Atchafalaya Basin

Total Page:16

File Type:pdf, Size:1020Kb

Atchafalaya Basin LOUISIANA DEPARTMENT OF WILDLIFE & FISHERIES OFFICE OF FISHERIES INLAND FISHERIES SECTION PART VI -A WATERBODY MANAGEMENT PLAN SERIES ATCHAFALAYA BASIN LAKE HISTORY & MANAGEMENT ISSUES 1 CHRONOLOGY October, 2009 – Prepared by Mike Walker, Biologist Supervisor, District 9 July, 2011 – Updated by Mike Walker, Biologist Manager, District 9 February, 2014 – Updated by Brac Salyers, Biologist Manager, District 9 September, 2014 – Updated by Brac Salyers, Biologist Manager, District 9 September, 2015 – Updated by Brac Salyers, Biologist Manager, District 9 September, 2016 – Updated by Brac Salyers, Biologist Manager, District 9 September, 2017 – Updated by Brac Salyers, Biologist Manager, District 9 September, 2018 – Updated by Brac Salyers, Biologist Manager, District 9 The remainder of this page intentionally left blank. 2 TABLE OF CONTENTS LAKE HISTORY ................................................................................................................................................. 4 GENERAL INFORMATION.............................................................................................................................. 4 History ........................................................................................................................................................... 4 Size ................................................................................................................................................................. 7 Watershed....................................................................................................................................................... 7 Pool stage ....................................................................................................................................................... 7 Parish/s located .............................................................................................................................................. 7 Border waters ................................................................................................................................................. 7 LAKE AUTHORITY.......................................................................................................................................... 7 Association ..................................................................................................................................................... 7 Authorization .................................................................................................................................................. 7 ACCESS ............................................................................................................................................................ 7 Boat docks ...................................................................................................................................................... 7 State/Federal facilities .................................................................................................................................... 7 SHORELINE DEVELOPMENT ......................................................................................................................... 8 State/National Parks ....................................................................................................................................... 8 Shoreline development by landowners ............................................................................................................. 8 PHYSICAL DESCRIPTION OF LAKE .............................................................................................................. 8 Timber type..................................................................................................................................................... 8 Average depth ................................................................................................................................................. 8 Maximum depth .............................................................................................................................................. 8 Natural seasonal water fluctuation .................................................................................................................. 8 EVENTS/ PROBLEMS .................................................................................................................................... 10 MANAGEMENT ISSUES .................................................................................................................................. 10 AQUATIC VEGETATION .............................................................................................................................. 10 Biomass ........................................................................................................................................................ 10 Treatment history by year available .............................................................................................................. 11 HISTORY OF REGULATIONS ....................................................................................................................... 17 Recreational ................................................................................................................................................. 17 Commercial .................................................................................................................................................. 18 FISH KILLS / DISEASE HISTORY, LMBV ..................................................................................................... 18 CONTAMINANTS / POLLUTION .................................................................................................................. 19 Water quality ................................................................................................................................................ 19 BIOLOGICAL ................................................................................................................................................. 19 Fish samples taken by LDWF ........................................................................................................................ 19 Lake records ................................................................................................................................................. 20 Stocking History ........................................................................................................................................... 