<<

ENERGYBUDGETANALYSISOFSLOWSLIPTREMOREVENTS ALONGTHECASCADIAZONEUSING CONTINUOUSGPSARRAYDATA AThesis Presentedto TheGraduateFaculty CentralWashingtonUniversity InPartialFulfillment oftheRequirementsfortheDegree MasterofScience Geology by JamesStevenChapman September2008

CENTRALWASHINGTONUNIVERSITY

GraduateStudies

Weherebyapprovethethesisof

JamesStevenChapman

CandidateforthedegreeofMasterofScience

APPROVEDFORTHEGRADUATEFACULTY

Dr.TimothyIanMelbourne,CommitteeChair

Dr.CharlesRubin

Dr.CraigScrivner

MarceloSantillian

DeanofGraduateStudies

ii ABSTRACT

ENERGYBUDGETANALYSISOFSLOWSLIPTREMOREVENTS

ALONGTHECASCADIASUBDUCTIONZONEUSING

CONTINUOUSGPSARRAYDATA

by

JamesStevenChapman

September2008

Seismichazardspoisedtocitiesbysubductionzonesarestronglycontrolledby

slipalongthedeeperextentofthetwoplateinteractionclosesttopopulation

densities.InCascadia,whereMw=9sizeeventsareknowntooccurfromavarietyof sources,modelingoflevelingdatahassuggestedthattheregionofmaximumsliplies welloffshoreanddiminishesrapidlyinland.However,overtwodozenslowslip distributionshavebeenimagedusingGlobalPositioningSystem(GPS)alongthelower reachesofthenorthernCascadialockedzonebetween30and40kmindepth.Averaged overmanyepisodictremorandslipevents,theupperlimitoftransientslipinthe vicinityofSeattle,WashingtonandVancouver,BritishColumbiacomesclosetothe heavilyurbanizedregions.Moreover,theseeventsappeartodissipateapproximately halfofthetotaltectonicconvergenceenergyintheregion,implyingthatapproximately halfoftheenergywillbeavailableinthenextmegathrust.Thisinferenceis supportedbyagreementwithobservedinterseismicdeformationpatterns,whichis

iii consistentwithsignificantplatecouplingextendingclosertourbanizedareasthanhas beenpreviouslythought.Thehazardpotentialincurredbythisscenarionecessitatesa sobermitigationreadjustmentgiventhatthestressislikelyaccumulatingmuchcloserto thepopulationcentersofthePacificNorthwestthanpreviouslysupposed.

iv ACKNOWLEDGMENTS

Theresearchrequiredforthisthesiswassupportedbyseveralpeopleand

organizationsthatdeservespecificmention.ThisresearchwasfundedbytheNational

ScienceFoundationgrantEAR0208214,theU.S.GeologicalSurveyNEHERPaward

04HQGR0005,theNationalAeronauticsandSpaceAdministrationgrantSENH0000

0264,andCentralWashingtonUniversity.Also,GPSdatausedinthisresearchwas providedbythePlateBoundaryObservatoryBoreholeNetworkoperatedbyUNAVCO,

USArrayTransportableNetworkoperatedbyIRIS,andthePacificNorthwestGeodetic

ArrayoperatedbyCentralWashingtonUniversityandtheUniversityofWashington.

Iwouldalsoliketoacknowledgemythesisadvisor,Dr.TimMelbourne,forhis

supportduringthepasttwoyearsandforgivingmetheopportunitytoparticipatein

suchanengagingproject.Inaddition,Iwouldliketofurtheracknowledgemy

committeemembersDr.CraigScrivnerforallthehelpandsupportwitheverything

relatedtoprogramming,MarceloSantillianforhisknowledgeregardingGPSand

referenceframes,andDr.CharlesRubinforhissupportandinput.Iwouldalsoliketo

thankBradWoodsasanunofficialadviserforhischeerfulsupport.Iwouldliketo

thankD&MCoffeeforsupplyinganestimated75gallonsofcoffeeoverthe2years

thatIhavebeeninEllensburg.

