Subsea Sampling Systems MARS Multiple Application Reinjection System Configurations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BP Executive: True Test of Downturn Will Come During Recovery
2016.otcnet.org Tuesday, May 3 | Houston, Texas | THE OFFICIAL 2016 OFFSHORE TECHNOLOGY CONFERENCE NEWSPAPER | DAY 2 BP Executive: True Test Fiery Ice of Downturn Will Come Takes Center During Recovery Stage n Leading experts to discuss advances n Energy demand is expected to increase by one-third by 2035, but oil and gas in E&P testing of gas hydrates during companies need to start looking at hydrocarbons as products to streamline. Wednesday luncheon. BY DARREN BARBEE “It’s how we will improve through BY JENNIFER PRESLEY the productivity of our oil sector and magine the oil and gas world as an assembly line, put costs on a downward curve.” t is the ice that burns, and it is more than an industrial Ichurning out cubes of oil and natural gas. Assem- For instance, BP’s Mad Dog Ihazard plugging pipelines. It goes by many names—fire bly lines are efficient. Changes mean swapping out Phase 2 project in the Gulf of Mex- in the ice or fiery ice being two of the more popular descrip- one part—not the entire system. Industrial and avia- ico went through about $10 billion tors. Gas hydrate is the curious clathrate formed by natural tion companies typically cut costs annually. But on the in cost trims, Looney said. gas and water. Found in the Arctic and in the deepwater hydrocarbon conveyor belt, cost efficiency doesn’t seem “This was a $20 billion project, continental margins around the globe, the energy poten- to follow any logical pattern. Bernard Looney and we’ve brought it down to under tial of this other unconventional hydrocarbon is keeping “In oil and gas, specifically the upstream, costs as we $10 billion with expected returns researchers busy unlocking its secrets to better understand know tend to follow oil price and in general have trended improved despite a lower oil price,” he said. -
SPE 112246 Rapid Model Updating with Right-Time Data
SPE 112246 Rapid Model Updating with Right-Time Data - Ensuring Models Remain Evergreen for Improved Reservoir Management Stephen J. Webb, David E. Revus, Angela M. Myhre, Roxar, Nigel H. Goodwin, K. Neil B. Dunlop, John R. Heritage, Energy Scitech Ltd. Copyright 2008, Society of Petroleum Engineers evergreen and providing the most up-to-date basis for the This paper was prepared for presentation at the 2008 SPE Intelligent Energy Conference making of important reservoir management decisions. and Exhibition held in Amsterdam, The Netherlands, 25–27 February 2008. This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper Introduction have not been reviewed by the Society of Petroleum Engineers and are subject to Since the early days of reservoir simulation, history correction by the author(s). The material does not necessarily reflect any position of the 1 Society of Petroleum Engineers, its officers, or members. Electronic reproduction, matching has been identified as one of the best methods distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an of validating a reservoir model’s predictive capabilities. abstract of not more than 300 words; illustrations may not be copied. The abstract must Often long periods of time have been spent adjusting the contain conspicuous acknowledgment of SPE copyright. reservoir description so that the reservoir simulator’s calculated results match the observed data from the reservoir. -
BP Mad Dog 2
Mad Dog 2 production pipeline end terminal BP Mad Dog 2 OUR PROJECT Field Information VALUES CLIENT Project at a glance The Mad Dog field is located approximately 190 miles offshore in the Southern Green BP The contract scope awarded to Subsea 7 covers engineering, procurement, Canyon area of the Gulf of Mexico (GOM). Mad Dog is a deep-water field in a water depth construction and installation (EPCI) of the subsea umbilicals, risers and flowlines ranging from approximately 1,370m - 2,200m. Oil reserves have been discovered within Safety (SURF) and associated subsea architecture. the existing Mad Dog field that are outside the reach of the existing Spar drilling rig and Schlumberger OneSubsea, Subsea 7's Subsea Integration Alliance partner, has been therefore new subsea and surface facilities are required to exploit the new reserves. awarded the Subsea Production Systems contract. Source: Modified from BP.com Full project information overleaf Integrity Highlights • First substantial project in the US • Multi-centre project with project Sustainability to use Subsea 7’s Swagelining management and engineering polymer lining technology. taking place in Houston, Texas with • First project to install in-house support from Subsea 7’s Global Performance designed steel lazy wave riser Project Centres in London and Paris. systems. Pipeline fabrication and Liner support supplied from Glasgow, Scotland. • The lazy wave risers will be wet stored onto the seabed and then • Delivered in close collaboration with Collaboration recovered and hung off onto Schlumberger OneSubsea, Subsea 7's the FPU following tow-out and Subsea Integration Alliance partner. mooring. Innovation Our Differentiators Culture Creativity Relationships Reliability Solutions www.subsea7.com© Subsea 7, February 2019. -
