Pacific Institute for the Mathematical Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Pacific Institute for the Mathematical Sciences Pacific Institute for the Mathematical Sciences Annual Report 2005 | 06 THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES Mission Statement The Pacific Institute for the Mathematical Sciences (PIMS) was founded and is maintained by the five main universities in Western Canada (Simon Fraser University, University of Alberta, University of British Columbia, University of Calgary, and University of Victoria). In 2005 the University of Washington joined this group of Canadian universities, thereby extending PIMS’ influence into the United States. PIMS’ objectives are: • Promoting research in mathematics; • Strengthening ties and collaboration between mathematical scientists in the academic community, in the industrial and business sector, and in government; • Enhancing education and training in mathematical sciences, and broadening communication of mathematical ideas; and • Creating strong mathematical partnerships and links within Canada and with organizations in other countries, focusing on Pacific Rim nations. PIMS has a close partnership with the Mathematical Sciences Research Institute (MSRI), and the Mathematics of Information Technology and Complex Systems (MITACS). The Universities of Lethbridge, Northern British Columbia, and Regina are affiliates. In its nine years of existence, PIMS has developed numerous ways in which to fulfil the objectives set by its founding universities. These include Collaborative Research Groups, various Scientific, Education, and Industrial activities, the Banff International Research Station (BIRS), and Postdoctoral Fellowships. As the Director of PIMS, I am committed to continuing in this direction, as well as exploring other ways in which PIMS can contribute to mathematics, science, and education. Ivar Ekeland PIMS Director 2005 | 06 • t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s a n n u a l r e p o r t i THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES Message from the Director n 2005-06, the Pacific Institute for the Mathematical Sciences I(PIMS) has continued to expand the scope of its mathematical research and collaboration, through our ties with mathematicians in Canada and the United States, with international organizations, and with industry. PIMS’ dedication to collaborative mathematical research continues to show results. In 2005-06, five new Collaborative Research Groups (CRG) began operations, while five others wrapped up their activities. Our Postdoctoral Fellowships programme attracted bright mathematical minds to the PIMS universities. Our seminars and conferences brought together mathematicians from North American and internationally, to develop mathematical research Ivar Ekeland, PIMS Director and strengthen ties between researchers. Our international reach expanded dramatically in 2005-06. PIMS signed agreements with the Centre for Mathematical Modeling in Chile (CMM) and with the National University of Mexico (UNAM), which puts PIMS at the centre of mathematical and applied mathematical research in Latin America. PIMS and MSRI initiated a meeting at BIRS that became the founding meeting of the Pacific Rim Mathematical Association. PRIMA is an association of mathematical sciences institutes, departments and societies from around the Pacific Rim, established with the aim of promoting and facilitating the development of the mathematical sciences throughout the Pacific Rim region. In 2006 and beyond, we will build on our scientific and industrial ties, as PIMS enters its 10th year of mathematical excellence. ii t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s • a n n u a l r e p o r t 2005 | 06 THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES Content Mission Statement i Industrial Activities 77 Message from the Director ii PIMS Industrial Activities 78 Industrial Problem Solving Workshop 79 PIMS (News) 1 Educational Activities 85 PIMS Management 3 Education 86 Board of Directors 4 Educational Outreach 86 Scientific Review Panel 10 K-12 Education Activities 86 PIMS Site Directors 17 First Nations Outreach 89 PIMS Postdoctoral Fellows 17 Undergraduate and Graduate Educational PIMS Distinguished Chairs 19 Activities 90 PIMS Personnel 21 Mathematics Educator Activities 91 Scientific Activities 23 Banff International Research Collaborative Research Groups 24 Station (BIRS) 95 Dynamics 26 About BIRS 96 Mathematical Ecology and Evolution 28 The BIRS Scientific Advisory Board 97 Number Theory 32 BIRS Calendar for 2005 – 2006 98 Scientific Computing 35 String Theory 38 Publications 105 Topology 45 pi in the sky 106 Probability and Statistical Mechanics 47 pims magazine 9.1 106 Algebraic Geometry, Cohomology, and Representation Theory 50 Financial