Soil Distribution in the Mcmurdo Dry Valleys, Antarctica ⁎ J.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemistry This
TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)]. -
Landscape Evolution and Preservation of Ice Over One Million Years Old Quantified with Cosmogenic Nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica Theodore C
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 2014 Landscape evolution and preservation of ice over one million years old quantified with cosmogenic nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica Theodore C. Bibby University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Bibby, Theodore C., "Landscape evolution and preservation of ice over one million years old quantified with cosmogenic nuclides 26Al, 10Be, and 21Ne, Ong Valley, Antarctica" (2014). Theses and Dissertations. 20. https://commons.und.edu/theses/20 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. LANDSCAPE EVOLUTION AND PRESERVATION OF ICE OVER ONE MILLION YEARS OLD QUANTIFIED WITH COSMOGENIC NUCLIDES 26AL, 10BE, AND 21NE, ONG VALLEY, ANTARCTICA by Theodore C. Bibby Bachelor of Science, Florida State University, 2009 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota December 2014 Copyright 2014 Theodore C. Bibby ii This dissertation, submitted by Theodore C. Bibby in partial fulfillment of the requirements for the Degree of Doctor of Philosophy from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. -
The Influence of Fцhn Winds on Glacial Lake Washburn And
Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 3-1-2017 The Influence of öhnF Winds on Glacial Lake Washburn and Palaeotemperatures in the McMurdo Dry Valleys, Antarctica, During the Last Glacial Maximum Maciej Obryk Portland State University Peter Doran Louisiana State University Ed Waddington University of Washington-Seattle Chris McKay NASA Ames Research Center Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac Part of the Geology Commons Let us know how access to this document benefits ou.y Citation Details Obryk M.K., Doran P.T., Waddington E.D., Mckay C.P. 2017. The Influence of öhnF Winds on Glacial Lake Washburn and Palaeotemperatures in the McMurdo Dry Valleys, Antarctica, During the Last Glacial Maximum. Antarctic Science, 29(3)1-11. This Article is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Antarctic Science page 1 of 11 (2017) © Antarctic Science Ltd 2017 doi:10.1017/S0954102017000062 The influence of föhn winds on Glacial Lake Washburn and palaeotemperatures in the McMurdo Dry Valleys, Antarctica, during the Last Glacial Maximum M.K. OBRYK1,2, P.T. DORAN2, E.D. WADDINGTON3 and C.P. MCKAY4 1Department of Geology, Portland State University, Portland, OR 97219, USA 2Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA 3Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 4Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA [email protected] Abstract: Large glacial lakes, including Glacial Lake Washburn, were present in the McMurdo Dry Valleys, Antarctica, during the Last Glacial Maximum (LGM) despite a colder and drier climate. -
Mcmurdo LTER: Glacier Mass Balances of Taylor Valley, Antarctica ANDREW G
Dana, G.L., C.M. Tate, and S.L. Dewey. 1994. McMurdo LTER: The use Moorhead, D.L., and R.A. Wharton, Jr. 1994. McMurdo LTER: Primary of narrow-band spectroradiometry to assess algal and moss com- production model of benthic microbial mats in Lake Hoare, munities in a dry valley stream. Antarctic Journal of the U.S., 29(5). Antarctica. Anta rctic Journal of the U.S., 29(5). Doran, P.T., R.A. Wharton, Jr., S.A. Spaulding, and J.S. Foster. 1994. Powers, L.E., D.W. Freckman, M. Ho, and R.A. Virginia. 1994. McMurdo McMurdo LTER: Paleolimnology of Taylor Valley, Antarctica. LTER: Soil and nematode distribution along an elevational gradient Antarctic Journal of the U.S., 29(5). in Taylor Valley, Antarctica. Anta rctic Journal of the U.S., 29(5). Fountain, A.G., B.H. Vaughn, and G.L. Dana. 1994. McMurdo LTER: Priscu, J.C. 1994. McMurdo LTER: Phytoplankton nutrient deficiency Glacial mass balances of Taylor Valley, Antarctica. Antarctic Jour- in lakes of the Taylor Valley, Antarctica. Antarctic Journal of the nab! the U.S., 29(5). U.S., 29(5). Hastings, J.T., and A.Z. Butt. 1994. McMurdo LTER: Developing a geo- Welch, K., W.B. Lyons, J.C. Priscu, R. Edwards, D.M. McKnight, H. graphic information system access system. Antarctic Journal of the House, and R.A. Wharton, Jr. 1994. McMurdo LTER: Inorganic U.S., 29(5). geochemical studies with special reference to calcium carbonate McKnight, D., H. House, and P. von Guerard. 1994. McMurdo LTER: dynamics. Antarctic Journal of the U.S., 29(5). -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Can Climate Warming Induce Glacier Advance in Taylor Valley, Antarctica?