21 Species profile .............................................................................................................................................. 22 Threatened/endangered/ and exotic species ................................................................................................... 25 CREEL ............................................................................................................................................................ 26 Historic information ..................................................................................................................................... 26 Recent methods ............................................................................................................................................. 27 HYDROLOGICAL CHANGES ........................................................................................................................ 27 WATER USE ................................................................................................................................................... 34 Hunting ........................................................................................................................................................ 35 Fishing ......................................................................................................................................................... 35 APPENDIX I – MAPS ........................................................................................................................................ 36 APPENDIX II ..................................................................................................................................................... 41 3 LAKE HISTORY GENERAL INFORMATION History The Atchafalaya River Basin is located in south-central Louisiana. (See Maps 1 and 2, Appendix I) A full map of features and ownership of land in the basin is available for download from the Office of State Lands online at the following link: http://www.doa.la.gov/osl/FPP/Publications/Atchafalaya_Basin_Webmap.jpg ; or for purchase at the following link: http://www.doa.la.gov/Pages/osl/Forms.aspx . The history of the Atchafalaya River and its basin is not complete without mention of the geological history of the Mississippi River. The Atchafalaya Basin was formed thousands of years ago as part of the periodic meandering of the Mississippi. Much of the land contained in the basin was formed by the Cypremort/Sale and the Teche lobes of previous Mississippi River delta complexes. Geologists would not technically classify the Atchafalaya River as a river since it actually has functioned as a distributary of the Mississippi River since the 1500’s (van Heerden, I. L., and H. H. Roberts 1980. The Atchafalaya Delta-Louisiana’s New Prograding Coast. Gulf Coast Association of Geological Societies Transactions (30):497–506). The Mississippi
Recommended publications
  • Geotechnical Overview
    I-66 CORRIDOR STUDY WESTERN KENTUCKY TO MISSOURI BALLARD / MCCRACKEN COUNTY - ITEM # 1-23.00 APPENDIX 5 – GEOTECHNICAL OVERVIEW Prepared for Kentucky Transportation Cabinet (KYTC) – Division of Planning Kentucky Transportation Cabinet (KYTC) – District 1 Missouri Department of Transportation (MoDOT) Prepared by Parsons Brinckerhoff Quade & Douglas, Inc. In Association With: Qk4 Third Rock Consultants, LLC Cultural Resource Analysts, Inc. Fuller, Mossbarger, Scott & May FEBRUARY 2005 Table of Contents Section Page No. 1. Project Description ................................................................ 1 2. Scope of Work ........................................................................ 2 3. Physiographic and Stratigraphic Setting............................. 3 3.1. Topography and Drainage............................................... 3 3.2. Stratigraphy..................................................................... 3 3.3. Soils and Unconsolidated Materials................................ 4 3.4. Groundwater................................................................... 4 3.5. Regional Seismicity ........................................................ 4 4. Existing Corridor Features ................................................... 6 4.1. General............................................................................ 6 4.2. Domestic and Public Areas............................................. 6 4.3. Other Features................................................................. 6 5. Geotechnical Concerns .........................................................
    [Show full text]
  • THE ECOLOGY of BOTTOMLAND HARDWOOD SWAMPS of the SOUTHEAST: a Community Profile
    Biological Services Program FWS/OBS-81 /37 March 1982 THE ECOLOGY OF BOTTOMLAND HARDWOOD SWAMPS OF THE SOUTHEAST: A Community Profile I 49.89 ~~:137 Fish and Wildlife Service 2 c. U.S. Department of the Interior The Biological Services Program was established within the U.S. Fish and Wildlife Service to supply scientific information and methodologies on key environmental issues that impact fish and wildlife resources and their supporting ecosystems. The mission of the program is as follows: • To strengthen the Fish and Wildlife Service in its role as a primary source of information on national fish and wild­ life resources, particularly in respect to environmental impact assessment. • To gather, analyze, and present information that will aid decisionmakers in the identification and resolution of problems associated with major changes in land and water use. • To provide better ecological information and evaluation for Department of the Interior development programs, such as those relating to energy development. Information developed by the Biological Services Program is intended for use in the planning and decisionmaking process to prevent or minimize the impact of development on fish and wildlife. Research activities and technical assistance services are based on an analysis of the issues, a determination of the decisionmakers involved and their information needs, and an evaluation of the state of the art to identify information gaps and to determine priorities. This is a strategy that will ensure that the products produced and disseminated are timely and useful. Projects have been initiated in the following areas: coal extraction and conversion; power plants; geothermal, mineral and oil shale develop­ ment; water resource analysis, including stream alterations and western water allocation; coastal ecosystems and Outer Continental Shelf develop­ ment; and systems inventory, including National Wetland Inventory, habitat classification and analysis, and information transfer.