Reports 107 Inverse Problems 54 Quantum Topology 56 Financial Reports 108 Income for 2005–06 108 Core Scientific Activities 57 PIMS Total Income 109 Other Contributions 110 Conferences 58 PIMS Summary of Expenditures 111 Seminar and Lecture Series 66 2005 | 06 • t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s a n n u a l r e p o r t iii THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES iv t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s • a n n u a l r e p o r t 2005 | 06 THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES PIMS (News) INTERNATIONAL PARTNERSHIPS n October, 2005, PIMS took a major international initiative. Together with the Mathematical Sciences IResearch Institute (MSRI), PIMS invited the major mathematical sciences institutes from around the Pacific Rim to attend a meeting at the Banff International Research tation (BIRS). There were over 30 participants, and it was decided to create a network, the Pacific Rim MathematicalAssociation (PRIMA), which now has 43 members in Canada, the United States, Chile, Mexico, Australia, New Zealand, China and Hong Kong, Japan, South Korea and Singapore. A general agreement was made to develop student and faculty exchanges (under the general principle that the home institute pays for travel and the host institute pays for accommodation), and creating PRIMA programmes and events and the general PRIMA congresses, the first of which will be held July 13-17, 2009, at the University of New SouthWales in Sydney, Australia. PRIMA is a natural conduit for bringing international students and researchers to Canada, and for accessing foreign expertise. In December, 2005, PIMS signed a cooperation agreement with the Centro de Modelamiento Matemático (CMM) at the University of Chile. Similar to Western Canada, Chile has a high degree of economic reliance on natural resources such as fishing, forestry, and mining, which is why CMM joined the PIMS Collaborative Research Group on the Economics and Finance of Climate Risk and Natural Resources. This is a very balanced collaboration: PIMS brings expertise in economics, finance, and operations research, while CMM brings expertise on stochastic optimization and numerical algorithms. Both sides share a strong common ground in mathematics, notably partial differential equations. One three-week summer school was held in Vancouver in the summer of 2006, another is scheduled at BIRS in 2007, and a workshop with several prominent mining companies is scheduled in Santiago in 2007. Several Chilean graduate students now have joint supervision from PIMS and CMM faculty. In 2006, PIMS signed separate working agreements with two Mexican institutes, the Mathematics Institute at UNAM (March, 2006) and CINVESTAV (September, 2006). This has resulted in closer ties between the Canadian and Mexican mathematical communities (the first joint meeting of the Canadian and Mexican societies was held in Guanajuato in September, 2006, and the second one is scheduled in Vancouver in 2009). As part of this collaboration, a summer school on Algebra was organized by PIMS and UNAM at BIRS in July, 2006, and a meeting in Geometry and Topology took place in Mexico in January, 2007. NATIONAL PARTNERSHIP he University of Regina joined PIMS as an affiliated institution in June, 2005.The PIMS contact Tat U.Regina is Shaun Fallat, Associate Professor in the Department of Mathematics and Statistics. U.Regina is the third affiliated member of PIMS, joining the University of Lethbridge and the University of Northern British Columbia. 2005 | 06 • t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s a n n u a l r e p o r t 1 THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES 2 t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s • a n n u a l r e p o r t 2005 | 06 PIMS Management 2005 | 06 • t h e pacific i n s t i t u t e f o r t h e mathematical s c i e n c e s a n n u a l r e p o r t 3 THE PACIFIC INSTITUTE FOR THE MATHEMATICAL SCIENCES Board of Directors The Board of Directors has final responsibility for all aspects of the operation of PIMS. In particular, the Board ensures fiscal accountability, monitors the operation of PIMS, and advises the Executive Committee. The Board is composed of the PIMS Director and Deputy Director, a Senior Academic Administrator from each PIMS University, mathematical scientists, and representatives from industry and the professional societies. Chair of the Board Dr. Russell has also been active as a volunteer with (from June, 2005): several geophysical societies. He was president Brian H. Russell has spent his of the Canadian SEG (CSEG) in 1991, received career working in all aspects of the CSEG Meritorious Service Award in 1995, the exploration geophysics. He CSEG Medal in 1999, and honorary membership in initially joined Chevron Standard 2001.
