augment existing functions by providing beyond networks. Key factors for successful AI integration such useful predictions as input, replace a rule-based algorithm, as data, security, and explainable AI are highlighted. We also summarize the various types of network intelligence as well as and optimize a sequence of decisions such as radio resource machine learning based air interface in future networks. Use case management and mobility. examples for the application of AI to the wireless domain are then summarized. We highlight on applications to the physical Existing literature have investigated the application of ma- layer, mobility management, wireless security, and localization. chine learning (ML) techniques to wireless networking. The authors in [1]–[3] describe different applications of ML to I. INTRODUCTION wireless communication problems such as radio resource man- Evolution to the 5th generation cellular technology (5G) and agement and channel estimation. Nevertheless, such papers do beyond networks will see an increase in network complexity not investigate deployment issues and network design chal- - from new use cases to network function virtualization, lenges for aligning ML techniques to applications in wireless large volumes of data, and different service classes such as networks. The main scope of this paper is to summarize some ultra reliable low latency communications (URLLC), massive of the main requirements needed for efficiently integrating AI machine type communications (mMTC), and enhanced mobile functionalities in real networks while also highlighting on the broadband (eMBB). The latest standard, new radio (NR), was benefits that AI brings to various wireless applications. designed to be flexible in order to meet the new service requirements. Nevertheless, the increased flexibility implies The main contribution of this paper is to review the role of a growing number of control parameters and an increased AI in wireless networks. First, we summarize some of the key complexity which is forcing a fundamental change in network factors for successfully deploying AI functionalities in future operations. Meanwhile, the recent advances in artificial intelli- networks. We discuss the distribution of network intelligence gence (AI) promise to address the emerging complex commu- - in the device, base stations, and cloud - and elaborate arXiv:1911.03585v2 [cs.IT] 1 May 2020 nication system design. AI promises to combine simplification on ML-based air interface. Second, we highlight on various with improved performance and spectral efficiency and can components, such as secure data exchange and confidential therefore be regarded as a key component for increasing the computing, that are crucial for the successful integration of AI value of 5G and beyond networks, if properly integrated into functionalities in cellular networks. Finally, we present various the system. applications of AI to the wireless domain such as AI-based At a technical level, AI will have a significant role in mobility and AI-assisted localization. shaping future wireless cellular networks - from AI-based service deployment to policy control, resource management, The rest of this paper is organized as follows. Section II monitoring, and prediction. Evolution to AI-powered wire- elaborates on the distribution of network intelligence and ML- less networks is triggered by the improved processing and based air-interface. Section III provides a summary of the key computational power, access to massive amount of data, and factors for the successful integration of AI tools in future enhanced software techniques thus enabling an intelligent networks. Use case examples for the application of AI in radio access network and the spread of massive AI devices. wireless networking are summarized in Section IV. Finally, Integrating AI functionalities in future networks will allow conclusions are drawn in Section V. II. KEY FACTORS FOR SUCCESSFUL AI DEPLOYMENT Centralized AI schemes can be challenging for some wire- less communication applications due to the privacy of some Future wireless networks must support flexible, pro- features such as user location, limited bandwidth, and energy grammable data pipelines for the volume, velocity, and variety availability for data transmission for training and inference. of real-time data and algorithms capable of real-time decision This in turn necessitates new communication-efficient training making. Future communication networks must be designed algorithms over wireless links while making real-time and to support exchange of data, models, and insights, and it is reliable inferences at the network edge. Here, distributed the responsibility of the AI agents to include any necessary machine learning techniques (i.e., federated learning [4]) have user data. In this section, we provide an overview on the dis- the potential to provide enhanced user privacy and energy tribution of network intelligence and ML-based air interface, consumption. Such schemes enable network devices to learn which are key components for realizing such vision in future global data patterns from multiple devices without having networks. access to the whole data. This is realized by