Novel Developments in Hydrogen Storage, Hydrogen Activation and Ionic Liquids
Total Page:16
File Type:pdf, Size:1020Kb
Technische Universität München WACKER-Lehrstuhl für Makromolekulare Chemie Novel developments in Hydrogen Storage, Hydrogen Activation and Ionic Liquids Amir Doroodian Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. K. O. Hinrichsen Prüfer der Dissertation: 1. Univ.-Prof. Dr. Dr. h. c. B. Rieger 2. apl. Prof. Dr. Anton Lerf Die Dissertation wurde am 28.10.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 03.12.2010 angenommen. ر و درم و دا gÉ `ç ctÜxÇàá tÇw hÇvÄx در دا اي ن و ر ن را ا ا د در ا را ن از و ر م Acknowledgements This thesis is carried out during the period of November 2006 until May 2007 in the department of inorganic chemistry of university of Ulm and May 2007 until June 2010 in the department of macromolecular chemistry of TU Munich. This work could not be accomplished without permission of dissertation, continuous advice and kindly support of Prof. Dr. B. Rieger, who has guided me during the doctoral dissertation with his great knowledge and experience in different fields of chemistry particularly in the chemistry of catalysis and its application in polymer chemistry, hydrogen storage and activation. His insight into organic and inorganic chemistry as well as polymer chemistry has introduced me to accurate thinking and developing new ideas about a lot of chemistry articles. I would like to thank him for his supports despite all difficulties during the moving from Ulm to Munich and through my investigation in Munich. I want to pronounce my gratitude profoundly. I would like to express my gratefulness to all those who gave me the possibility to complete this thesis. I gratefully thank Dr. Carsten Troll, who has advocated technical supplies. I express Dr. Sergei Vagin and Dr. Carly Anderson my appreciation for their supports with good ideas. I would like to thank all of my colleagues at the university of Ulm as well as Technische Universität München for supporting and friendship. I am grateful to Dr. Genest for great cooperation, Mr. Krausse for MS measurements, Dr. Raudaschl-Sieber for solid state NMR measurements and Dr. Herdtweck for crystal structures. I would like to thank Joachim Dengler and Felix Schulz for NMR-Measurement and their grateful ideas, which were very helpful. And finally all the thanks to all my colleagues in Prof. Rieger’s and Prof. Nyken’s group for the nice working atmosphere in the university, their cooperation and help. I would like to present this thesis to my parents and my uncle, who have always supported and motivated me during my study and promotion. Abbreviations......…………………………............................................................. 1 Preface……………………………………………………………………….......... 3 Chapter 1: Metal-free hydrogen activation (Frustrated Lewis Pairs).................................................. 4 1.1 Introduction………………………………………………………………........ 4 1.2 Metal-free H 2 activation based on frustrated Lewis pairs…………………..5 1.2.1 Heterolytic activation of H 2 by phosphine/borane………………... 8 1.3 Scope of this work…………………………………………………………….. 12 1.4 Results and discussion……………………………………………………....... 12 1.5 Conclusion…………………………………………………………………...... 17 1.6 General Experimental Methodology……………………………………….... 18 Synthesis of Me 2Sn(C 6F5)2 ……………………………………………….. 18 Synthesis of ClB(C 6F5)2.………………………………………………...... 19 Synthesis of HB(C 6F5)2 ...…………………………………………………. 19 Synthesis of 1,6-bis(bis(perfluorophenyl)boryl)hexane……………….... 20 Interaction between 1,6-bis(bis(perfluorophenyl)boryl)hexane and 1,3-bis (diphenylphosphino)propane in solution……………………………....... 20 1.7 Literature…………………………………………………………………….... 21 Chapter 2: Hydrogen Storage Material ………………………………….. 23 2.1 Introduction……………………………………………………………………23 2.2 Hydrogen Storage…………………………………………………………….. 25 2.2.1 Physical hydrogen storage………………………………………….. 25 2.2.2 Sorbents...…………………………………………………………… 25 2.2.3 Metal hydrides………………………………………………………. 27 2.2.4 Chemical hydrides.............................................................................. 29 2.2.5 B-N compounds................................................................................... 30 2.2.5.1 Hydrazine borane compounds............................................ 30 2.2.5.2 Amine triborane compounds.............................................. 31 2.2.5.3 Amine compounds of higher-order polyboranes.............. 32 2.2.5.4 Amine borane compounds................................................... 33 2.2.6 Regeneration of spent fuel...................................................... ........... 44 2.3 Dihydrogen bonding and hydrogen release………………………………..... 