556 Journal of Glaciology, Vol. 50, No. 171, 2004 Can climate warming induce glacier advance in Taylor Valley, Antarctica? Andrew G. FOUNTAIN,1 Thomas A. NEUMANN,2 Paul L. GLENN,1* Trevor CHINN3 1Departments of Geology and Geography, Portland State University, PO Box 751, Portland, Oregon 97207, USA E-mail: [email protected] 2Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195-1310, USA 3R/20 Muir RD. Lake Hawea RD 2, Wanaka, New Zealand ABSTRACT. Changes in the extent of the polar alpine glaciers within Taylor Valley, Antarctica, are important for understanding past climates and past changes in ice-dammed lakes. Comparison of ground-based photographs, taken over a 20 year period, shows glacier advances of 2–100 m. Over the past 103 years the climate has warmed. We hypothesize that an increase in average air temperature alone can explain the observed glacier advance through ice softening. We test this hypothesis by using a flowband model that includes a temperature-dependent softness term. Results show that, for a 28C warming, a small glacier (50 km2) advances 25 m and the ablation zone thins, consistent with observations. A doubling of snow accumulation would also explain the glacial advance, but predicts ablation-zone thickening, rather than thinning as observed. Problems encountered in modeling glacier flow lead to two intriguing but unresolved issues. First, the current form of the shape factor, which distributes the stress in simple flow models, may need to be revised for polar glaciers. Second, the measured mass-balance gradient in Taylor Valley may be anomalously low, compared to past times, and a larger gradient is required to develop the glacier profiles observed today. -
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
United States Antarctic Program S Nm 5 Helicopter Landing Facilities 22 2010-11 Ms 180 N Manuela (! USAP Helo Sites (! ANZ Helo Sites This Page: 1
160°E 165°E ALL170°E FACILITIES Terra Nova Bay s United States Antarctic Program nm 5 22 Helicopter Landing Facilities ms 180 n Manuela 2010-11 (! (! This page: USAP Helo Sites ANZ Helo Sites 75°S 1. All facilities 75°S 2. Ross Island Maps by Brad Herried Facilities provided by 3. Koettlitz Glacier Area ANTARCTIC GEOSPATIAL INFORMATION CENTER United States Antarctic Program Next page: 4. Dry Valleys August 2010 Basemap data from ADD / LIMA ROSS ISLAND Peak Brimstone P Cape Bird (ASPA 116) (! (! Mt Bird Franklin Is 76°S Island 76°S 90 nms Lewis Bay (A ! ay (ASPA 156) Mt Erebus (Fang Camp)(! ( (! Tripp Island Fang Glacier ror vasse Lower Erebus Hut Ter rth Cre (!(! Mt No Hoopers Shoulder (!M (! (! (! (! Pony Lake (! Mt Erebus (!(! Cape Cape Royds Cones (AWS Site 114) Crozier (ASPA 124) o y Convoy Range Beaufort Island (AS Battleship Promontory C SPA 105) Granite Harbour Cape Roberts Mt Seuss (! Cotton Glacier Cape Evans rk 77°S T s ad (! Turks Head ! (!(! ( 77°S AWS 101 - Tent Island Big Razorback Island CH Surv ey Site 4 McMurdo Station CH Su (! (! rvey Sit s CH te 3 Survey (! Scott Base m y Site 2 n McMurdo Station CH W Wint - ules Island ! 5 5 t 3 Ju ( er Stora AWS 113 - J l AWS 108 3 ge - Biesia Site (! da Crevasse 1 F AWS Ferrell (! 108 - Bies (! (! siada Cr (! revasse Cape Chocolate (! AWS 113 - Jules Island 78°S AWS 109 Hobbs Glacier 9 - White Is la 78°S nd Salmon Valley L (! Lorne AWS AWS 111 - Cape s (! Spencer Range m Garwood Valley (main camp) Bratina I Warren n (! (!na Island 45 Marshall Vall (! Valley Ross I Miers Valley (main -
