Streamflow, Water-Temperature, and Specific-Conductance Data For

Total Page:16

File Type:pdf, Size:1020Kb

Streamflow, Water-Temperature, and Specific-Conductance Data For Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, Lower Taylor Valley, Victoria Land, Antarctica, 1990-92 by Paul von Guerard, D.M. McKnight, R.A. Harnish, J.W. Gartner, and E.D. Andrews U.S. GEOLOGICAL SURVEY Open-File Report 94-545 Prepared in cooperation with the NATIONAL SCIENCE FOUNDATION Denver, Colorado 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of trade, product, industry, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center Box 25046, MS 415 Open-File Reports Section Denver Federal Center Box 25286, MS 517 Denver, CO 80225 Denver Federal Center Denver, CO 80225 CONTENTS Abstract........................................................................................................................_^ 1 Introduction.............................................................................................^^ 1 Purpose and scope....................................................................................................................................................... 2 Previous investigations............................................................................................................................................... 2 Acknowledgments.......................................................^ 3 Data collection ......................................................................................................................_^ 3 Environmental effects................................................................................................................................................. 4 Streamflow...............................................................................................................................................................^ 4 Water temperature and specific conductance.............................................................................................................. 6 References cited.................................................................................................................................................................... 11 Hydrologic data..................................................................................................................................................................... 13 PLATE [In-pocket] 1. Map showing location of streamflow-gaging and water-quality sampling sites in the Lake Fryxell Basin, lower Taylor Valley, Victoria Land, Antarctica FIGURES 1. Map showing location of study area........................................................................................................................ 2 2-5. Graphs showing: 2. Daily mean streamflow for Canada Stream and Aiken Creek, November 1990 through February 1991...... 7 3. Unit streamflow for Canada Stream and Aiken Creek, December 30,1990, through January 2,1991......... 8 4. Maximum and minimum water temperatures for Canada Stream and Aiken Creek, December 1990 through January 1991..................................................................................................................................... 9 5. Daily mean specific conductance for Canada Stream and Aiken Creek, December 1990 through January 1991..........................................................................»^ 10 TABLES 1. Streamflow and water-quality monitoring sites in the Lake Fryxell Basin, lower Taylor Valley, Victoria Land, Antarctica, 1990-92........................................................................................._^ 3 2-9. Maximum, minimum, and daily mean streamflow for: 2. Canada Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................ 14 3. Huey Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................. 16 4. Lost Seal Stream in the lower Taylor Valley, Victoria Land, Antarctica......................................................... 18 5. Aiken Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 20 6. Von Guerard Stream in the lower Taylor Valley, Victoria Land, Antarctica................................................... 22 7. Crescent Stream in the lower Taylor Valley, Victoria Land, Antarctica.......................................................... 24 8. Delta Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................... 26 9. Green Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 28 10-16. Maximum, minimum, and daily mean water temperature for: 10. Canada Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................ 30 11. Lost Seal Stream in the lower Taylor Valley, Victoria Land, Antarctica......................................................... 32 12. Aiken Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 34 13. Von Guerard Stream in the lower Taylor Valley, Victoria Land, Antarctica................................................... 36 14. Crescent Stream in the lower Taylor Valley, Victoria Land, Antarctica.......................................................... 