learning local A. Distribution of Network Intelligence models based on local data, sending the local models to a centralized cloud, averaging them and sending back the Future wireless networks will integrate intelligent functions average model to all devices. Nevertheless, the effectiveness across several layers of the network such as the wireless of such schemes in real networks should be further studied infrastructure, cloud, and end-user devices with the lower-layer considering the limitations of processing power and mem- learning agents targeting local optimization functions while ory of edge devices. As such, configurations for centralized, higher-level cognitive agents pursuing global objectives and distributed, and hybrid architectural approaches should be system-wide awareness. Such intelligent distribution can be supported. Moreover, it is vital to design a common distributed categorized into three main types, namely autonomous node- and decentralized paradigm to make the best use of local and level AI, localized AI, and global AI. global data and models. • Autonomous node-level AI is used to solve self-contained problems at individual network components or devices, B. ML-based Air Interface where no data is required to be passed through the In addition to the distribution of network intelligence, future network. wireless networks might comprise a fully end-to-end machine • Localized AI is where AI is applied to one network learning air-interface. Here, the challenge is to train an inter- domain. It requires data to be passed in the network, face that can support efficient data transmission and reduce en- however, is constrained to a single network domain, for ergy consumption while also fulfilling the latency requirements example, radio access network or core network. Localized of different applications. While an ML air-interface can be AI can also refer to scenarios where data is geographi- trained for optimizing data transmission, it can be challenging cally localized. to handle typical control channel problems such as energy • Global AI is where a centralized entity requires knowl- efficiency in scenarios where no data is transmitted or received. edge of the whole network and needs to collect data Moreover, an ML-based air interface system should be able to and knowledge from different network domains. Network adopt to the different requirements of each network slice in slice management and network service assurance are terms of data throughput, energy efficiency, and latency. As examples of global AI. such, initial AI deployments can focus on an ML air-interface Table I summarizes the benefits and challenges of au- targeting data transmissions improvement only. This approach tonomous node-level AI, localized AI, and global AI. Global is similar to the first NR non-standalone deployments where AI in future networks can be deployed either per slice whereby NR was introduced for eMBB services while being aided by each global AI entity manages a single slice independently of existing 4G infrastructure. In NR non-standalone, the network the other slices or per system whereby a single global AI man- uses an NR carrier mainly for data-rate improvements, while ages all the network slices simultaneously.
Recommended publications
  • NEXT GENERATION MOBILE WIRELESS NETWORKS: 5G CELLULAR INFRASTRUCTURE JULY-SEPT 2020 the Journal of Technology, Management, and Applied Engineering
    VOLUME 36, NUMBER 3 July-September 2020 Article Page 2 References Page 17 Next Generation Mobile Wireless Networks: Authors Dr. Rendong Bai 5G Cellular Infrastructure Associate Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Vigs Chandra Professor and Coordinator Cyber Systems Technology Programs Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Ray Richardson Professor Dept. of Applied Engineering & Technology Eastern Kentucky University Dr. Peter Ping Liu Professor and Interim Chair School of Technology Eastern Illinois University Keywords: The Journal of Technology, Management, and Applied Engineering© is an official Mobile Networks; 5G Wireless; Internet of Things; publication of the Association of Technology, Management, and Applied Millimeter Waves; Beamforming; Small Cells; Wi-Fi 6 Engineering, Copyright 2020 ATMAE 701 Exposition Place Suite 206 SUBMITTED FOR PEER – REFEREED Raleigh, NC 27615 www. atmae.org JULY-SEPT 2020 The Journal of Technology, Management, and Applied Engineering Next Generation Mobile Wireless Networks: Dr. Rendong Bai is an Associate 5G Cellular Infrastructure Professor in the Department of Applied Engineering and Technology at Eastern Kentucky University. From 2008 to 2018, ABSTRACT he served as an Assistant/ The requirement for wireless network speed and capacity is growing dramatically. A significant amount Associate Professor at Eastern of data will be mobile and transmitted among phones and Internet of things (IoT) devices. The current Illinois University. He received 4G wireless technology provides reasonably high data rates and video streaming capabilities. However, his B.S. degree in aircraft the incremental improvements on current 4G networks will not satisfy the ever-growing demands of manufacturing engineering users and applications.