v TABLEOFCONTENTS

Chapter Page I INTRODUCTION...... 1 II DATACAPTUREANDORGANIZATION...... 7 ArrayNetworks...... 7 GroupedTimeSeries...... 11 Summary...... 14 III GEODETICCONSTRAINTSONGPSRECEIVERS...... 20 VerticalAccuracy...... 20 StableNorthAmericanReferenceFrame...... 21 Summary...... 23 IV SUBDUCTIONTHRUST,ENERGYDISBURSEMENT ...... 24 SlowSlipTremorEvents...... 24 GPSDataAnalysis,InversionforSlip...... 29 InterseismicModeling...... 33 V CONCLUSIONS...... 46 REFERENCES ...... 48 APPENDIX...... 53

vi LISTOFFIGURES Figure Page 1 AreamapidentifyingtheJuandeFucaplate...... 2 2 Cascadiasubductioninterface...... 4 3 GPSstationarrayinthenorthwesternUnitedStatescirca2002 ...... 8 4 GPSstationarrayinthenorthwesternUnitedStatescirca2007 ...... 9 5 Easternterritorialboundaryexample...... 12 6 Areamapofacustomstationcluster...... 15 7 May2008customstationsclusterlongitudeseries...... 16 8 May2008customstationsclusterlatitudeseries...... 17 9 May2008customstationsclusterverticalseries...... 18 10 Verticalreferenceframes...... 21 11 SSElasting5.5weeksinearly2003...... 25 12 NineyearsofGPSlongitudemeasurements...... 30 13 SlipdistributionsforCascadiaSSE...... 32 14 ConvergenceaccruedalongtheOlympicPeninsula...... 33 15 Couplingstrengthnormalizedfromfullcoupling ...... 35 16 AreamapshowingthenineGPSmonuments...... 36 1 17 GPSlongititudetimeseriesfrom /ax showinghorizontaldeformation...... 37 1 18 GPSlatitudetimeseriesfrom /ax showinghorizontaldeformation ...... 38 19 GPSlongitudetimeseriesfromlinearmodel...... 40 20 GPSlatitudetimeseriesfromlinearmodel...... 41 vii LISTOFFIGURES(continued) Figure Page 21 GPSlongitudetimeseriesfromstepmodel...... 42 22 GPSlatitudetimeseriesfromstepmodel...... 43 23 Couplingstrengthasafunctionoffaultdepth...... 44

viii CHAPTERI

INTRODUCTION

WithinthepastseveralyearstheGlobalPositioningSystem(GPS)array networkfromthePacificNorthwestGeodeticArray(PANGA),positionedalongthe

Cascadiasubductionfront,hasbeensubstantiallyenrichedwithhundredsofnew stations.Thesenewstationsareaddingasharperprecisiontothearray’susefulnessasa geophysicalresearchtool.InadditiontothePANGAnetwork,otherarraynetworks includingEarthScope’sPlateBoundaryObservatory(PBO),theWesternCanada

DeformationArray(WCDA),andtheUnitedStatesGeologicalSurveyhaveadded,and willcontinuetoadd,tothedensityofcoverage.Thisanalyticalprecisionhasbeen neededduetoanestablisheddirectcorrelationbetweenthedensityofaGPSarray networkandthenetwork’seffectivenessasaspatialtemporalfaultinglocationtool

(RogersandDragert,2003;Szeliga et al .,2004).Asaresult,ithasbecomepossibleto beginanaccountingoftheenergydisbursementemanatingfromtheCascadiarupture

frontandestablisharateofenergyaccumulationversusenergyreleaseanalysis.

AlongtheCascadiamargin(Figure1)greatearthquakeevents,moment

magnitudeMw>8.0(DragertandHyndman,1995;AtwaterandHemphillHaley,1997;

Miller et al .,2002),haveoccurredoveritslengthfromcentralBritishColumbiato

northernCaliforniaastheJuandeFucaplatesubductstheNorthAmericanplate.Over

thepast~20yearsnewtoolsinpaleoseismologyhaverevealedarobustHolocene

seismicrecord,includingevidenceforrecurringcatastrophiccoastalsubsidence,

tsunamis,andgroundshaking(Atwater,1987).

