Ear Switch As Assistive Communication and Control Device and Human Computer Interface

Total Page:16

File Type:pdf, Size:1020Kb

Ear Switch As Assistive Communication and Control Device and Human Computer Interface Description : Ear switch as assistive communication and control device and Human Computer Interface An in-ear switch, incorporated in a hearing aid or worn as a smart earphone. The switch is triggered by voluntary movement of the ear drum, by voluntary contraction of the tensor tympani muscle in the middle ear. This would be designed as a switch for communication aids for people with severe communication disabilities, but also may be used to control user interfaces for smart phones/computers and control of hearing aid functions. <—Malleus Earphone/ <—Tensor tympani sensor —> Figure: Cross section of ear canal showing ear-phone sensor, ear drum, malleus (ossicular bone) and tensor tympani muscle Figure: Cross section of ear canal showing tensor tympani muscle (4) (Didier Descouens/ available under CC BY- SA 3.0) Background: The tensor tympani is a small muscle in the middle ear that is attached to the malleus (a small bone that runs along the centre of the ear drum). Contraction of this muscle is thought to help muffle the hearing during chewing, and possibly to protect the hearing in response to loud noises. It has been noted that some people have voluntary control of this muscle and contraction can be heard by the individual as a rumbling noise. It’s effect can also be triggered during strong eyelid closing and yawning. I have recorded videos, using a USB video auroscope, of the effect of voluntary contraction of the muscle showing that the lower end of the handle of the malleus and adjacent ear drum moves backwards. 75% Prevalence of Tensor Tympani Control Medical literature has reported series of people who have voluntary control. There is no formal medical literature on the prevalence of control but there is widespread acknowledgment of the ability of a significant number of people who have control, evidenced by the Reddit social media forum for this having 65,800 members (https:// www.reddit.com/r/earrumblersassemble/). However survey results show 75% of people reporting tensor tympani contraction: SurveyMonkey surveys were completed by a general population of 100 established workers on Mechanical Turk (Crowd employment platform), showing: 75% reporting tensor tympani control and 17% already reported isolated tensor tympani control (ie without moving other muscles). Movement of the handle of the malleus can be measured and tracked using openly available software imaging program. Movement detection software can detect movement of the ear drum due to voluntary tensor tympani contraction and is able to trigger the Grid3 assistive communication software and also Microsoft Windows On Screen Keyboard, to generate text output using purely voluntary tensor tympani movement Figure: USB video auroscope Figure: Tracking video analysis movement Teslong Mini Otoscope, of malleus: Vernier Video Physics USB Ear Otoscope Inspection Camera Figure: Analysis of tracked movement of tympanic membrane (showing regular voluntary contractions) -using Vernier Video Physics: Vernier Software & Technology Figures below: Image analysis showing change in distance with voluntary tensor tympani contraction, between a tracked point on drum and drum margin using Tracker - open source software (Doug Brown: physlets.org/tracker) Figure below: Analysis of data from “Tracker” software of ear drum movement measurements demonstration On/Off data output Proof of Concept I have been able to trigger the on-screen Windows keyboard using intentional eardrum movement picked by a video usb auroscope. The screen shot below is of a video of movement detection software (“iSpyconnect”) which generates an F12 keyboard output in response to intentional movement of the ear drum, which selects the highlighted keys on a scanning keyboard. The central window is a live feed from the auroscope, with the light blue bar beneath showing the detection of movement. This has selected the highlighted options on the scanning keyboard. This generated the shown text output on a Word document. This has demonstrated control of Microsoft on-screen keyboard for assistive technology users. However, this could easily be extrapolated to control hearing aid functions, and other technologies as outlined above. iSpy open source video surveillance software (iSpyconnect.com) Control of Grid3 Communication Software; The technique above has been successfully used to control the “Grid3” software; the leading assistive technology software in the UK: (From Grid3 (thinksmartbox.com) Assistive Technology Software and iSpy open source video surveillance software (iSpyconnect.com) This has demonstrated control of an on screen keyboard for assistive technology users. However, this could easily