38 15. Delta Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................... 39 16. Green Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 41 CONTENTS III 17-23. Maximum, minimum, and daily mean specific conductance for: 17. Canada Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................ 43 18. Lost Seal Stream in the lower Taylor Valley, Victoria Land, Antarctica......................................................... 45 19. Aiken Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 47 20. Von Guerard Stream in the lower Taylor Valley, Victoria Land, Antarctica................................................... 49 21. Crescent Stream in the lower Taylor Valley, Victoria Land, Antarctica.......................................................... 50 22. Delta Stream in the lower Taylor Valley, Victoria Land, Antarctica............................................................... 51 23. Green Creek in the lower Taylor Valley, Victoria Land, Antarctica................................................................ 53 24. Periodic streamflow, water-temperature, and specific-conductance measurements at Canada Stream, Huey Creek, Lost Seal Stream, McKnight Creek, Aiken Stream, Von Guerard Stream, Harnish Creek, Crescent Stream, Delta Stream, Green Creek, and Bowles Creek in the lower Taylor Valley, Victoria Land, Antarctica......................................................................................................................................... 55 CONVERSION FACTORS AND VERTICAL DATUM Multiply By To obtain cubic meter per second (m3/s) 35.3107 cubic foot per second meter (m) 3.280 foot kilometer (km) 0.621 mile Degree Celsius (°C) may be converted to degree Fahrenheit (°F) by using the following equation: °F = 9/5(°C) + 32. The following term also is used in this report: microsiemens per centimeter at 25 degrees Celsius (uS/cm) Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929. IV CONTENTS Streamflow, Water-Temperature, and Specific- Conductance Data for Selected Streams Draining Into Lake Fryxell, Lower Taylor Valley, Victoria Land, Antarctica, 1990-92 #y Paul von Guerard, D.M. McKnight, R.A. Harnish, J.W. Gartner, ancfE.D. Andrews Abstract INTRODUCTION During the 1990-91 and 1991-92 field sea­ Lake Fryxell is in the Taylor Valley, which is sons in Antarctica, streamflow, water-temperature, part of the relatively ice-free region known as the and specific-conductance data were collected McMurdo Dry Valleys located along the western coast of the Ross Sea in Victoria Land, Antarctica (fig. 1). on 11 streams draining into Lake Fryxell. Lake The McMurdo Dry Valleys is characterized by extreme Fryxell, which is permanently ice covered, is situ­ cold temperatures and dry (rainless) conditions. Any ated in a closed basin. Continuous streamflow snowfall typically is lost to sublimation in a few hours data were collected at eight sites, and periodic or days. Air temperatures range from about -45°C, streamflow measurements were made at three during the winter, to about 5 to 7°C during the summer. sites. Continuous water-temperature and specific- Lake Fryxell is a permanently ice-covered, closed- conductance data were collected at seven sites, basin lake that has a network of 13 streams that provide inflow. Data were collected at 11 of the 13 and periodic water-temperature and specific- streams. No data were collected at Andrews Creek and conductance
Recommended publications
  • Mcmurdo LTER: Glacier Mass Balances of Taylor Valley, Antarctica ANDREW G
    Dana, G.L., C.M. Tate, and S.L. Dewey. 1994. McMurdo LTER: The use Moorhead, D.L., and R.A. Wharton, Jr. 1994. McMurdo LTER: Primary of narrow-band spectroradiometry to assess algal and moss com- production model of benthic microbial mats in Lake Hoare, munities in a dry valley stream. Antarctic Journal of the U.S., 29(5). Antarctica. Anta rctic Journal of the U.S., 29(5). Doran, P.T., R.A. Wharton, Jr., S.A. Spaulding, and J.S. Foster. 1994. Powers, L.E., D.W. Freckman, M. Ho, and R.A. Virginia. 1994. McMurdo McMurdo LTER: Paleolimnology of Taylor Valley, Antarctica. LTER: Soil and nematode distribution along an elevational gradient Antarctic Journal of the U.S., 29(5). in Taylor Valley, Antarctica. Anta rctic Journal of the U.S., 29(5). Fountain, A.G., B.H. Vaughn, and G.L. Dana. 1994. McMurdo LTER: Priscu, J.C. 1994. McMurdo LTER: Phytoplankton nutrient deficiency Glacial mass balances of Taylor Valley, Antarctica. Antarctic Jour- in lakes of the Taylor Valley, Antarctica. Antarctic Journal of the nab! the U.S., 29(5). U.S., 29(5). Hastings, J.T., and A.Z. Butt. 1994. McMurdo LTER: Developing a geo- Welch, K., W.B. Lyons, J.C. Priscu, R. Edwards, D.M. McKnight, H. graphic information system access system. Antarctic Journal of the House, and R.A. Wharton, Jr. 1994. McMurdo LTER: Inorganic U.S., 29(5). geochemical studies with special reference to calcium carbonate McKnight, D., H. House, and P. von Guerard. 1994. McMurdo LTER: dynamics. Antarctic Journal of the U.S., 29(5).