Recommended publications
  • On the Iwasawa Invariants of Kato's Zeta Elements for Modular Forms
    ON THE IWASAWA INVARIANTS OF KATO’S ZETA ELEMENTS FOR MODULAR FORMS CHAN-HO KIM, JAEHOON LEE, AND GAUTIER PONSINET Abstract. We study the behavior of the Iwasawa invariants of the Iwasawa modules which appear in Kato’s main conjecture without p-adic L-functions under congruences. It general- izes the work of Greenberg–Vatsal, Emerton–Pollack–Weston, B.D. Kim, Greenberg–Iovita– Pollack, and one of us simultaneously. As a consequence, we establish the propagation of Kato’s main conjecture for modular forms of higher weight at arbitrary good prime under the assumption on the mod p non-vanishing of Kato’s zeta elements. The application to the ± and ♯/♭-Iwasawa theory for modular forms is also discussed. Contents 1. Introduction 1 2. Main results and applications 6 3. “Prime-to-p local” Iwasawa theory 8 4. The zeta element side 11 5. The H2-side 16 6. The invariance of λ-invariants 18 7. Beyond the Fontaine–Laffaille range: the semi-stable ordinary case 19 Acknowledgement 21 References 21 1. Introduction 1.1. Overview. In Iwasawa theory for elliptic curves and modular forms, the techniques of congruences of modular forms has played important roles. Especially, in their ground-breaking work [GV00], Greenberg and Vatsal observed that both algebraic and analytic Iwasawa in- variants of elliptic curves with good ordinary reduction over the cyclotomic Zp-extension Q∞ of Q can be described in terms of the information of the residual representations and the local arXiv:1909.01764v2 [math.NT] 29 Nov 2019 behavior at bad reduction primes under the µ = 0 assumption.
    [Show full text]
  • L-Invariants of Low Symmetric Powers of Modular Forms and Hida Deformations
    L-invariants of low symmetric powers of modular forms and Hida deformations Robert William Harron A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance by the Department of Mathematics Adviser: Andrew Wiles September 2009 c Copyright by Robert William Harron, 2009. All Rights Reserved Abstract We obtain formulae for Greenberg's L-invariant of symmetric square and symmetric sixth power motives attached to p-ordinary modular forms in the vein of theorem 3.18 of [GS93]. For the symmetric square of f, the formula obtained relates the L- invariant to the derivative of the p-adic analytic function interpolating the pth Fourier coefficient (equivalently, the unit root of Frobenius) in the Hida family attached to f. We present a different proof than Hida's, [Hi04], with slightly different assumptions. The symmetric sixth power of f requires a bigger p-adic family. We take advantage of a result of Ramakrishnan{Shahidi ([RS07]) on the symmetric cube lifting to GSp(4)=Q, Hida families on the latter ([TU99] and [Hi02]), as well as results of several authors on the Galois representations attached to automorphic representations of GSp(4)=Q, to compute the L-invariant of the symmetric sixth power of f in terms of the derivatives of the p-adic analytic functions interpolating the eigenvalues of Frobenius in a Hida family on GSp(4)=Q. We must however impose stricter conditions on f in this case. Here, Hida's work (e.g. [Hi07]) does not provide answers as specific as ours.