be extrapolated to control hearing aid functions, and other technologies as outlined above. Left Click selection of Gaphical User Interfaces; The Earswitch has also been used as a successful “click to select” graphical user interfaces eg icons and typing on the on-screen keyboard, as an adjunct to headtracking (eViaCam) cursor control. This could easily be used as an adjunct for eyetracking control making a it a widespread useful rapid user interface. Application: Communication Aid for People with Communication Disabilities (Primary Aim) The ear-switch allows for a new assistive technology switch to control speech synthesis and communication & assistive technologies in people with severe communication disabilities due to neurological conditions. These people currently rely on simple switches to control scanning keyboards and other scanning graphical interfaces , which select the highlighted icon/ word or letter. Intel developed the ACAT software that Stephen Hawking used, and in the UK Grid3 technology provides assistive graphical user interfaces. Figures: the late Professor Stephen Hawking (image by NASA/PAUL E. ALERS under Public Domain) using ACAT technology, which utilises scanning graphical keyboard selection using a switch sensor that detected cheek movements (image by Failedwizard at en.wikipedia • CC BY-SA 3.0) Some people with these severe disabilities cannot reliably control existing switch technologies; they may not have enough muscle control to control a current switch. Also the switches can be difficult to position for reliable sensing of voluntary movement, or switches can be adversely affected by involuntary movements. The ear switch gives an alternative communication switch, and also an assistive control switch eg for wheelchairs etc in people with neck injuries (cervical spine injuries) and some brainstem injuries (including strokes). Because the trigeminal nerve, which controls the tensor tympani muscle, arises high in the brain stem, the ear switch should not be affected by neck injuries or lower brainstem strokes, and so the ear switch may still be useable. Figures showing trigeminal nerve (light blue) that supplies tensor tympani muscle arises high in the brainstem (images by Grant, John Charles Boileu, 1962 available under CC BY-SA 3.0, and Patrick J. Lynch, medical illustrator derivative work: Beao available under CC BY 2.5) <-Trigeminal nerve (Vth Cranial Nerve) supplies tensor tympani-> H o w e v e r, t h i s i s a d e v e l o p m e n t i n i t s infancy and it has not yet been used in these situations. Secondary commercial applications may include: 1) A new Human Computer Interface; Handsfree/ invisible and silent control of all screen based technology (eg smart phones/ laptops /PCs etc), particularly if used in partnership with eyetracking technology. 2) Controller for smart earphone technology 3) Games controller 4) Hearing aid control Etc Detecting drum movement Has been shown by visual imaging with current technology, as shown above. Alternatively, infrared imaging may give similar results to visual imaging but without the need for a light source. Visual imaging has the advantage that appropriately sized cameras are already easily available, and the above data confirms that the relevant movement is detectable and can trigger suitable user interfaces. Prototype Development: The next step may be incorporation of a CMOS camera module with LED, within an easily available earphone shell designed to be worn in-ear by performers; the wire going over the top of the ear helping to anchor the earphone. This would give a stable and comfortable earphone type Earswitch, as it is a well developed configuration for earphones. The existing CMOS camera module used with the auroscope could be used in the shell, however smaller new generation CMOS video sensors, such as Naneye (1mm sq), & the Fujikura/OmniVision Micro-Camera Module System: OV6948 or 6946, and fibre optic cameras (eg the 0.35mm. MilliScope II™ Fiberscope) would fit easily in these earphone shells. This would provide stable and comfortable (& proven) anchoring of the Earswitch within the ear/ irrespective of head movements. Similar wireless miniaturised camera technology with wireless image transmission is already used in capsule enteroscopy (eg cameras within pill type capsules that are swallowed to film the bowel in patients), and may provide lessons/ useable technology for the Earswitch. Further generations of prototype could move to bluetooth (TM) transmission from wireless Earswitch earphone devices, either directly from the earphones, or from control units attached to the earphones, eg similar to some sports audio and bone conducting headphones. The smaller 1mm sq CMOS sensors and fibre-optic cameras could be incorporated into existing hearing aids/ smart earphones without affecting their primary function, but with adding handsfree control.