45 2.4 Scope of this work…………………………………………………….............. 47 2.5 Guanidinium and methyl guanidinium borohydride based hydrogen storage Material………………………………………………………………………... 47 2.6 Guanidinium octahydrotriborate as chemical hydrogen storage…….......... 54 2.7 Conclusion.......................................................................................................... 56 2.8 General Experimental Methodology................................................................ 57 Synthesis of methyl guanidinium borohydride (MGB)............................ 57 Synthesis of guanidinium borohydride (GB)............................................. 58 Synthesis of 1,1,3,3-Tetramethylguanidine borane................................... 58 Kinetic studies.............................................................................................. 64 Synthesis of Guanidinium octahydrotriborate (GOTB)……………….. 67 Synthesis of sodium octahydrotriborate……………………………….... 67 2.9 Literature............................................................................................................ 68 Chapter 3: Ionic Liquids .................................................................................. 76 3.1 Introduction........................................................................................................ 76 3.2 Metal-containing ionic liquids ………………................................................. 80 3.3 Scope of the work............................................................................................... 82 3.4 ILs based on methyl guanidinium as cation.................................................... 82 3.4.1 Metal containing protic ionic liquids................................................ 84 3.5 Results and discussion....................................................................................... 85 3.5.1 Preparations............................................................................ 85 3.5.2 TGA and DSC studies............................................................ 86 3.5.3 Infrared studies and hydrogen bonding............................... 86 3.5.4 UV-Vis studies......................................................................... 88 3.5.5 X-ray studies............................................................................ 89 3.5.6 Catalytic activity..................................................................... 91 3.6 Conclusion...........................................................................................................94 3.7 Experimental Section......................................................................................... 95 General.......................................................................................................... 95 Preparation of methylguanidinium tetrafluoroborate............................. 95 Preparation of methylguanidinium hexafluorophosphate....................... 96 Preparation of methylguanidinium hexafluoroantimonite ..................... 97 Preparation of methyl guanidinium tetrachlorocobaltate (MGCC)....... 97 Preparation of methyl guanidinium tetrachlorozincate (MGCZ)........... 101 Coupling reaction......................................................................................... 108 3.8 Literature…………………………………………………………………........ 109 Zusammenfassung....................................................................................................114 Abbreviations AB Ammonia borane BDPP 1,3-bis (diphenylphosphino)propane BMIM Buthyl methyl imidazolium BPBH 1,6-bis(bis(perfluorophenyl)boryl) hexane 9-BBN 9-Borabicyclo[3.3.1]nonane CSD Cambridge Structural Database DFT Density functional theory DMF Dimethylformamide DMSO Dimethylsulfoxide DMAB Dimethyl ammonia borane DSC Differential scanning calorimetry EA Elemental analysis Equiv. Equivalent EMIM Ethyl methyl imidazolium EDB Ethylenediamine bisborane FLPs Frustrated Lewis pairs GC Gas chromatography GB Guanidinium borohydride GOTB Guanidinium octahydrotriborate HOMO Highest occupied molecular orbital IR Infrared spectroscopy ILs Ionic liquids LUMO Lowest unoccupied molecular orbital MOFs: Metal–organic frameworks MS: Mass spectroscopy MGB: Methyl guanidinium borohydride MPILs Metal containing protic ionic liquids MGCC Methyl guanidinium tetrachlorocobaltate MGCZ Methyl guanidinium tetrachlorozincate MALDI Matrix-assisted laser desorption/ionization NHC N-heterocyclic carbene 1 PDI Polydispersity index PIM Organic polymers with intrinsic microporosity THF Tetrahydrofuran TGA Thermal gravimetric analysis TOF Turnover frequency TEM Transmission electron microscopy UV Ultraviolet spectroscopy Wt Weight Ǻ Ǻngstrom (10 -10 m) 2 Preface This dissertation is divided into three chapters. Recently, metal-free