    [Show full text]
  • Manual Connect.Pdf
    Wireless computer access at K-State Information Technology Services provides wireless access across campus for both the K-State community and for campus visitors. Instructions for connecting to KSU Wireless Windows XP configuration Windows Vista configuration Windows 7 configuration Macintosh OS 10.5x/6 configuration Android configuration iPhone, iPad, or iPod Touch configuration HP Touch Pad configuration Chromebook configuration Ubuntu configuration Who can use K-State’s wireless network? 1. K-State faculty/staff and students should use “KSU Wireless”. 2. Residents in K-State residence halls and Jardine Apartments should use “KSU Housing”. 3. Campus visitors should use “KSU Guest”. What’s needed to connect to KSU Wireless? A computer with wireless network card A valid K-State eID/password How do I get help? Contact your departmental IT support staff or the K-State IT Help Desk (785-532-7722, helpdesk@k- state.edu). Windows XP configuration: KSU Wireless These instructions assume you are using the Windows management of the wireless network adapter. 1. Click the Start button in the bottom left corner of the desktop. (If you’re using the classic Windows start menu, click Settings.) Click Network Connections. Right-click Wireless Connections and select View Available Wireless Networks from the menu. OR: An alternative approach is to right-click the wireless networking icon in the bottom right corner of the Windows desktop. Select View Available Wireless Networks from the menu. 2. The Wireless Network Connection window will appear. 3. Click Change the order of preferred networks in the left-hand menu. The following window will appear.
    [Show full text]
  • Teaching Protocol Exchanges Over Cellular Air Interface Olufemi Oyedapo, Xavier Lagrange, Philippe Martins, B Van Wyk
    Teaching protocol exchanges over cellular air interface Olufemi Oyedapo, Xavier Lagrange, Philippe Martins, B van Wyk To cite this version: Olufemi Oyedapo, Xavier Lagrange, Philippe Martins, B van Wyk. Teaching protocol exchanges over cellular air interface. AFRICON 2007 : 8th IEEE africon conference, Sep 2007, Windhoek, Namibia. pp.1 - 7, 10.1109/AFRCON.2007.4401606. hal-02165725 HAL Id: hal-02165725 https://hal.archives-ouvertes.fr/hal-02165725 Submitted on 26 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Teaching Protocol Exchanges over Cellular Air Interfaces O. J. Oyedapo, X. Lagrange, P. Martins, and B. Van Wyk attempts were made to examine and study the behavior of MS Abstract—The evolutionary path taken by cellular standards (using trace MS) by analyzing the Dm-channels to suitably to the current and future standards is incomplete without fully support transport of information between the MS and the understanding the older standards. The comprehension of the network. This study culminated from an attempt to have better GSM standard, specifically the procedures for protocols understanding of the services and supplementary services in exchange over the air interface will help students understand radio resource allocation procedures in GPRS and UMTS, and integrated services digital network (ISDN).
    [Show full text]
  • Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
    Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user.
    [Show full text]
  • Cellular Wireless Networks
    CHAPTER10 CELLULAR WIRELESS NETwORKS 10.1 Principles of Cellular Networks Cellular Network Organization Operation of Cellular Systems Mobile Radio Propagation Effects Fading in the Mobile Environment 10.2 Cellular Network Generations First Generation Second Generation Third Generation Fourth Generation 10.3 LTE-Advanced LTE-Advanced Architecture LTE-Advanced Transission Characteristics 10.4 Recommended Reading 10.5 Key Terms, Review Questions, and Problems 302 10.1 / PRINCIPLES OF CELLULAR NETWORKS 303 LEARNING OBJECTIVES After reading this chapter, you should be able to: ◆ Provide an overview of cellular network organization. ◆ Distinguish among four generations of mobile telephony. ◆ Understand the relative merits of time-division multiple access (TDMA) and code division multiple access (CDMA) approaches to mobile telephony. ◆ Present an overview of LTE-Advanced. Of all the tremendous advances in data communications and telecommunica- tions, perhaps the most revolutionary is the development of cellular networks. Cellular technology is the foundation of mobile wireless communications and supports users in locations that are not easily served by wired networks. Cellular technology is the underlying technology for mobile telephones, personal communications systems, wireless Internet and wireless Web appli- cations, and much more. We begin this chapter with a look at the basic principles used in all cellular networks. Then we look at specific cellular technologies and stan- dards, which are conveniently grouped into four generations. Finally, we examine LTE-Advanced, which is the standard for the fourth generation, in more detail. 10.1 PRINCIPLES OF CELLULAR NETWORKS Cellular radio is a technique that was developed to increase the capacity available for mobile radio telephone service. Prior to the introduction of cellular radio, mobile radio telephone service was only provided by a high-power transmitter/ receiver.