Recommended publications
  • UPDATE VOLUME 20 • ISSUE 3 the Newsletter of the Council for Accreditation in Occupational Hearing Conservation
    Fall 2008 UPDATE VOLUME 20 • ISSUE 3 The Newsletter of the Council for Accreditation in Occupational Hearing Conservation Hearing noise-induced hearing loss and further degradation of communication. If too much hearing protection is provided, Conservation the combined effects of the hearing loss and the attenuation provided by the hearing protector may result in critical sounds for the Hearing- and communication signals becoming inaudible. I’m often asked what type of hearing protector is best for Impaired Worker workers with hearing impairment. Considering that there is no ‘best’ HPD for all workers in any hearing category, it Introduction by Ted Madison should come as no surprise that no single type of device will The prevalence of hearing loss among persons enrolled meet the needs of all those with hearing loss. What seems in occupational hearing conservation programs (HCPs) is to be consistent, however, is that each case is unique, and difficult to determine. Recently, Tak and Calvert (2008) that extra time and effort is required to help these workers estimated that 11.4% of the overall US workforce reports find the right combination of protection, having hearing difficulty of varying communication and auditory awareness. degrees and that approximately ¼ of Consultation with an audiologist or other the hearing difficulty reported can hearing health care professional is also be attributed to employment. These an important step in most cases. estimates are based on analysis of data One valuable resource is the OSHA from the US National Health Interview Safety & Health Information Bulletin Survey (NHIS) that were collected (SHIB) titled “Hearing Conservation from 1997 to 2003.
    [Show full text]
  • Instruction Sheet: Otitis Externa
    University of North Carolina Wilmington Abrons Student Health Center INSTRUCTION SHEET: OTITIS EXTERNA The Student Health Provider has diagnosed otitis externa, also known as external ear infection, or swimmer's ear. Otitis externa is a bacterial/fungal infection in the ear canal (the ear canal goes from the outside opening of the ear to the eardrum). Water in the ear, from swimming or bathing, makes the ear canal prone to infection. Hot and humid weather also predisposes to infection. Symptoms of otitis externa include: ear pain, fullness or itching in the ear, ear drainage, and temporary loss of hearing. These symptoms are similar to those caused by otitis media (middle ear infection). To differentiate between external ear infection and middle ear infection, the provider looks in the ear with an instrument called an otoscope. It is important to distinguish between the two infections, as they are treated differently: External otitis is treated with drops in the ear canal, while middle ear infection is sometimes treated with an antibiotic by mouth. MEASURES YOU SHOULD TAKE TO HELP TREAT EXTERNAL EAR INFECTION: 1. Use the ear drops regularly, as directed on the prescription. 2. The key to treatment is getting the drops down into the canal and keeping the medicine there. To accomplish this: Lie on your side, with the unaffected ear down. Put three to four drops in the infected ear canal, then gently pull the outer ear back and forth several times, working the medicine deeper into the ear canal. Remain still, good-ear-side-down for about 15 minutes.
    [Show full text]
  • The Ear, Nose, and Throat Exam Jeffrey Texiera, MD and Joshua Jabaut, MD CPT, MC, USA LT, MC, USN
    The Ear, Nose, and Throat Exam Jeffrey Texiera, MD and Joshua Jabaut, MD CPT, MC, USA LT, MC, USN Midatlantic Regional Occupational and Environmental Medicine Conference Sept. 23, 2017 Disclosures ●We have no funding or financial interest in any product featured in this presentation. The items included are for demonstration purposes only. ●We have no conflicts of interest to disclose. Overview ● Overview of clinically oriented anatomy - presented in the format of the exam ● The approach ● The examination ● Variants of normal anatomy ● ENT emergencies ● Summary/highlights ● Questions Anatomy ● The head and neck exam consists of some of the most comprehensive and complicated anatomy in the human body. ● The ear, nose, and throat comprise a portion of that exam and a focused clinical encounter for an acute ENT complaint may require only this portion of the exam. Ears www.Medscape.com www.taqplayer.info Ear – Vestibular organ www.humanantomylibrary.com Nose/Sinus Anatomy Inferior Middle Turbinate Turbinate Septum Dorsum Sidewalls Ala Floor Tip www.ENT4Students.blogspot.com Columella Vestibule www.beautyepic.com Oral cavity and oropharynx (throat) www.apsubiology.org Neck www.rdhmag.com The Ear, Nose, and Throat exam Perform in a standardized systematic way that works for you Do it the same way every time, this mitigates risk of missing a portion of the exam Practice the exam to increase comfort with performance and familiarize self with variants of normal Describe what you are doing to the patient, describe what you see in your documentation Use your PPE as appropriate A question to keep in mind… ●T/F: The otoscope is the optimal tool for examining the tympanic membrane.