    [Show full text]
  • Can Climate Warming Induce Glacier Advance in Taylor Valley, Antarctica?
    556 Journal of Glaciology, Vol. 50, No. 171, 2004 Can climate warming induce glacier advance in Taylor Valley, Antarctica? Andrew G. FOUNTAIN,1 Thomas A. NEUMANN,2 Paul L. GLENN,1* Trevor CHINN3 1Departments of Geology and Geography, Portland State University, PO Box 751, Portland, Oregon 97207, USA E-mail: [email protected] 2Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195-1310, USA 3R/20 Muir RD. Lake Hawea RD 2, Wanaka, New Zealand ABSTRACT. Changes in the extent of the polar alpine glaciers within Taylor Valley, Antarctica, are important for understanding past climates and past changes in ice-dammed lakes. Comparison of ground-based photographs, taken over a 20 year period, shows glacier advances of 2–100 m. Over the past 103 years the climate has warmed. We hypothesize that an increase in average air temperature alone can explain the observed glacier advance through ice softening. We test this hypothesis by using a flowband model that includes a temperature-dependent softness term. Results show that, for a 28C warming, a small glacier (50 km2) advances 25 m and the ablation zone thins, consistent with observations. A doubling of snow accumulation would also explain the glacial advance, but predicts ablation-zone thickening, rather than thinning as observed. Problems encountered in modeling glacier flow lead to two intriguing but unresolved issues. First, the current form of the shape factor, which distributes the stress in simple flow models, may need to be revised for polar glaciers. Second, the measured mass-balance gradient in Taylor Valley may be anomalously low, compared to past times, and a larger gradient is required to develop the glacier profiles observed today.
    [Show full text]
  • United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
    160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main
    [Show full text]
  • Glaciers in Equilibrium, Mcmurdo Dry Valleys, Antarctica
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 10-2016 Glaciers in Equilibrium, McMurdo Dry Valleys, Antarctica Andrew G. Fountain Portland State University, [email protected] Hassan J. Basagic Portland State University, [email protected] Spencer Niebuhr University of Minnesota - Twin Cities Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Glaciology Commons Let us know how access to this document benefits ou.y Citation Details FOUNTAIN, A.G., BASAGIC, H.J. and NIEBUHR, S. (2016) Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica, Journal of Glaciology, pp. 1–14. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Journal of Glaciology (2016), Page 1 of 14 doi: 10.1017/jog.2016.86 © The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica ANDREW G. FOUNTAIN,1 HASSAN J. BASAGIC IV,1 SPENCER NIEBUHR2 1Department of Geology, Portland State University, Portland, OR 97201, USA 2Polar Geospatial Center, University of Minnesota, St. Paul, MN 55108, USA Correspondence: Andrew G. Fountain <[email protected]> ABSTRACT. The McMurdo Dry Valleys are a cold, dry polar desert and the alpine glaciers therein exhibit small annual and seasonal mass balances, often <±0.06 m w.e.