    [Show full text]
  • The Atchafalaya Basin
    7KH$WFKDIDOD\D%DVLQ5LYHURI7UHHV The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers (USACE), is monitoring the basin to determine environmental effects of flood-management practices. The Atchafalaya Basin in south-central Louisiana includes the largest contiguous river swamp in the United States and the largest contiguous wetlands in the Mississippi River Valley. The basin includes 10 distinct aquatic and terrestrial habitats ranging from large rivers to backwater swamps. The basin is most noted for its cypress-tupelo gum swamp habitat and its Cajun heritage. Water in the Atchafalaya Basin originates from one or more of the distributaries of the Atchafalaya River. Facts • Located between the cities of Baton Rouge to the east and Lafayette to the west. • More than 1.4 million acres: --885,000 acres of forested wetlands in the Atchafalaya Basin Floodway. --517,000 acres of marshland. • Home to: --9 Federal and State listed endangered/ threatened wildlife species. --More than 170 bird species and impor- tant wintering grounds for birds of the Mississippi Flyway. --6 endangered/threatened bird species and The Atchafalaya Basin offers an opportunity to implement adaptive management practices because of the 29 rookeries. general support of private, local, State, and national organizations and governmental agencies for the State --More than 40 mammalian species. and Federal Master Plans. --More than 40 reptilian and 20 amphibian • Most active-growing delta (land accre- • More than 1,000 pounds of finfish per acre species. tion) in the conterminous United States. in some water bodies in the lower part of --More than 100 finfish and shellfish spe- the basin.
    [Show full text]
  • Sedimentation Patterns Within the Atchafalaya Basin and Morganza Spillway Before and After the Lower Mississippi Flood of 2011
    Sedimentation Patterns Within the Atchafalaya Basin and Morganza Spillway Before and After the Lower Mississippi Flood of 2011. Edward Schenk and Cliff Hupp Daniel E. Kroes US Geological Survey US Geological Survey National Research Program – Reston, VA Louisiana Water Science Center Morganza Spillway during the 2011 release 2011 Major Flood Peaks Morganza Spillway Modern Atchafalaya Basin Atchafalaya River, mainstem • Average annual discharge of 6410 m3/s (5th largest in U.S.). • Receives about 25% of the Mississippi River flow annually and all of the Red River flow. • Conducts as much as 35% of the suspended- and 60% of the bed-sediment load of the Mississippi River. • The Basin wetland (5670 km2) is about 70% forested (largest contiguously forested wetland in the U.S); the remainder is open water and marshland. • The Basin is about 160 km long and 20 to 30 km wide, which discharges into the Gulf of Mexico (deltaic sedimentation). • Forests are of three main communities; 1. typical bottomland hardwoods on levees and transitional areas, 2. cypress/tupelo stands in backswamps, 3. successional, predominantly willow stands on recently aggraded bars (common). The Atchafalaya Basin is the Red River Mississippi only sizable semi natural riparian area along the Mississippi River below the confluence of the B Ohio River. (remaining) A Annual Sequestration: Atchafalaya Sediment 4.3 billion kg Organic Material 435 million kg Total Carbon 175 million kg C D Strong case for stream restoration, and reconnection of streamflow to the riparian zone Gulf
    [Show full text]
  • Atchafalaya National Wildlife Refuge Managed As Part of Sherburne Complex
    U.S. Fish & Wildlife Service Atchafalaya National Wildlife Refuge Managed as part of Sherburne Complex Tom Carlisle This basin contains over one-half million acres of hardwood swamps, lakes and bayous, and is larger than the vast Okefenokee Swamp of Georgia and Florida. It is an immense This blue goose, natural floodplain of the Atchafalaya designed by J.N. River, which flows for 140 miles south “Ding” Darling, from its parting from the Mississippi has become the River to the Gulf of Mexico. symbol of the National Wildlife The fish and wildlife resources Refuge System. of the Atchafalaya River Basin are exceptional. The basin’s dense bottomland hardwoods, cypress- tupelo swamps, overflow lakes, and meandering bayous provide a tremendous diversity of habitat for many species of fish and wildlife. Ecologists rank the basin as one of the most productive wildlife areas in North America. The basin also supports an extremely productive sport and commercial fishery, and provides unique recreational opportunities to hundreds of thousands of Americans each year. Wildlife Every year, thousands of migratory waterfowl winter in the overflow swamps and lakes of the basin, located at the southern end of the great Mississippi Flyway. The lakes of the lower basin support one of the largest wintering concentrations of canvasbacks in Louisiana. The basin’s wooded wetlands also provide vital nesting habitat for wood ducks, and support the nation’s largest concentration of American America’s Great River Swamp woodcock. More than 300 species of Deep in the heart of Cajun Country, resident and migratory birds use the basin, including a large assortment at the southern end of the Lower of diving and wading birds such as egrets, herons, ibises, and anhingas.