    [Show full text]
  • Glossary of Acronyms
    Glossary of Acronyms This glossary provides short definitions of a range of abbreviations· and acronyms in use within the cordless telecommunications field; many of the terms are defined in greater detail within this volume. ACCH associated control channel ACELP algebraic code-excited linear prediction, vocoder ACK acknowledgement protocol ACTE Approval Committee for Telecommunication Equipment ACW address code word ADM adaptive delta modulation ADPCM adaptive differential pulse-code modulation AGC automatic gain control AIN advanced intelligent network ALT automatic link transfer AM access manager AMPS American Mobile Phone System - US cellular standard API application programming interface ARA alerting/registration area ARI access rights identifier ARIB Association of Radio Industries and Businesses (Japan) ARQ automatic repeat request ATIS Alliance for Telecommunications Industry Solutions (USA) AWGN additive white Gaussian noise B echo balance return loss B channel user information bearer channel, 64 kb s-l, in ISDN BABT British Approvals Board for Telecommunications BCCH broadcast channel BCT business cordless telephone BER bit error ratio BMC/BMD burst mode controller/device BPSK binary phase shift keying, modulation BRA ISDN basic rate access BS basestation - the fixed radio component of a cordless link, single-channel or multichannel; term also used in cellular radio Glossary of Acronyms 507 BS6833 a standard for digital cordless telephones allowing for proprietary air interfaces (mainly specifying telephony-related aspects) (UK)
    [Show full text]
  • Wireless Backhaul Evolution Delivering Next-Generation Connectivity
    Wireless Backhaul Evolution Delivering next-generation connectivity February 2021 Copyright © 2021 GSMA The GSMA represents the interests of mobile operators ABI Research provides strategic guidance to visionaries, worldwide, uniting more than 750 operators and nearly delivering actionable intelligence on the transformative 400 companies in the broader mobile ecosystem, including technologies that are dramatically reshaping industries, handset and device makers, software companies, equipment economies, and workforces across the world. ABI Research’s providers and internet companies, as well as organisations global team of analysts publish groundbreaking studies often in adjacent industry sectors. The GSMA also produces the years ahead of other technology advisory firms, empowering our industry-leading MWC events held annually in Barcelona, Los clients to stay ahead of their markets and their competitors. Angeles and Shanghai, as well as the Mobile 360 Series of For more information about ABI Research’s services, regional conferences. contact us at +1.516.624.2500 in the Americas, For more information, please visit the GSMA corporate +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or website at www.gsma.com. visit www.abiresearch.com. Follow the GSMA on Twitter: @GSMA. Published February 2021 WIRELESS BACKHAUL EVOLUTION TABLE OF CONTENTS 1. EXECUTIVE SUMMARY ................................................................................................................................................................................5
    [Show full text]
  • To Recommend to the Council Items for Inclusi
    UNITED STATES OF AMERICA PROPOSALS FOR THE WORK OF THE CONFERENCE Agenda Item 8.2: to recommend to the Council items for inclusion in the agenda for the next WRC, and to give its views on the preliminary agenda for the subsequent conference and on possible agenda items for future conferences, taking into account Resolution 806 (WRC 07) Background Information: The aerospace industry is developing the future generation of commercial aircraft to provide airlines and the flying public more cost-efficient, safe, and reliable aircraft. One important way of accomplishing these aims is to reduce aircraft weight while providing multiple and redundant methods to transmit information on an aircraft. Employment of wireless technologies can accomplish these goals while providing environmental benefits and cost savings to manufacturers and operators. Installed Wireless Avionics Intra-Communications (WAIC) systems are one way to derive these benefits. WAIC systems consist of radiocommunications between two or more transmitters and receivers on a single aircraft. Both the transmitter and receiver are integrated with or installed on the aircraft. In all cases, communication is part of a closed, exclusive network required for aircraft operation. WAIC systems will not provide air-to-ground or air-to-air communications. WAIC systems will include safety-related applications among their operations. Draft New Report ITU-R M. 2197[WAIC] provides findings on the technical characteristics and operational requirements of WAIC systems for a single aircraft. Current aeronautical services allocations may not be sufficient to permit the introduction of WAIC systems due to the anticipated WAIC bandwidth requirements. Therefore, this document proposes a WRC-15 agenda item with an associated draft resolution to conduct studies and take appropriate regulatory action to accommodate WAIC systems.