1 2

Figure1.AreamapidentifyingtheJuandeFucaplate.Subductionoccursoffthecoast ofthePacificNorthwestoftheU.S.andBritishColumbia.Theseculareastnortheast velocityoftheJuandeFucaplaterelativetotheNorthAmericanplateapproximates38 mm/yr(Dragert et al.,2001;RogersandDragert,2003).Theinlanddirectedbightoff thecoastofnorthernWashingtonandVancouverIslandidentifieswherethesubduction angledecreasesandthereforewheretheseismogeniczoneincreasesthewidthofits surficialexpression.ModifiedfromHyndmanandWang(1995). TakenwithevidenceforacircumPacifictsunami(Satake et al .,1996),these datapointtoamajorearthquakeontheCascadiasubductionfrontat1700A.D.Onthe basisofthesizeofthetsunamiinJapan,theentirelengthoftheCascadiamarginlikely brokeinasingleeventof Mw~9.0(Satake et al .,1996).Thesimultaneityofturbidite

triggeringinsubmarinecanyonsandchannelsalongthelengthoftheCascadiamargin

duringtheHolocenesupportsthecaseforlargethateruptthelengthofthe 3 convergentmarginratherthansmallereventsalongaseismicallysegmentedsubduction zone(Adams,1990).Theturbiditedatafurthersuggestsrecurrenceforsucheventson average~600years(AtwaterandHemphillHaley,1997;Milleret al .,2001).However,

inrecentyearsamuchslowerformofstrainreleasehasbeendetectedinmany

subductionzones,includingtheCascadiamargin,whichaddsafurtherdegreeof

complexitytothesystem.Untiltherecentpast,theseslowslipevents(SSE)went

undetectedinlargepartduetothedearthofdatafromthegeophysicalnetworksneeded

toresolvethesubtlesignaturesoftheSSE.

GPShasbeenusedforcontinuouslongtermtectonicdeformationandstatic displacementsfromlargeearthquakeevents(DragertandHyndman,1995;Bock et al .,

2004).TheGPScomponentisnecessaryforacompletelongtermbudgetanalysis becauseitisstillunknownwhetherplatecreepoccursintheabsenceofdetectable

seismicity,simultaneouswithseismicity,ornotatall.Themechanismbywhich

measuredsurfacedeformationrepresentstheintegrateddeformationfromalarge

numberofdiscreteseismicslipeventshasnotyetbeendetermined(Szeliga et al .,

2007).Abetteraccountingofthemechanismanditsrelationshiptomegathrustswill

increasethepossibilityofimprovedseismichazardprediction.

Thebehaviorofaccumulatedstrainandreleasedowndipofsubduction

seismogenicplatecontactshasnotbeenwellunderstoodduetotheabsenceofquality

denseGPSarrayanalysis.However,quantitativedatamodelsofmostsubductionzones

haveindicatedthattheplateinterfacemoveswithincreasingdepthfrompurelystick

slipseismogenicbehaviortostableslipping.Betweenthesetwozonesliesatransition

4 zone;aregimewherereleasedrupturedfaultscannotselfnucleate(Melbourne et al .,

2002).Thelockedandtransitionzoneshavebeendefinedbydislocationmodelingof

geodeticdataandusingthermalconstraints(HyndmanandWang,1995;Wang et al .,

2003)(Figure2).Theresultofmymodeldiffersslightly,butwithsignificant

Figure2.Cascadiasubductioninterface.Oregonisatthelowerlefthandcornerofthe graphicandVancouverIslandattheupperrighthandcorner.Therelativelyplaced lockedandtransitionzonesareidentifiedandthedecreaseinslopeangleparallelingthe coastlinebight,whichcanalsobeseeninFigure1,isrepresentedhereaswell. ModifiedfromFlück et al .(1997). implications,frompreviousmodels.Theseismogeniczone(maximumruptureareafor

agreatearthquake)extendsmuchfurtherinlandfromthecoast.Ifalltheseismogenic

arearupturesinasingleevent,triggeredbytheaccumulatedenergyfromSSE,the

magnitudewouldbe~ Mw=9.0(Dragert et al. ,1994;HyndmanandWang,1995).

Ithasbeendemonstratedthatavelocityweakeninginterfacewillnotcreepyeta

velocitystrengtheninginterfacewillaccumulateshearstressacrosstheinterfaceuntilan 5 equilibriumcreeprateequaltotheplateconvergencerateisestablished(Wang et al. ,

1995;Szeliga et al .,2004).Neitherstate,asreported,yieldsalongtermsteadycreep rateapproachingthatoftheconvergencerate.Sincethemetastableregionisoften inferredtobeequalto,orofgreatertotalareathan,theseismogenicregion,itrepresents apotentiallyimportantcontributiontotheenergybudgetsofsubductionzonesin

Cascadiaaselsewhere(Melbourne et al .,2002).ThedocumentationbySzeliga et al .