    [Show full text]
  • The Mcmurdo Dry Valleys: a Landscape on the Threshold of Change
    Geomorphology 225 (2014) 25–35 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph The McMurdo Dry Valleys: A landscape on the threshold of change Andrew G. Fountain a,⁎, Joseph S. Levy b, Michael N. Gooseff c,DavidVanHornd a Department of Geology, Portland State University, Portland, OR 97201, USA b Institute for Geophysics, University of Texas, Austin, TX 78758, USA c Dept. of Civil & Environmental Engineering, Pennsylvania State University, University Park, PA 16802, USA d Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA article info abstract Article history: Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold Received 26 March 2013 of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the low- Received in revised form 19 March 2014 est rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented land- Accepted 27 March 2014 scape changes over the past decade including, the Wright Lower Glacier (Wright Valley) — ablated several tens of Available online 18 April 2014 meters, the Garwood River (Garwood Valley) has incised N3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank Keywords: N Permafrost undercutting, and Canada Glacier (Taylor Valley) has formed sheer, 4 meter deep canyons. The commonality Glaciers between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including Climate change ice-cement permafrost thaw.
    [Show full text]
  • Water Tracks and Permafrost in Taylor Valley, Antarctica: Extensive and Shallow Groundwater Connectivity in a Cold Desert Ecosystem
    Downloaded from gsabulletin.gsapubs.org on October 11, 2011 Water tracks and permafrost in Taylor Valley, Antarctica: Extensive and shallow groundwater connectivity in a cold desert ecosystem Joseph S. Levy1,†, Andrew G. Fountain1, Michael N. Gooseff2, Kathy A. Welch3, and W. Berry Lyons4 1Department of Geology, Portland State University, Portland, Oregon 97210, USA 2Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA 3Byrd Polar Research Center and the School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, USA 4The School of Earth Sciences and Byrd Polar Research Center, Ohio State University, Columbus, Ohio 43210, USA ABSTRACT sent a new geological pathway that distrib- 1999). The goal of this paper is to integrate utes water, energy, and nutrients in Antarctic permafrost processes that route water through Water tracks are zones of high soil mois- Dry Valley, cold desert, soil ecosystems, pro- active-layer soils into the Antarctic cold desert ture that route water downslope over the viding hydrological and geochemical connec- hydrogeological paradigm. ice table in polar environments. We present tivity at the hillslope scale. Do Antarctic water tracks represent isolated physical, hydrological, and geochemical evi- hydrological features, or are they part of the dence collected in Taylor Valley, McMurdo INTRODUCTION larger hydrological system in Taylor Valley? Dry Valleys, Antarctica, which suggests that How does water track discharge compare to previously unexplored water tracks are a sig- The polar desert of the McMurdo Dry Val- Dry Valleys stream discharge, and what roles do nifi cant component of this cold desert land leys, the largest ice-free region in Antarctica, water tracks play in the Dry Valleys salt budget? system and constitute the major fl ow path is a matrix of deep permafrost, soils, glaciers, What infl uence do water tracks have on Antarc- in a cryptic hydrological system.
    [Show full text]
  • Reconstruction of LGM and Post LGM Glacial Environment of Mcmurdo Sound: Implications for Ice Dynamics, Depositional Systems and Glacial Isostatic Adjustment
    Reconstruction of LGM and Post LGM Glacial Environment of McMurdo Sound: Implications for Ice Dynamics, Depositional Systems and Glacial Isostatic Adjustment THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By James Edward Stutz Graduate Program in Geological Sciences The Ohio State University 2012 Master's Examination Committee: Dr. Terry Wilson, Advisor Dr. Larry Krissek Dr. Peter Webb Copyright by James Edward Stutz 2012 Abstract McMurdo Sound represents a landscape at the crossroads of the West and East Antarctic Ice Sheets and has seen repeated occupation by both cold and warm based ice. Current ice sheet reconstructions place grounded ice across McMurdo Sound at the Last Glacial Maximum (LGM), thus the seafloor is expected to display morphologic features recording the LGM glaciation. Analysis of high-resolution multibeam bathymetry data and seismic surveys documents landforms marking glacial-geological processes beneath and at the margins of the ice sheets and are used to help determine the extent and style of glacial behavior on glacially influenced continental margins. The dominant morphologic features on the seafloor of McMurdo Sound are channel systems emanating eastward from the fjords of the Transantarctic Mountains (TAM) coast and northward from beneath the McMurdo Ice Shelf. A wide range of channel systems is observed. MacKay Sea Valley, at the northern limit of McMurdo Sound, displays a 6-8km wide, u-shaped valley with lineations formed by streaming ice of the expanded MacKay Glacier. A large submarine outwash fan extends 10’s of km eastward from the mouth of the sea valley.