Reservoir Simulation-Based Modeling for Characterizing Longwall Methane Emissions and Gob Gas Venthole Production
Reservoir simulation-based modeling for characterizing longwall methane emissions and gob gas venthole production C.O. Karacan , G.S. Esterhuizen, S.J. Schatzel, W.P. Diamond National Institute for Occupational Safety and Health (NIOSH), PiPinsburgh Research Laboratory, United States Abstract Longwall mining alters the fluid-flow-related reservoir properties of the rocks overlying and underlying an extracted panel due to fracturing and relaxation of the strata. These mining-related disturbances create new pressure depletion zones and new flow paths for gas migration and may cause unexpected or uncontrolled migration ofgas into the underground workplace. One common technique to control methane emissions in longwall mines is to drill vertical gob gas ventholes into each longwall panel to capture the methane within the overlying fractured strata before it enters the work environment. Thus, it is important to optimize the well parameters, e.g., the borehole diameter, and the length and position of the slotted casing interval relative to the hctured gas-bearing zones. This paper presents the development and results of a comprehensive, "dynamic," three-dimensional reservoir model of a typical multipanel Pittsburgh coalbed longwall mine. The alteration of permeability fields in and above the panels as a result of the mining- induced disturbances has been estimated from mechanical modeling of the overlying rock mass. Model calibration was performed through history matching the gas production &om gob gas ventholes in the study area. Results presented in this paper include a simulation of gas flow patterns from the gas-bearing zones in the overlying strata to the mine environment, as well as the influence of completion practices on optimizing gas production from gob gas ventholes. -
Hydrocarbon Reservoir Modeling: Comparison Between Theoretical and Real Petrophysical Properties from the Namorado Field (Brazil) Case Study
Hydrocarbon reservoir modeling: comparison between theoretical and real petrophysical properties from the Namorado Field (Brazil) case study. Hashimoto, Marcos Deguti, Student from the Master in Oil Engineering E-mail: [email protected] 1. Abstract In reservoir characterization and modeling, due to information-acquisition’s high costs, frequently only indirect measurements of the subsurface properties such as seismic reflection data is available. In the worst-case scenario, only regional geological information is at disposal. In an attempt to provide deeper insights over the study area, with low costs, modeling synthetic reservoirs has been a reliable tool to better characterize reservoir/prospects. In this work two synthetic hydrocarbons reservoirs were modelled recurring to two different approaches to characterize Earth’s subsurface petrophysical (facies, porosity and permeability) and elastic (P-wave, S-wave and density) properties. In the second half of 2013, during the IST (Instituto Superior Técnico) Internship, a synthetic reservoir was conceived and modeled using Namorado Field’s (Campos Basin, Rio de Janeiro, Brazil) as reference. During this intern public data, knowledge, papers, books and dissertations were gathered. In order to validate and certify this outcome, a new synthetic reservoir was proposed, but this time using real data for this field provided by the Brazilian Oil & Gas Agency (ANP). This dissertation addresses the comparison between the theoretical and real synthetic reservoir results, validating the first reservoir step-by-step. The major conclusion reached confirms that the theoretical synthetic reservoir outputs reliable results, however with caution in some of the modelled properties. Keywords: Hydrocarbon synthetic reservoir, Reservoir Modeling, Rock Physics Model, Petrophysical properties, Namorado Field, Campos Basin (Brazil). -
Confirmation of Data-Driven Reservoir Modeling Using Numerical Reservoir Simulation
Graduate Theses, Dissertations, and Problem Reports 2019 CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION Al Hasan Mohamed Al Haifi [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Petroleum Engineering Commons Recommended Citation Al Haifi, Al Hasan Mohamed, "CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION" (2019). Graduate Theses, Dissertations, and Problem Reports. 3835. https://researchrepository.wvu.edu/etd/3835 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. CONFIRMATION OF DATA-DRIVEN RESERVOIR MODELING USING NUMERICAL RESERVOIR SIMULATION Al Hasan Mohamed Mohamed Al Haifi Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements -
Techniques for Modeling Complex Reservoirs and Advanced Wells
TECHNIQUES FOR MODELING COMPLEX RESERVOIRS AND ADVANCED WELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Yuanlin Jiang December 2007 °c Copyright by Yuanlin Jiang 2008 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Hamdi Tchelepi Principal Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Khalid Aziz Advisor I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Dr. Roland Horne Approved for the University Committee on Graduate Studies. iii Abstract The development of a general-purpose reservoir simulation framework for coupled systems of unstructured reservoir models and advanced wells is the subject of this dissertation. Stanford's General Purpose Research Simulator (GPRS) serves as the base for the new framework. In this work, we made signi¯cant contributions to GPRS, in terms of architectural design, extensibility, computational e±ciency, and new advanced well modeling capabilities. We designed and implemented a new architectural framework, in which the fa- cilities (man-made) model is treated as a separate component and promoted to the same level as the reservoir (natural) component. -
Pre-Conference Ice Breaker, Monday 22Th October
Subsea Controls Down Under Conference 2018 Post-event Report By Ian Wilson, SUT Perth Branch Committee Member Pre-Conference Ice Breaker, Monday 22th October At 6pm delegates boarded the Crystal Swan for a cruise on the Swan river. Rob Bush of Yokogawa Australia opened the conference with a welcome address. Everyone enjoyed an evening of networking, canapes and drinks before disembarking at 9pm for some rest. SCDU 2018 Post-event Report 1 of 24 | P a g e Day ONE Tuesday 23rd October 2018 0915 Welcome by Rex Hubbard, SUT Perth Branch Vice Chairman Rex acknowledged our Major Sponsors: Viper Innovations and Woodside Energy, Ice Breaker sponsor, Yokogawa Australia and Event Partners, One Subsea, Pressure Dynamics and Shell Australia. It was mentioned we had 106 participants from 8 different countries and 20% from Opcos. The Conference Theme is “Technology, Reliability & Availability through Collaboration” 0925 Welcome to Country by Irene Stainton, INPEX SCDU 2018 Post-event Report 2 of 24 | P a g e Session A - Chaired by Ross Hendricks, TechnipFMC 0935 Keynote presentation by Miranda Taylor, CEO NERA “Cluster isn’t a dirty word: How innovative business models are changing the collaboration in landscape across Australia’s energy resources sector” Australia does not have a track record for commercialization of new technology, NERA want to change that. Australia needs a cultural change to gain the benefits of collaboration around innovation. Two innovation drivers are AI and big data. Australia does great things, but we fail to co-ordinate these -
2020 Annual Report Schlumberger Limited
2020 Annual Report Schlumberger Limited 45507schD1R2.indd 1 2/19/21 8:20 AM CONTENTS Safety Sustainability 2 LETTER TO SHAREHOLDERS 4 AN EVOLVING ENERGY INDUSTRY 4 The Performance Strategy 11 A Global Reach Equipping Basins for Success ESG Rating 12 PERFORMANCE IN PRACTICE 12 Our Safety and Service Quality Commitment 15 Focus on People Improvement B 18 OPPORTUNITIES IN THE ENERGY TRANSITION 18 Environmental Performance 18 Decarbonizing Oil and Gas Operations 22 Schlumberger New Energy TRIF (Total Recordable Injury Frequency) 2019 2020 CDP Climate Change Directors, Officers, and Corporate Information Inside Back Cover Service Quality Financial Schlumberger (SLB: NYSE) is a technology company Improvement † that partners with customers to access energy. Our people, representing over 160 nationalities, are providing leading digital solutions and deploying innovative technologies to enable performance and sustainability for the global energy industry. With expertise in more than 120 countries, we collaborate to create technology that unlocks access to energy for the benefit of all. and Serious Events Major, Catastrophic, per million work-hours Find out more at slb.com †For a reconciliation of adjusted EBITDA to loss before taxes on a GAAP basis, see our fourth-quarter and full-year 2020 results earnings press release at investorcenter.slb.com/node/22541/html (pp. 19–20). Schlumberger Limited | 2020 Annual Report Our Resilience, Driving Performance 1 45507schD1R3.indd 2 45507schD2R3.indd 1 2/20/21 2:32 PM 2/20/21 2:15 PM LETTER TO SHAREHOLDERS Looking back on 2020, I would like to reflect on what this year meant for Schlumberger—a year that brought incredible challenges, but during which we achieved much and laid a strong foundation for our future success—through resilience and strategic execution. -
Chapter 6 Static Reservoir Model