    [Show full text]
  • Prix Coxeter-James 2007 Coxeter-James Prize
    Prix Coxeter-James 2007 Coxeter-James Prize The Coxeter-James Prize was inaugurated to recognize young mathematicians who have made outstanding contributions to mathematical research. The first award was presented in 1978. The Coxeter-James Prize recognizes young mathematicians who have made outstanding contributions to mathematical research. Le prix Coxeter-James rend hommage aux jeunes mathématiciens qui se sont distingués par l’excellence de leur contribution à la recherche mathématique. Il a été décerné pour la première fois en 1978. Le prix Coxeter-James rend hommage aux jeunes mathématiciens qui se sont distingués par l’excellence de leur contribution à la recherche mathématique. Dr. Vinayak Vatsal has made fundamental contributions Vinayak Vatsal a fait d’importantes contributions à la to the Iwasawa Theory of elliptic curves, introducing théorie d’Iwasawa des courbes elliptiques, en y introduisant profound techniques from ergodic theory into the subject des techniques dérivées de la théorie ergodique, et en Dr. Vinayak Vatsal and obtaining startling theorems on the non-vanishing of obtenant des théorèmes impressionnants sur les non- University of British Columbia p-adic L-functions and mu-invariants that had previously annulation de fonctions L p-adiques et de mu-invariants been unobtainable by more orthodox analytic methods. qu’il avait été impossible d’obtenir à l’aide de méthodes RECIPIENTS His 2002 Inventiones paper on the uniform distribution plus orthodoxes. Son article de 2002 intitulé Inventiones LAURÉATS of Heegner points led to the complete solution of a sur la distribution uniforme des points Heegner a abouti fundamental conjecture of Mazur concerning such L- à la solution complète d’une conjecture fondamentale 2006 Jim Geelen functions (now the Vatsal-Cornut theorem).
    [Show full text]
  • Projects: Propagating the Iwasawa Main Conjecture Via Congruences
    PROJECTS: PROPAGATING THE IWASAWA MAIN CONJECTURE VIA CONGRUENCES FRANCESC CASTELLA AND CHRISTOPHER SKINNER Abstract. We describe projects for the course by the second author at AWS 2018. 1. Goal of these projects Let f; g 2 Sk(Γ0(N)) be normalized eigenforms (not necessarily newforms) of weight k > 2, say with rational Fourier coefficients an; bn 2 Q for simplicity, and assume that f ≡ g (mod p) in the sense that an ≡ bn (mod p) for all n > 0. Roughly speaking, the goal of these projects is to study how knowledge of the Iwasawa main conjecture for f can be \transferred" to g. For k = 2 and primes p - N of ordinary reduction, such study was pioneered by Greenberg{ Vatsal [GV00], and in these projects we will aim to extend some of their results to: • non-ordinary primes; • certain anticyclotomic settings; • (more ambitiously) some of the \residually reducible" cases which eluded the methods of [GV00], with applications to the p-part of the BSD formula in ranks 0 and 1. 2. The method of Greenberg{Vatsal Before jumping into the specifics of each of those settings, let us begin with a brief outline of the method of Greenberg{Vatsal (which is beautifully explained in [GV00, x1]). Let F1=F be a Zp-extension of a number field F , and identify the Iwasawa algebra Zp[[Gal(F1=F )]] with the one-variable power series ring Λ = Zp[[T ]] in the usual fashion. Recall that Iwasawa's main conjecture for f over F1=F posits the following equality be- tween principal ideals of Λ: alg ? an (2.1) (Lp (f)) = (Lp (f)); where alg • Lp (f) 2 Λ is a characteristic power series of a Selmer group for f over F1=F .
    [Show full text]
  • Arxiv:0906.1741V2 [Math.NT]
    MAZUR–TATE ELEMENTS OF NON-ORDINARY MODULAR FORMS ROBERT POLLACK AND TOM WESTON Abstract. We establish formulae for the Iwasawa invariants of Mazur–Tate elements of cuspidal eigenforms, generalizing known results in weight 2. Our first theorem deals with forms of “medium” weight, and our second deals with forms of small slope. We give examples illustrating the strange behavior which can occur in the high weight, high slope case. 1. Introduction Fix an odd prime p, and let f denote a cuspidal eigenform of weight k ≥ 2 and level Γ := Γ0(N) with p ∤ N. Throughout this introduction, we assume for simplicity that f has rational Fourier coefficients. Let ρf : GQ → GL2(Fp) denote the associated residual Galois representation which we assume to be irreducible. If f is a p-ordinary form, then the p-adic L-function Lp(f) is an Iwasawa function, and one can associate to f (analytic) Iwasawa invariants µ(f) = µ(Lp(f)) and λ(f)= λ(Lp(f)). If f is p-non-ordinary, then the situation is quite different as Lp(f) is no longer an Iwasawa function, and one does not have associated µ- and λ-invariants. However, when f has weight 2, constructions of Kurihara and Perrin-Riou produce pairs of ± ± µ- and λ-invariants denoted by µ (f) and λ (f) (see also [15] when ap(f) = 0). These invariants are defined by working with the Mazur–Tate elements θn(f) ∈ Zp[Gn] th attached to f; here Gn = Gal(Qn/Q) where Qn is the n layer of the cyclotomic Zp-extension of Q.