    [Show full text]
  • Ear Infections
    EAR INFECTIONS How common are ear infections in cats? Infections of the external ear canal (outer ear) by bacteria or yeast are common in dogs but not as common in cats. Outer ear infections are called otitis externa. The most common cause of feline otitis externa is ear mite infestation. What are the symptoms of an ear infection? Ear infection cause pain and discomfort and the ear canals are sensitive. Many cats will shake their head and scratch their ears attempting to remove the debris and fluid from the ear canal. The ears often become red and inflamed and develop an offensive odor. A black or yellow discharge is commonly observed. Don't these symptoms usually suggest ear mites? Ear mites can cause several of these symptoms including a black discharge, scratching and head shaking. However, ear mite infections generally occur in kittens. Ear mites in adult cats occur most frequently after a kitten carrying mites is introduced into the household. Sometimes ear mites will create an environment within the ear canal which leads to a secondary infection with bacteria or yeast. By the time the cat is presented to the veterinarian the mites may be gone but a significant ear infection remains. Since these symptoms are similar can I just buy some ear drops? No, careful diagnosis of the exact cause of the problem is necessary to enable selection of appropriate treatment. There are several kinds of bacteria and fungi that might cause an ear infection. Without knowing the kind of infection present, we do not know which drug to use.
    [Show full text]
  • Older Adult Hearing Loss and Screening Key Points • Eighty Percent of Older American Adults Have Untreated Hearing Loss. •
    Older Adult Hearing Loss and Screening Key Points Eighty percent of older American adults have untreated hearing loss. Hearing loss is associated with decreased quality of life, depression, communication disorders, social withdrawal and cognitive impairment. Overview Definition Presbycusis is another term for age-related sensorineural hearing loss (ARHL). o Damage to the cochlea, Cranial Nerve VIII, or Internal Auditory canal o Bilateral, symmetric, high-frequency sensorineural hearing loss Noise-induced hearing loss (NIHL) o Direct mechanical injury to sensory hair cells in the cochlea o Continuous noise exposure Aging and hearing loss Cell reduction in auditory cortex Acoustic nerve (CN VIII) fiber degeneration Inner ear sensory cell loss and membrane calcification Risk Factors Advancing Age (ARHI) Exposure to loud noises or ototoxic agents (i.e. loud machinery) (NIHL) Other External ear or middle ear conductive hearing loss risk factors include: o Cerumen impaction o Middle ear fluid o Perforated tympanic membrane Assessment Recommendations for hearing assessments: Screening all older adults over the age of 65 years. Screening should be conducted in a primary care setting. Obtain history of chronic medical conditions (diabetes mellitus, CAD), ear infections, ear trauma, occupation Medication review assessing for use of diuretics (loop), aspirin, antineoplastic (cisplatin, 5- fluorouracil), antimalarial (chloroquine, quinine), and antibiotic (aminoglycosides, erythromycin, tetracycline, vancomycin) Assessment Instruments available include: o Hearing Handicap Inventory for the Elderly Screening (HHIE-S) https://www.audiology.org/sites/default/files/PracticeManagement/Medicare_HHI.pdf . 10 question questionnaire . Score greater than 10 points should be referred to an audiologist o Audio Scope (Welch Allyn, Inc.) . Otoscope examination . Test hearing o Whispered Voice Test, finger rub or a watch tick test o Ask the question - “Do you have a hearing problem now?” If any of the above four are positive – referral to an Audiologist is indicated.
    [Show full text]
  • Initial Stage of Fetal Development of the Pharyngotympanic Tube Cartilage with Special Reference to Muscle Attachments to the Tube
    Original Article http://dx.doi.org/10.5115/acb.2012.45.3.185 pISSN 2093-3665 eISSN 2093-3673 Initial stage of fetal development of the pharyngotympanic tube cartilage with special reference to muscle attachments to the tube Yukio Katori1, Jose Francisco Rodríguez-Vázquez2, Samuel Verdugo-López2, Gen Murakami3, Tetsuaki Kawase4,5, Toshimitsu Kobayashi5 1Division of Otorhinolaryngology, Sendai Municipal Hospital, Sendai, Japan, 2Department of Anatomy and Embryology II, Faculty of Medicine, Complutense University, Madrid, Spain, 3Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, 4Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, 5Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan Abstract: Fetal development of the cartilage of the pharyngotympanic tube (PTT) is characterized by its late start. We examined semiserial histological sections of 20 human fetuses at 14-18 weeks of gestation. As controls, we also observed sections of 5 large fetuses at around 30 weeks. At and around 14 weeks, the tubal cartilage first appeared in the posterior side of the pharyngeal opening of the PTT. The levator veli palatini muscle used a mucosal fold containing the initial cartilage for its downward path to the palate. Moreover, the cartilage is a limited hard attachment for the muscle. Therefore, the PTT and its cartilage seemed to play a critical role in early development of levator veli muscle. In contrast, the cartilage developed so that it extended laterally, along a fascia-like structure that connected with the tensor tympani muscle. This muscle appeared to exert mechanical stress on the initial cartilage.