    [Show full text]
  • Mississippi River and Tributaries Project Authorized by the Flood Control Act of 1928 and Amended by FCA ‘65
    Mississippi River & Tributaries Project Historic Flood of 2011 Mr. Donald R. Davenport Hydraulic Engineer/Silver Jacket Coordinator Memphis District US Army Corps of Engineers BUILDING STRONG® Flooded 26,000 sq. miles 600,000 homeless Over 250 people killed Economic Damages ~$1B MR&T Project & 2011 Flood Facts • MR&T Project Authorized After the 1927 Flood-Flood Control Act of 1928 •Designed for a Project Design Flood (PDF) – Extreme Event w/Reasonable Chance of Occurrence •2011 Flood Exceeded 1927 and/or 1937 floods but was only about 80- 85% of PDF •MR&T Project contained the 2011 Flood despite being only 89% Complete while: •No MR&T Levees failed or were overtopped •Used 3 of 4 Floodways during the 2011 Flood (not Atchafalaya in New Orleans District) •Backwater Areas’ Flooding Limited to Interior Flooding Although Came Close to Using Yazoo BW Area in the Vicksburg Distrit US Army Corps of Engineers BUILDING STRONG® Project Design Flood Rainfall 6 The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. US Army Corps of Engineers BUILDING STRONG® Memphis District Boundaries MRT Project in Memphis District .1,160 miles of Levees & Floodwalls .275 miles of Berms .1,300 Relief Wells .4 Corps Pumping Stations .1,300 miles of Channels .600 miles of Navigation Channel . 2 Harbors The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted.
    [Show full text]
  • Atchafalaya Basin Management Coastal Wetlands Loss And
    and coal geochemistry of Gulf Coast scale topographic maps (1 inch on the the elevation and shape of terrain. The coal-bearing intervals to better under- map represents 2,000 feet on the ground) maps are useful for civil engineering, stand the region’s resources. Planned for Louisiana. The maps depict land- land-use planning, resource monitoring, results of the study include geologic scape features such as lakes and streams, hiking, camping, exploring, and fishing and stratigraphic interpretations char- highways and railroads, boundaries, and expeditions. The map revisions for 1999 acterizing the coal and digital, geo- geographic names. Contour lines depict are shown in figure 6. As the Nation’s largest earth-science and ARK. graphical-referenced data bases that civilian mapping agency, the U.S. Geologi- will include stratigraphic and geochem- cal Survey (USGS) works in cooperation 92 30 Atchafalaya B. Boeuf LOUISIANA ical information. with many Federal, State, and local orga- Basin nizations to provide reliable and impartial 92 00 Baton Mapping Partnerships scientific information to resource manag- MISS. Rouge TEX. ers, planners, and others throughout the RAPIDES The USGS, in partnership with the country. This information is gathered in 31 00 AVOYELLES every state by USGS scientists to minimize Cocodrie Louisiana Office of the Oil Spill Coor- Lake GULF OF MEXICO the loss of life and property from natural dinator, several Federal agencies, and a EVANGELINE 91 30 disasters, contribute to the conservation private aerial mapping company, has B. and sound management of the Nation’s Grosse completed about 95 percent coverage ST. LANDRY POINTE natural resources, and enhance the quality COUPEE of color infrared aerial photography of of life by monitoring water, biological, Tete 30 30 ATCHAFALAYA WEST the State, as part of the National Aerial energy, and mineral resources.