    [Show full text]
  • Lectures on the Iwasawa Theory of Elliptic Curves
    LECTURES ON THE IWASAWA THEORY OF ELLIPTIC CURVES CHRISTOPHER SKINNER Abstract. These are a preliminary set ot notes for the author's lectures for the 2018 Arizona Winter School on Iwasawa Theory. Contents 1. Introduction 2 2. Selmer groups 3 2.1. Selmer groups of elliptic curves 3 2.2. Bloch{Kato Selmer groups 9 2.3. Selmer structures 12 3. Iwasawa modules for elliptic curves 13 3.1. The extension F1=F 13 3.2. Selmer groups over F1 15 3.3. S?(E=F1) as a Λ-module 17 3.4. Control theorems 19 4. Main Conjectures 22 4.1. p-adic L-functions 23 4.2. The Main Conjectures 27 4.3. Main Conjectures without L-functions 28 5. Theorems and ideas of their proofs 30 5.1. Cyclotomic Main Conjectures: the ordinary case 30 ac 5.2. The Main Conjectures for SGr(E=K1) and SBDP(E=K1) 32 5.3. Cyclotomic Main Conjectures: the supersingular case 34 5.4. Perrin-Riou's Heegner point Main Conjecture 35 6. Arithmetic consequences 36 1 2 CHRISTOPHER SKINNER 6.1. Results when L(E; 1) 6= 0 36 6.2. Results when L(E; 1) = 0 36 6.3. Results when ords=1L(E; s) = 1 37 6.4. Converses to Gross{Zagier/Kolyvagin 39 References 40 1. Introduction Iwasawa theory was introduced around 1960 in the context of class groups of cyclotomic and other Zp-extensions of number fields. The Main Conjecture of Iwasawa theory proposed a re- markable connection between the p-adic L-functions of Kubota and Leopoldt and these class groups [19, x1], [12, x5], including among its consequences certain refined class number formulas for values of Dirichlet L-functions.
    [Show full text]
  • Calendar of AMS Meetings and Conferences
    Calendar of AMS Meetings and Conferences This calendar lists all meetings an.d conferences approved prior to the date this issue be submitted on special forms which are available in many departments of mathematics went to press. The summer and annual meetings are joint meetings of the ·Mathe­ and from the headquarters office of the Society. Abstracts of papers to be presented matical Association of America and the American Mathematical Society. The meeting at the meeting must be received at the headquarters of the Society in Providence, dates which fall rather far in the future are subject to change; this is particularly true Rhode Island, on or before the deadline given below for the meeting. The abstract of meetings to which no numbers have been assigned. Programs of the meetings will deadlines listed below should be carefully reviewed &ince an abstract deadline may appear in the issues indicated below. First and supplementary announcements of the expire before publication of a first announcement. Note that the deadline for abstracts meetings will have appeared in earlier issues. Abstracts of papers presented at a for consideration for presentation at special sessions is usually three weeks earlier than meeting of the Society are published in the journal Abstracts of papers presented to that specified below. For additional information, consult the meeting announcements the American Mathematical Society in ihe issue corresponding to that of the Notices and the list of special sessions. which contains the program of the meeting, insofar as is possible. Abstracts should Meetings Abstract Program Meeting# Date Place Deadline Issue 879 • March 26-27, 1993 Knoxville, Tennessee Expired March 880 • April9-10, 1993 Salt Lake City, Utah Expired April 881 • April17-18, 1993 Washington, D.C.