    [Show full text]
  • Tonic Tensor Tympani Syndrome (TTTS)
    Tonic Tensor Tympani Syndrome (TTTS) http://www.dineenandwestcott.com.au/hyperacusis.php?fid=1 Retrieved 15ththth May 2009 In the middle ear, the tensor tympani muscle and the stapedial muscle contract to tighten the middle ear bones (the ossicles) as a reaction to loud, potentially damaging sound. This provides protection to the inner ear from these loud sounds. In many people with hyperacusis, an increased, involuntary activity can develop in the tensor tympani muscle in the middle ear as part of a protective and startle response to some sounds. This lowered reflex threshold for tensor tympani contraction is activated by the perception/anticipation of sudden, unexpected, loud sound, and is called tonic tensor tympani syndrome (TTTS). In some people with hyperacusis, it appears that the tensor tympani muscle can contract just by thinking about a loud sound. Following exposure to intolerable sounds, this heightened contraction of the tensor tympani muscle: • tightens the ear drum • stiffens the middle ear bones (ossicles) • can lead to irritability of the trigeminal nerve, which innervates the tensor tympani muscle; and to other nerves supplying the ear drum • can affect the airflow into the middle ear. The tensor tympani muscle functions in coordination with the tensor veli palatini muscle. When we yawn or swallow, these muscles work together to open the Eustachian tube. This keeps the ears healthy by clearing the middle ear of any accumulated fluid and allows the ears to “pop” by equalising pressure caused by altitude changes. TTTS can lead to a range of symptoms in and around the ear(s): ear pain; pain in the jaw joint and down the neck; a fluttering sensation in the ear; a sensation of fullness in the ear; burning/numbness/tingling in and around the ear; unsteadiness; distorted hearing.
    [Show full text]
  • ANATOMY of EAR Basic Ear Anatomy
    ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age.
    [Show full text]
  • Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and Main Principals Of
    Yagenich L.V., Kirillova I.I., Siritsa Ye.A. Latin and main principals of anatomical, pharmaceutical and clinical terminology (Student's book) Simferopol, 2017 Contents No. Topics Page 1. UNIT I. Latin language history. Phonetics. Alphabet. Vowels and consonants classification. Diphthongs. Digraphs. Letter combinations. 4-13 Syllable shortness and longitude. Stress rules. 2. UNIT II. Grammatical noun categories, declension characteristics, noun 14-25 dictionary forms, determination of the noun stems, nominative and genitive cases and their significance in terms formation. I-st noun declension. 3. UNIT III. Adjectives and its grammatical categories. Classes of adjectives. Adjective entries in dictionaries. Adjectives of the I-st group. Gender 26-36 endings, stem-determining. 4. UNIT IV. Adjectives of the 2-nd group. Morphological characteristics of two- and multi-word anatomical terms. Syntax of two- and multi-word 37-49 anatomical terms. Nouns of the 2nd declension 5. UNIT V. General characteristic of the nouns of the 3rd declension. Parisyllabic and imparisyllabic nouns. Types of stems of the nouns of the 50-58 3rd declension and their peculiarities. 3rd declension nouns in combination with agreed and non-agreed attributes 6. UNIT VI. Peculiarities of 3rd declension nouns of masculine, feminine and neuter genders. Muscle names referring to their functions. Exceptions to the 59-71 gender rule of 3rd declension nouns for all three genders 7. UNIT VII. 1st, 2nd and 3rd declension nouns in combination with II class adjectives. Present Participle and its declension. Anatomical terms 72-81 consisting of nouns and participles 8. UNIT VIII. Nouns of the 4th and 5th declensions and their combination with 82-89 adjectives 9.