2016 Proposal
PROJECT SUMMARY Overview: The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert that support microbial foodwebs with few species of metazoans and no higher plants. Biota exhibit robust adaptations to the cold, dark, and arid conditions that prevail for all but a short period in the austral summer. The MCM-LTER has studied these ecosystems since 1993 and during this time, observed a prolonged cooling phase (1986-2002) that ended with an unprecedented summer of high temperature, winds, solar irradiance, glacial melt, and stream flow (the "flood year"). Since then, summers have been generally cool with relatively high solar irradiance and have included two additional high-flow seasons. Before the flood year, terrestrial and aquatic ecosystems responded synchronously to the cooling e.g., the declines in glacial melt, stream flow, lake levels, and expanding ice-cover on lakes were accompanied by declines in lake primary productivity, microbial mat coverage in streams and secondary production in soils. This overall trend of diminished melt-water flow and productivity of the previous decade was effectively reversed by the flood year, highlighting the sensitivity of this system to rapid warming. The observed lags or opposite trends in some physical and biotic properties and processes illustrated the complex aspects of biotic responses to climate variation. Since then, the conceptual model of the McMurdo Dry Valleys has evolved based on observations of discrete climate-driven events that elicit significant responses from resident biota. It is now recognized that physical (climate and geological) drivers impart a dynamic connectivity among landscape units over seasonal to millennial time scales. -
A Sedimentological Record of Early Miocene Ice Advance and Retreat, AND-2A Drill Hole, Mcmurdo Sound, Antarctica GEOSPHERE
Research Paper GEOSPHERE A sedimentological record of early Miocene ice advance and retreat, AND-2A drill hole, McMurdo Sound, Antarctica 1 1 2 3 2 4 5 6 7 8 GEOSPHERE; v. 14, no. 4 B.D. Field , G.H. Browne , C.R. Fielding , F. Florindo , D.M. Harwood , S.A. Judge , L.A. Krissek , K.S. Panter , S. Passchier , S.F. Pekar , S. Sandroni9, and F.M. Talarico9,10 1 https://doi.org/10.1130/GES01592.1 GNS Science, PO Box 30368, Lower Hutt, New Zealand 2Department of Earth and Atmospheric Sciences, 126 Bessey Hall, University of Nebraska-Lincoln, Nebraska 68588- 0340, USA 3Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 1-00143 Rome, Italy 15 figures 4Department of Geology, College of Wooster, 944 College Mall, Wooster, Ohio 44691, USA 5School of Earth Sciences, Ohio State University, 125 South Oval Mall, Columbus, Ohio 43210, USA 6 CORRESPONDENCE: brad .field@ gns .cri.nz Department of Geology, Bowling Green State University, Bowling Green, Ohio 43402, USA 7Department of Earth & Environmental Sciences, Montclair State University, 252 Mallory Hall, 1 Normal Avenue, Montclair, New Jersey 07043, USA 8School of Earth & Environmental Sciences, Queen’s College, 65-30 Kissena Blvd., Flushing, New York 11367, USA CITATION: Field, B.D., Browne, G.H., Fielding, 9Museo Nazionale dell’Antartide, Università degli Studi di Siena, Via Laterina 8, Siena, Italy C.R., Florindo, F., Harwood, D.M., Judge, S.A., 10Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Via Laterina 8, Siena, Italy Krissek, L.A., Panter, K.S., Passchier, S., Pekar, S.F., Sandroni, S., and Talarico, F.M., 2018, A sedimento- logical record of early Miocene ice advance and re- ABSTRACT antarctic Mountains glacial activity under precessional control in CS1 and treat, AND-2A drill hole, McMurdo Sound, Antarctica: Geosphere, v. -