    [Show full text]
  • Network Experience Evolution to 5G
    Network Experience Evolution to 5G Table of Contents Executive Summary ........................................................................................................... 4 Introduction ........................................................................................................................ 5 Definition of Terms ............................................................................................................... 5 Typical MBB Services and Network Experience Requirements in the 5G Era ............. 7 VR ........................................................................................................................................ 8 Video.................................................................................................................................... 9 Voice .................................................................................................................................... 9 Mobile Gaming ................................................................................................................... 10 FWA ................................................................................................................................... 11 Summary ........................................................................................................................... 13 Network Evolution Trends .............................................................................................. 13 5G-oriented LTE Experience Improvement Technologies ..........................................
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • CDMA2000—A World View
    CDMA2000—A world view Johan Langer and Gwenn Larsson The world’s first CDMA2000 networks were launched in Korea in October while maintaining the 1.25 MHz band- 2000, providing 144 kbit/s data rates to subscribing customers and deliv- width. Operators and manufactures soon re- ering nearly twice the voice capacity that operators experienced with their alized that there were inherent cost, back- cdmaOne (IS-95) systems. The success of the CDMA2000 1X system in ward compatibility and timing advantages Korea has encouraged many operators in the Americas and Asia to follow in keeping with the 1.25 MHz bandwidth for evolution. Thus, CDMA2000 3X has through with their plans to launch CDMA2000 this year. now been put on the wayside until market The authors outline some of the products and describe product advan- demands make it necessary to migrate to a tages that Ericsson CDMA customers will gain when rolling out Ericsson’s widerband carrier (3.75 MHz). CMS 11 R3 to provide third-generation services early next year. The authors also describe some of the key enablers in CMS 11 R3. 1xEV-DO The two phases of 1xEV are labeled 1xEV-DO and 1xEV-DV. DO stands for data only; DV stands for data and voice. Updates in the evolution CDMA2000 1xEV-DO was standardized by the Telecommunications Industry Associa- of CDMA2000 tion (TIA) in October 2000. 1xEV-DO was Since the spring of 2000, the evolution of recently recognized by the ITU-R WP8F as third-generation CDMA systems has an IMT-2000 standard. Formal approval is changed dramatically.
    [Show full text]
  • Wireless Radios Requisition Checklist Please Check Your Online Requisition for the Following Items
    Business Department Technology & Information Services Branch 562-997-8411 Service Desk We are at your Service TISB Website Wireless Radios Requisition Checklist Please check your Online Requisition for the following items. The District uses and supports Motorola Radios at schools and sites for internal operational communications. The choice of radio for your site depends on the following criteria: UHF or VHF: determined by the FCC license for the site (See provided list) Desired features of a radio Each site can have up to 2 channels1 Standard radio – Has a display screen to show different channels Motorola XPR 3500e Portable Digital Two Way Radio Packages o Motorola XPR 3500e UHF . UHF standard antenna PMAE4079A . Li-ion battery 2100 mAh PMNN4491B . 2" belt clip PMLN4651A . IMPRES rapid rate charger PMPN4137A . 2 year warranty . Part number AAH02RDH9VA1AN . Unit Cost: $378.90 o Motorola XPR 3500e VHF . VHF standard antenna PMAD4116A . Li-ion battery 2100 mAh PMNN4491B . 2" belt clip PMLN4651A . IMPRES rapid rate charger PMPN4137A . 2 year warranty . Part number AAH02JDH9VA1AN . Unit Cost: $356.40 For School Safety Only Motorola XPR 7580e Portable Digital Two Way Radio Package o 806 - 941 MHz o Color Display, Full Key Pad, GPS, Wi-Fi, Bluetooth o Whip Antenna PMAF4012 o Li-Ion battery 2150 mAh PMNN4409BR o 2.5” Spring Belt Clip PMLN7008 o IMPRES rapid rate charger PMPN4137A o 2 year Warranty o Part AAH56UCN9RB1AN o Unit Cost: $ 776.37 1 Originally was 1 analog channel; with digital radios, each channel may be doubled Long Beach Unified
    [Show full text]