    [Show full text]
  • School of Renewable Natural Resources Newsletter, Fall 2006 Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons Research Matters & RNR Newsletters School of Renewable Natural Resources 2006 School of Renewable Natural Resources Newsletter, Fall 2006 Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: http://digitalcommons.lsu.edu/research_matters Recommended Citation Louisiana State University and Agricultural & Mechanical College, "School of Renewable Natural Resources Newsletter, Fall 2006" (2006). Research Matters & RNR Newsletters. 10. http://digitalcommons.lsu.edu/research_matters/10 This Book is brought to you for free and open access by the School of Renewable Natural Resources at LSU Digital Commons. It has been accepted for inclusion in Research Matters & RNR Newsletters by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Fall 2006 Managing resources and protecting the environment . making a difference in the 21st century Migrating With the Ducks School of Renewable Natural Resources 1 I have explained why the focus on the breeding grounds, In the Spotlight so what is it that I am doing? First, I should point out that like most faculty, I do most of my research with the help of graduate students – well over 30 have completed degrees Migrating under my guidance. Most of that research focused on testing With the Ducks management that attempts to enhance nest success – which Frank Rohwer is the key determinant of duck production. Most attempts to George Barineau Jr. Professor of Wildlife Ecology increase duck nest success use passive measures to reduce egg predation – for example, one approach to keeping predators ON THE COVER: Frank and his labrador, Dakota, after an afternoon of checking hatched nests.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    CHANNEL BED CHANGES IN THE LOWER ATCHAFALAYA RIVER AND WAX LAKE OUTLET, LOUISIANA, 1967-2006 By JEREMY REYNOLDS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Jeremy Reynolds To my parents, my brothers, and all of my friends who have helped support me. ACKNOWLEDGMENTS I would like to thank the members of my committee, Dr. Joann Mossa, Dr. Peter Waylen, and Dr. Liang Mao, for their support and encouragement. I would like to specifically thank Dr. Joann Mossa for her guidance and advice that kept me well on track during this complex process. I would like to thank my peers, specifically Mohammad Abdulrahman and Chia-Yu Wu, for their support and advice on how to tackle this study. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ........................................................................................................... 4 LIST OF TABLES ...................................................................................................................... 6 LIST OF FIGURES .................................................................................................................... 7 ABSTRACT ............................................................................................................................... 8 CHAPTER 1 LOWER ATCHAFALAYA CHANNEL BED CHANGE .................................................... 9 Background .........................................................................................................................
    [Show full text]
  • Prehistoric Settlements of Coastal Louisiana. William Grant Mcintire Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1954 Prehistoric Settlements of Coastal Louisiana. William Grant Mcintire Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Part of the Social and Behavioral Sciences Commons Recommended Citation Mcintire, William Grant, "Prehistoric Settlements of Coastal Louisiana." (1954). LSU Historical Dissertations and Theses. 8099. https://digitalcommons.lsu.edu/gradschool_disstheses/8099 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. HjEHisroaic smm&ws in coastal Louisiana A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by William Grant MeIntire B. S., Brigham Young University, 195>G June, X9$k UMI Number: DP69477 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI DP69477 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest: ProQuest LLC.