    [Show full text]
  • Management Plan for Antarctic Specially Managed Area No. 2
    Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas.
    [Show full text]
  • Biogeochemical Stoichiometry of Antarctic Dry Valley Ecosystems
    Portland State University PDXScholar Geography Faculty Publications and Presentations Geography 2-7-2007 Biogeochemical Stoichiometry of Antarctic Dry Valley Ecosystems John E. Barrett Dartmouth College Ross A. Virginia Dartmouth College W. Berry Lyons Ohio State University Diane M. McKnight University of Colorado at Boulder John Charles Priscu Montana State University - Bozeman See next page for additional authors Follow this and additional works at: https://pdxscholar.library.pdx.edu/geog_fac Part of the Environmental Sciences Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Citation Details Barrett, J. E., R. A. Virginia, W. B. Lyons, D. M. McKnight, J. C. Priscu, P. T. Doran, A. G. Fountain, D. H. Wall, and D. L. Moorhead (2007), Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems, J. Geophys. Res., 112, G01010, doi:10.1029/2005JG000141. This Article is brought to you for free and open access. It has been accepted for inclusion in Geography Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors John E. Barrett, Ross A. Virginia, W. Berry Lyons, Diane M. McKnight, John Charles Priscu, Peter T. Doran, Andrew G. Fountain, Diana H. Wall, and D. L. Moorhead This article is available at PDXScholar: https://pdxscholar.library.pdx.edu/geog_fac/16 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, G01010, doi:10.1029/2005JG000141, 2007 Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems J. E. Barrett,1,2 R. A. Virginia,1 W. B. Lyons,3 D. M. McKnight,4 J. C.
    [Show full text]
  • Solute and Isotope Geochemistry of Subsurface Ice Melt Seeps in Taylor Valley, Antarctica
    Downloaded from gsabulletin.gsapubs.org on January 24, 2010 Solute and isotope geochemistry of subsurface ice melt seeps in Taylor Valley, Antarctica Katherine J. Harris† University of North Carolina at Chapel Hill, 400 McCauley Street, Chapel Hill, North Carolina 27516, USA Anne E. Carey‡ School of Earth Sciences, Ohio State University, 275 Mendenhall Laboratory, 125 South Oval Mall, Columbus, Ohio 43210-1398, USA W. Berry Lyons Kathleen A. Welch Byrd Polar Research Center, Ohio State University, 108 Scott Hall, 1090 Carmack Road, Columbus, Ohio 43210-1002, USA Andrew G. Fountain Departments of Geology and Geography, Portland State University, Portland Oregon 97207-0751, USA ABSTRACT features in the dry valleys are potential ter- by low moisture, cold temperatures, high salt restrial analogs for the geologically young concentrations, and low productivity (Cour- The McMurdo Dry Valleys of Antarctica gullies observed on Mars, which are thought tright et al., 2001). Mosses and algal and cyano- are a polar desert region with watersheds to be evidence of groundwater seepage and bacterial mats persist from summer to summer dominated by glacial melt. Recent ground surface runoff. in ephemeral streams (McKnight et al., 1998). exploration reveals unusual surface-fl ow-seep Lakes support a plankton community domi- features not directly supplied by glacial melt. Keywords: Antarctica, groundwater, stable iso- nated by algae and bacteria, but with some pro- Much of this seep water is potentially derived topes, dry valleys, ice, hydrology. tozoans and rotifers present (Priscu et al., 1999). from permafrost, snow patches, refrozen Liquid water is the primary limiting condition precipitation accumulated in the subsurface, INTRODUCTION for life in Antarctica (Kennedy, 1993).