    [Show full text]
  • Math in Moscow Common History
    Scientific WorkPlace® • Mathematical Word Processing • lt\TEX Typesetting Scientific Word®• Computer Algebra Plot 30 Animated + cytlndrtcal (-1 + 2r,21ru,- 1 + lr) 0 ·-~""'- r0 .......o~ r PodianY U rN~ 2.110142 UIJIIectdl' 1 00891 -U!NtdoiZ 3.!15911 v....,_ Animated plots tn sphertc:al coorcttrud:es ,. To make an animated plot in spherieal coordinates 1 Type an exprwsslon In !hr.. v.Nbles . 2 Wllh the Insertion point In the expression. choose Plot 3D The neXI example shows a sphere that grows from radius 1 to ,. Plot 3D Animated + SpMrtcal The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in lf.T£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 30 plots, create 30 implicit plots, and more. ..- MuPAD MuPAD. Pro Pro 111fO!Ifii~A~JetriS)'Itfll "':' Version 4 MuPAD Pro is an integrated and open mathematical problem­ solving environment for symbo lic and numeric computing. Visit our website for details. cK.ichan SOFTWARE, INC , Visit our website for free trial versions of all our products. www.mackic han.com/notices • Email: [email protected] • Toll free : 87 7-724-9673 --CPAA-2007-- communications on Pure and Applied Analysis ISSN 1534-0392 (print); ISSN 1553-5258 (electronic) ' ' CPAA, covered in Science Citation Index-Expanded (SCI­ Editorial board ' ' ' ' E), publishes original research papers of the highest quality Editors in Chief: ' ' ' Shouchuan Hu ' in all the major areas of analysis and its applications, with a ' .
    [Show full text]
  • Algorithms for the Arithmetic of Elliptic Curves Using Iwasawa Theory
    MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000{000 S 0025-5718(XX)0000-0 ALGORITHMS FOR THE ARITHMETIC OF ELLIPTIC CURVES USING IWASAWA THEORY WILLIAM STEIN AND CHRISTIAN WUTHRICH Abstract. We explain how to use results from Iwasawa theory to obtain information about p-parts of Tate-Shafarevich groups of specific elliptic curves over Q. Our method provides a practical way to compute #X(E=Q)(p) in many cases when traditional p-descent methods are completely impractical and also in situations where results of Kolyvagin do not apply, e.g., when the rank of the Mordell-Weil group is greater than 1. We apply our results along with a computer calculation to show that X(E=Q)[p] = 0 for the 1,534,422 pairs (E; p) consisting of a non-CM elliptic curve E over Q with conductor ≤ 30;000, rank ≥ 2, and good ordinary primes p with 5 ≤ p < 1000 and surjective mod-p representation. 1. Introduction The papers [GJP+09, Mil10] describe verification of the Birch and Swinnerton- Dyer conjecture for elliptic curves of conductor ≤ 5000 with rank ≤ 1 by a com- putational application of Euler system results of Kato and Kolyvagin combined with explicit descent. The main motivation for the present paper is to develop algorithms using Iwasawa theory, in order to enable verification of the conjecture in new directions, e.g., large-scale verification of assertions about X(E=Q), when E has rank at least 2. The present paper naturally complements related projects by Perrin-Riou [PR03] and Coates [CLS09, Coa11].