    [Show full text]
  • Multi-Use Management in the Atchafalaya River Basin: Research at the Confluence of Public Policy and Ecosystem Science
    Southern Illinois University Carbondale OpenSIUC Reports IGERT 2013 Multi-Use Management in the Atchafalaya River Basin: Research at the Confluence of Public Policy and Ecosystem Science Micah Bennett Southern Illinois University Carbondale Kelley Fritz Southern Illinois University Carbondale Anne Hayden-Lesmeister Southern Illinois University Carbondale Justin Kozak Southern Illinois University Carbondale Aaron Nickolotsky Southern Illinois University Carbondale Follow this and additional works at: http://opensiuc.lib.siu.edu/igert_reports A report in fulfillment of the NSF IGERT Program requirements. This material is based upon work supported by the National Science Foundation under Grant No. 0903510. Recommended Citation Bennett, Micah; Fritz, Kelley; Hayden-Lesmeister, Anne; Kozak, Justin; and Nickolotsky, Aaron, "Multi-Use Management in the Atchafalaya River Basin: Research at the Confluence of Public Policy and Ecosystem Science" (2013). Reports. Paper 2. http://opensiuc.lib.siu.edu/igert_reports/2 This Article is brought to you for free and open access by the IGERT at OpenSIUC. It has been accepted for inclusion in Reports by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. MULTI-USE MANAGEMENT IN THE ATCHAFALAYA RIVER BASIN: RESEARCH AT THE CONFLUENCE OF PUBLIC POLICY AND ECOSYSTEM SCIENCE BY MICAH BENNETT, KELLEY FRITZ, ANNE HAYDEN-LESMEISTER, JUSTIN KOZAK, AND AARON NICKOLOTSKY SOUTHERN ILLINOIS UNIVERSITY CARBONDALE NSF IGERT PROGRAM IN WATERSHED SCIENCE AND POLICY A report
    [Show full text]
  • Overview of the Mississippi River & Tributaries (Mr&T)
    1 OVERVIEW OF THE MISSISSIPPI RIVER & TRIBUTARIES (MR&T) - ATCHAFALAYA BASIN PROJECT 237 217 200 80 252 237 217 200 119 174 237 217 200 27 .59 255 0 163 131 239 110 112 62 102 130 Port255 Of0 Morgan163 City132 –65 Stakeholder135 92 Meeting102 56 120 255 0 163 122 53 120 56 130 48 111 Durund Elzey Assistance Deputy District Engineer (ADPM) US Army Corps of Engineers New Orleans District 11 February 2019 2 TOPICS OF DISCUSSION • Passing the MR&T Project Design Flood • The Jadwin Plan • The Morganza Floodway • The Old River Control Complex • MR&T Atchafalaya Basin Flood Control Project • Atchafalaya Basin Levee Construction • Atchafalaya Basin O&M • Atchafalaya River Dredging • The Atchafalaya Basin Floodway System (ABFS) Project • Sedimentation Issues • Path Forward 3 THE FLOOD OF 1927 Flood Control Act of 1928 4 and the Jadwin Plan The Morganza Floodway 5 6 Old River Control Structures Authorized 1973 Flood . The Low Sill Control Structure was undermined and the Wing Wall failed . The Old River Overbank Control Structure and the Morganza Control Structure were opened to relieve stress on the Low Sill Control Structure . Due to severe damage to the Low Sill Control Structure, USACE recommended construction of the Auxiliary Control Structure, which was completed in 1986 Morganza Control Structure Operated for First Time View of Old River Control Complex Old River Lock Auxiliary Control Structure Low Sill Control Structure Overbank Control Structure S.A. Murray Hydro 9 The Flood of 2011 10 Extent of 1927 Flood (in Blue) Versus 2011 Flood (in Green) Passing the Project Design Flood 11 The MR&T Atchafalaya Basin Project The MR&T Atchafalaya Basin Project Major Components • 451 Miles of Levees and Floodwalls • 4 Navigation Locks .
    [Show full text]