Monsoonal Circulation of the Mcmurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry Nancy A.N
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Maine The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 2004 Monsoonal Circulation of the McMurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry Nancy A.N. Bertler Paul Andrew Mayewski University of Maine - Main, [email protected] Peter J. Barrett Sharon B. Sneed Michael J. Handley See next page for additional authors Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Earth Sciences Commons Repository Citation Bertler, Nancy A.N.; Mayewski, Paul Andrew; Barrett, Peter J.; Sneed, Sharon B.; Handley, Michael J.; and Kreutz, Karl J., "Monsoonal Circulation of the McMurdo Dry Valleys, Ross Sea Region, Antarctica: Signal from the Snow Chemistry" (2004). Earth Science Faculty Scholarship. 133. https://digitalcommons.library.umaine.edu/ers_facpub/133 This Conference Proceeding is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Authors Nancy A.N. Bertler, Paul Andrew Mayewski, Peter J. Barrett, Sharon B. Sneed, Michael J. Handley, and Karl J. Kreutz This conference proceeding is available at DigitalCommons@UMaine: https://digitalcommons.library.umaine.edu/ers_facpub/133 Annals of Glaciology 39 2004 139 Monsoonal circulation of the McMurdo Dry Valleys, Ross Sea region, Antarctica: signal from the snow chemistry Nancy A. N. BERTLER,1 Paul A. MAYEWSKI,2 Peter J. -
Fault Kinematic Studies in the Transantarctic Mountains, Southern Victoria Land TERRY J
studies. Together these data will be used to develop a model to plate tectonic modeling. In R.A. Hodgson, S.P. Gay, Jr., and J.Y. of the structural architecture and motion history associated Benjamins (Eds.), Proceedings of the First International Conference with the Transantarctic Mountains in southern Victoria Land. on the New Basement Tectonics (Publication number 5). Utah Geo- logical Association. We thank Jane Ferrigno for cooperation and advice on Lucchita, B.K., J. Bowell, K.L. Edwards, E.M. Eliason, and H.M. Fergu- image selection; John Snowden, David Cunningham, and son. 1987. Multispectral Landsat images of Antarctica (U.S. Geo- Tracy Douglass at the Ohio State University Center for Map- logical Survey bulletin 1696). Washington, D.C.: U.S. Government ping for help with computer processing; and Carolyn Merry, Printing Office. Gary Murdock, and Ralph von Frese for helpful discussions Wilson, T.J. 1992. Mesozoic and Cenozoic kinematic evolution of the Transantarctic Mountains. In Y. Yoshida, K. Kaminuma, and K. concerning image analysis. This research was supported by Shiraishi (Eds.), Recent progress in antarctic earth science. Tokyo: National Science Foundation grant OPP 90-18055 and by the Terra Scientific. Byrd Polar Research Center of Ohio State University. Wilson, T.J. 1993. Jurassic faulting and magmatism in the Transantarctic Mountains: Implication for Gondwana breakup. In R.H. Findlay, M.R. Banks, R. Unrug, and J. Veevers (Eds.), Gond- References wana 8—Assembly, evolution, and dispersal. Rotterdam: A.A. Balkema. Wilson, T.J., P. Braddock, R.J. Janosy, and R.J. Elliot. 1993. Fault kine- Isachsen, Y.W. 1974.