    [Show full text]
  • On the Anticyclotomic Iwasawa Theory of Rational Elliptic Curves at Eisenstein Primes
    ON THE ANTICYCLOTOMIC IWASAWA THEORY OF RATIONAL ELLIPTIC CURVES AT EISENSTEIN PRIMES FRANCESC CASTELLA, GIADA GROSSI, JAEHOON LEE, AND CHRISTOPHER SKINNER Abstract. Let E=Q be an elliptic curve and p an odd prime where E has good reduction, and assume that E admits a rational p-isogeny. In this paper we study the anticyclotomic Iwasawa theory of E over an imaginary quadratic field in which p splits, which we relate to the anticyclotomic Iwasawa theory of characters by a variation of the method of Greenberg{Vatsal. As a result of our study we obtain proofs (under relatively mild hypotheses) of Perrin-Riou's Heegner point main conjecture, a p-converse to the theorem of Gross{Zagier and Kolyvagin, and the p-part of the Birch{Swinnerton-Dyer formula in analytic rank 1, for Eisenstein primes p. Contents Introduction 1 1. Algebraic side 6 1.1. Local cohomology groups of characters6 1.2. Selmer groups of characters7 1.3. Local cohomology groups of E 10 1.4. Selmer groups of E 10 1.5. Comparison I: Algebraic Iwasawa invariants 12 2. Analytic side 12 2.1. p-adic L-functions 12 2.2. Comparison II: Analytic Iwasawa invariants 14 3. A Kolyvagin system argument 15 3.1. Selmer structures and Kolyvagin systems 16 3.2. Bounding Selmer groups 17 3.3. Proof of Theorem 3.2.1 18 3.4. Iwasawa theory 26 4. Proof of TheoremC and CorollaryD 27 4.1. Preliminaries 27 4.2. Proof of the Iwasawa main conjectures 28 5. Proof of TheoremE and TheoremF 29 5.1.
    [Show full text]
  • Annualreport 2011 2012
    C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2011 2012 C CENTRE R DERECHERCHES M MATHÉMATIQUES AnnualReport 2011 2012 Centre de recherches mathématiques Université de Montréal C.P. 6128, succ. Centre-ville Montréal, QC H3C 3J7 Canada [email protected] Also available on the CRM website http://crm.math.ca/docs/docRap_an.shtml. © Centre de recherches mathématiques Université de Montréal, 2014 ISBN 978-2-921120-50-0 Contents Presenting the Annual Report 2011–2012 1 Thematic Program 3 Thematic Programs of the Year 2011–2012: “Quantum Information” and “Geometric Analysis andSpec- tral Theory” ................................................ 4 Aisenstadt Chairholders in 2011–2012 : John Preskill, Renato Renner, László Erdős, Elon Lindenstrauss, and Richard M. Schoen .......................................... 5 Activities of the Thematic Semesters ...................................... 9 Past Thematic Programs ............................................. 21 General Program 23 CRM activities .................................................. 24 Colloquium Series ................................................ 36 Multidisciplinary and Industrial Program 39 Activities of the Multidisciplinary and Industrial Program .......................... 40 CRM Prizes 45 CRM–Fields–PIMS Prize 2012 Awarded to Stevo Todorcevic ......................... 46 André-Aisenstadt Prize 2012 Awarded to Marco Gualtieri and Young-Heon Kim ............. 47 The CAP–CRM Prize 2012 Awarded to Luc Vinet ............................... 48 The CRM–SSC Prize 2012 Awarded
    [Show full text]
  • BIRS 2007/2008 Scientific Report
    Banff International Research Station for Mathematical Innovation and Discovery BIRS 2007/2008 Scientific Report Preface The Banff International Research Station (BIRS) is now a collaborative Canada-US-Mexico venture that will continue to provide for the world’s scientific community an environment for creative interaction and the exchange of ideas, knowledge and methods within the Mathematical Sciences and with related sciences and industry. In 2007, BIRS reached its full potential, hosting over 2,000 scientists from more than 40 countries by running 48 weeks of programming (up from 44 weeks in 2006 and 40 weeks in 2005). In spite of this substantial expansion of opportunities at BIRS, the extraordinary response of the world’s scientific community continues unabated to contribute extremely high quality submissions, with over 300 proposed activities competing for the 96 available weeks in 2007 and 2008. During 2007 and 2008, BIRS was once again home to a dazzling array of scientific activities. Besides the tremendously successful 5-day Workshops and Research-in-Teams programs, BIRS hosted Fo- cused Research Groups, Collaborative Research Teams, leadership retreats, gatherings for women in mathematics, First Nations math education, mentoring for engineering academia, summer schools in emerging areas, students’ modeling camps, workshops on industrial mathematics, and training sessions for Math Olympiads teams. The BIRS program touched on every aspect of the mathematical sciences, but also offered op- portunities for highly innovative themes
    [Show full text]