    [Show full text]
  • Ear Infections in Children
    U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES ∙ National Institutes of Health NIDCD Fact Sheet | Hearing and Balance Ear Infections in Children What is an ear infection? How can I tell if my child has an ear infection? An ear infection is an inflammation of the middle ear, usually caused by bacteria, that occurs when fluid builds Most ear infections happen to children before they’ve up behind the eardrum. Anyone can get an ear infection, learned how to talk. If your child isn’t old enough to say but children get them more often than adults. Five out of “My ear hurts,” here are a few things to look for: six children will have at least one ear infection by their third } Tugging or pulling at the ear(s) birthday. In fact, ear infections are the most common reason parents bring their child to a doctor. The scientific name for } Fussiness and crying an ear infection is otitis media (OM). } Trouble sleeping What are the symptoms of an } Fever (especially in infants and younger children) ear infection? } Fluid draining from the ear } Clumsiness or problems with balance There are three main types of ear infections. Each has a different combination of symptoms. } Trouble hearing or responding to quiet sounds. } Acute otitis media (AOM) is the most common ear What causes an ear infection? infection. Parts of the middle ear are infected and swollen and fluid is trapped behind the eardrum. This An ear infection usually is caused by bacteria and often causes pain in the ear—commonly called an earache.
    [Show full text]
  • Anatomy of the Ear ANATOMY & Glossary of Terms
    Anatomy of the Ear ANATOMY & Glossary of Terms By Vestibular Disorders Association HEARING & ANATOMY BALANCE The human inner ear contains two divisions: the hearing (auditory) The human ear contains component—the cochlea, and a balance (vestibular) component—the two components: auditory peripheral vestibular system. Peripheral in this context refers to (cochlea) & balance a system that is outside of the central nervous system (brain and (vestibular). brainstem). The peripheral vestibular system sends information to the brain and brainstem. The vestibular system in each ear consists of a complex series of passageways and chambers within the bony skull. Within these ARTICLE passageways are tubes (semicircular canals), and sacs (a utricle and saccule), filled with a fluid called endolymph. Around the outside of the tubes and sacs is a different fluid called perilymph. Both of these fluids are of precise chemical compositions, and they are different. The mechanism that regulates the amount and composition of these fluids is 04 important to the proper functioning of the inner ear. Each of the semicircular canals is located in a different spatial plane. They are located at right angles to each other and to those in the ear on the opposite side of the head. At the base of each canal is a swelling DID THIS ARTICLE (ampulla) and within each ampulla is a sensory receptor (cupula). HELP YOU? MOVEMENT AND BALANCE SUPPORT VEDA @ VESTIBULAR.ORG With head movement in the plane or angle in which a canal is positioned, the endo-lymphatic fluid within that canal, because of inertia, lags behind. When this fluid lags behind, the sensory receptor within the canal is bent.
    [Show full text]
  • Differential Diagnosis and Treatment of Hearing Loss JON E
    Differential Diagnosis and Treatment of Hearing Loss JON E. ISAACSON, M.D., and NEIL M. VORA, M.D., Milton S. Hershey Medical Center, Hershey, Pennsylvania Hearing loss is a common problem that can occur at any age and makes verbal communication difficult. The ear is divided anatomically into three sections (external, middle, and inner), and pathology contributing to hearing loss may strike one or more sections. Hearing loss can be cat- egorized as conductive, sensorineural, or both. Leading causes of conductive hearing loss include cerumen impaction, otitis media, and otosclerosis. Leading causes of sensorineural hear- ing loss include inherited disorders, noise exposure, and presbycusis. An understanding of the indications for medical management, surgical treatment, and amplification can help the family physician provide more effective care for these patients. (Am Fam Physician 2003;68:1125-32. Copyright© 2003 American Academy of Family Physicians) ore than 28 million Amer- tive, the sound will be heard best in the icans have some degree of affected ear. If the loss is sensorineural, the hearing impairment. The sound will be heard best in the normal ear. differential diagnosis of The sound remains midline in patients with hearing loss can be sim- normal hearing. Mplified by considering the three major cate- The Rinne test compares air conduction gories of loss. Conductive hearing loss occurs with bone conduction. The tuning fork is when sound conduction is impeded through struck softly and placed on the mastoid bone the external ear, the middle ear, or both. Sen- (bone conduction). When the patient no sorineural hearing loss occurs when there is a longer can hear the sound, the tuning fork is problem within the cochlea or the neural placed adjacent to the ear canal (air conduc- pathway to the auditory cortex.
    [Show full text]