CHAPTER 6. STATIC RESERVOIR MODEL Martin K. Dubois, Geoffrey C. Bohling, and Alan P. Byrnes For detailed documentation on the construction of the static model see digital appendix: Geomod4_build INTRODUCTION Building an accurate static model for the entire Hugoton field (Hugoton and Panoma in Kansas and Guymon-Hugoton in Oklahoma) was the primary objective in the Hugoton Asset Management Project (HAMP). The goal was to develop a model with sufficient detail to represent vertical and lateral heterogeneity at the well, multi-well, and field scale, which could be used as a tool for reservoir management. This required that the model be finely layered (169 layers, 3-ft (1 m) average thickness), and have relatively small XY cell dimensions (660x660 ft, 200x200m; 64 cells per mi2). These criteria resulted in development of a 108-million cell model for the 10,000-mi2 (26,000-km2) area modeled. Although lithofacies geo-bodies tend to be laterally extensive, covering multi- section to township scales, small XY-cell dimensions were required to allow the extraction of portions of the model for local reservoir simulation. The Hugoton geomodel may be the largest model of its kind (lithofacies-controlled, property-based water saturations), and the workflow illustrates how very large models can be built. The simplified workflow presented in Figure 6.1 might be interpreted to indicate that the workflow process was linear; however, it is important to note there are multiple feedback loops at varying scales (with each step, between adjacent steps, and involving multiple steps). In addition, there were multiple iterations in the workflow at scales from individual steps to the model scale. -
Mce Deepwater Development 2016
MCE DEEPWATER DEVELOPMENT 2016 5-7 APRIL, 2016 Managing the Downturn PALAIS BEAUMONT Through Cost Reductions Collaborating to Realize PAU • FRANCE Economic Benefits WWW.MCEDD.COM Hosted by: SHOW PROGRAM Organized by In Partnership with Supported by Host Letter of Support Release Date: 9 November, 2015 Dear Colleaues, TOTAL RÉFÉRENCES COULEUR TOTAL_brand_block_CMYK The uniue dynamics of our current down cycle in the glo30/01/2014bal oil and gas industry reuires a structural 24, rue Salomon de Rothschild - 92288 Suresnes - FRANCE Tél. : +33 (0)1 57 32 87 00 / Fax : +33 (0)1 57 32 87 87 M100% Y80% Web : www.carrenoir.com M48% Y100% M100% Y80% and fundamental shift in the way we develop our offshore, and spC100%e cM80%ifically deepwater, discoveries. K70% C70% M30% While continuously aiming at improvin industry safety objectives, our common objective is to reduce costs sinificantly in order for deepwater to remain competitive. This will only be achieved thou a step chance in efficiency which reuires reinforced industry collaboration and innovative technologies. MCE Deepwater Development is a leadin industry event focused on brinin together the strategic decision makers within the deepwater oil and gas market. Throu a focused tecnical program, creative networkin opportunities and a comprehensive exhibition hall, the event creates a uniue opportunity for these members of industry to engage in critical dialoue around the future of our industry. Considerin current market conditions and the lon established reutation of MCE Deepwater Development, Total is pleased to host the 2016 event in Pau, France, 5-7 April 201. As a key operator in deepwater oil and gas, Total looks forward to taking full advantage of the opportunities provided durin MCE Deepwater Development. -
Research & Development
RESEARCH & DEVELOPMENT, AN INTERNATIONAL NETWORK TOTAL RESEARCH CENTRE – STAVANGER R&D IN FIGURES HOUSTON RIO DE JANEIRO CSTJF PERL ABERDEEN STAVANGER DOHA R&D, (United States) (Brazil) (France) (France) (United Kingdom) (Norway) (Qatar) THE WORLD IS OUR LABORATORY Our research organization spans the globe. Basing our specialized Research Centres and teams strategically near the regional hubs of the oil & gas industry gives us access to these regions and projects our image of R&D excellence around the world. In full synergy with the nerve centre of Total E&P’s R&D at the Centre Scientifique et Technique Jean-Féger (CSTJF) in southwest France, these researchers are part of a multi-disciplinary network of teams working on strategic R&D programs and themes, crucial for Total’s competitiveness. Our international network and the close ties we have forged with leading-edge public and private research bodies enable us to tap into the academic and industrial expertise available 300 25 in each region. This open innovation strategy helps us RESEARCHERS NATIONALITIES access the most promising scientific and technological NEARLY 340 PATENT FAMILIES advances that we can leverage to deliver tomorrow’s REPRESENTING SOME breakthrough technologies a step ahead of our peers. 1,700 Our Research Centre in Stavanger, Norway, has enjoyed rapid PATENTS FILED growth, fostering highly efficient partnerships with industrial ALL AROUND 10 THE WORLD DISRUPTIVE consortiums and universities in some of the world’s most 2 9,000 m TECHNOLOGIES crucial R&D programs, that will keep Total ahead in our OF LABORATORY FIELD-TESTED EACH YEAR commitment to produce better energy.