    [Show full text]
  • The Biogeochemistry of Si in the Mcmurdo Dry Valley Lakes, Antarctica
    International Journal of Astrobiology 1 (4): 401–413 (2003) Printed in the United Kingdom 401 DOI: 10.1017/S1473550403001332 f 2003 Cambridge University Press The biogeochemistry of Si in the McMurdo Dry Valley lakes, Antarctica Heather E. Pugh1*, Kathleen A. Welch1, W. Berry Lyons1, John C. Priscu2 and Diane M. McKnight3 1Byrd Polar Research Center, The Ohio State University, Columbus OH, 43210-1002, USA e-mail: [email protected] 2Dept of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA 3INSTAAR, University of Colorado, Boulder, Colorado 80309-0450, USA Abstract: The biogeochemical dynamics of Si in temperate lakes is well documented and the role of biological uptake and recycling is well known. In this paper we examine the Si dynamics of a series of ice-covered, closed-basin lakes in the McMurdo Dry Valley region (y78x S) of Antarctica. Our data and calculations indicate that biological uptake of Si is not a major process in these lakes. Mass balance considerations in Lake Hoare, the youngest and the freshest lake, suggest that annual stream input during relatively low-flow years is minor and that Si dynamics is greatly influenced by hydrological variation and hence climatic changes affecting stream flow and lake level. The data imply that the Si input during high-flow years must dominate the system. Subtle changes in climate have a major control on Si input into the lake, and Si dynamics are not controlled by biogeochemical processes as in temperate systems. Accepted 1 October 2002 Key words: Antarctica, lakes, silica, biogeochemistry. Introduction The first quantitative evaluation of silicon biogeochemistry in the Taylor Valley lakes, Southern Victoria Land, was con- The McMurdo Dry Valleys (MCM) region of Antarctica has ducted as part of the McMurdo Dry Valleys, Long-Term often been described as a terrestrial analogue of Mars.
    [Show full text]
  • Biogeochemical Stoichiometry of Antarctic Dry Valley Ecosystems J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, G01010, doi:10.1029/2005JG000141, 2007 Click Here for Full Article Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems J. E. Barrett,1,2 R. A. Virginia,1 W. B. Lyons,3 D. M. McKnight,4 J. C. Priscu,5 P. T. Doran,6 A. G. Fountain,7 D. H. Wall,8 and D. L. Moorhead9 Received 21 November 2005; revised 14 August 2006; accepted 20 October 2006; published 7 February 2007. [1] Among aquatic and terrestrial landscapes of the McMurdo Dry Valleys, Antarctica, ecosystem stoichiometry ranges from values near the Redfield ratios for C:N:P to nutrient concentrations in proportions far above or below ratios necessary to support balanced microbial growth. This polar desert provides an opportunity to evaluate stoichiometric approaches to understand nutrient cycling in an ecosystem where biological diversity and activity are low, and controls over the movement and mass balances of nutrients operate over 10–106 years. The simple organisms (microbial and metazoan) comprising dry valley foodwebs adhere to strict biochemical requirements in the composition of their biomass, and when activated by availability of liquid water, they influence the chemical composition of their environment according to these ratios. Nitrogen and phosphorus varied significantly in terrestrial and aquatic ecosystems occurring on landscape surfaces across a wide range of exposure ages, indicating strong influences of landscape development and geochemistry on nutrient availability. Biota control the elemental ratio of stream waters, while geochemical stoichiometry (e.g., weathering, atmospheric deposition) evidently limits the distribution of soil invertebrates. We present a conceptual model describing transformations across dry valley landscapes facilitated by exchanges of liquid water and biotic processing of dissolved nutrients.
    [Show full text]