(2007)of35SSEsalongtheCascadiamegathrust,ofwhichoveradozenhaveoccurred alongthenorthernCascadiainterface,suggeststhattheseeventsmightbeofusein quantifyingtheamountofpotentialseismogenicrupturethatcouldtakeplacealongthe deeperreachesofthelockedportionclosesttomajormetropolitanregions.While previousmodelingofinterseismicdeformationvectorshavefocusedonfittinglong terminterseismicvectors,theincreasingspatialresolutionofGPSbasedslipinversions allowsamoredetailedlookatstrainaccumulationbeneathregionsofthemegathrust thathavehadlongtermmonitoring;theOlympicPeninsulaisoneofthebestcandidates forsuchmonitoring(HyndmanandWang,1993;Flücket al .,1997;Miller et al .,2001;

Mazzotti et al. ,2003;Wang et al .,2003).

Thegoalsforthisresearchweretwofold.First,anorganizationaleffortforthe

GPSstations’timeseriesinthearrayblanketingtheareadominatedbywestern continentalNorthAmericawasplanned.TheGPSmonuments’timeseriesexistasalist ofclustersofstationswhicharequeuedrelativetogeographicandphysiographic similarity,aswellasspatialproximity.Thisundertakingisexpressedintheformofan internetWebpagewhichexistsasanappendagetothePANGAhomeWebsite.

6 Second,amodelofthestrengthofthemargin’seffectivetransitionzone(ETZ)wasfine tunedasameanstoapplycarefuldifferentiationoftheinterseismicstrainthatresults fromsubductionzonecouplingandseculardeformationoncrustalfaults.Thiseffortis necessarytoilluminatetheprocesseswhichdrivedeformationwithinplatemarginsand constrainsseismicrisk.ThetimeseriesfromasubsetoftheGPSarray’sstationsin westernWashingtonandVancouverIslandwereusedtodemonstratethattheplate couplingfromtheCascadiaconvergentthrustretains~50%ofitsstrengthtoasfareast asthePugetLowlands.Thisissignificantbecausetheimplicationsfromsuchamodel wouldextendtheseismogeniczonewidth,andthereforethepotentialhazardfroma megaevent,closertothemajorpopulationcentersoftheregion.

CHAPTERII

DATACAPTUREANDORGANIZATION

InthePacificNorthwesttypicallengthsofearthquakerecurrenceintervalsarean

orderofmagnitudeorlongerthanthedecadeslonghistoryofgeophysicalmonitoring

(MaloneandBor,1979;DarienzoandPeterson,1995;Miller et al .,2001).Asmentioned,

thereisadirectpositivecorrelationbetweenthedensityofaGPSarrayanditsusefulness

asageophysicalanalyticaltool.Thisstudydemonstratestheeffectivenessoffor

rapiddeterminationofthepatternandmagnitudeofregionaldeformation.Withthebuild

upoftheGPSarrayalsocomesthemultitudinousvolumeofconstantandcontinuously

streamedtimeseriesdata.Theinitialorganizationalchallengebeganbyretrievingthe

GPStimeseriesfromthevariousregionalarraydatasetswheretheyarehostedandthen

manipulatingthesetsintoastructuredfashionwhichmaximizesusage.

ArrayNetworks

TheGPStimeseriesassembledforthisstudyexistsadditionallyaspartof

separatesmallernetworksmanagedlocallybyautonomousgroupsandagencies.These

localnetworkscoveramoreorlesscontinuousstretchfromnorthernandinteriorAlaska

southwardtotheUnitedStatesMexicoborder.ThedensityoftheGPSstation

monumentsvariesfromlocalnetworkaswellaswithinthelocalnetworkcoveragearea

itself(Figures3and4).Forthisstudy,theassemblednetworkconsistsofstationslargely

fromthesmallerPANGA,PBO,andWCDAnetworks.

7 8

Figure3.GPSstationarrayinthenorthwesternUnitedStatescirca2002.Thedearthof stationsatthistimecreatedlargeareaexpanseswheredatahadtobegreatlyinterpolated renderingGPSasignificantlybluntanalyticaltoolforsurficialdeformationdueto subductioncompression.ModifiedfromGoogleEarth(2008).

9

Figure4.GPSstationarrayinthenorthwesternUnitedStatescirca2007.Thestation arrayhasbeensubstantiallyenlargedsince2002lendingitselfasamoreprecise Geophysicaltool,asthereislessareabetweenstationstobeinterpolated.Modifiedfrom GoogleEarth(2008). PANGA Stations Network

PANGA,anetworkofGPSreceiversoptimallyrecordinginperpetuity,is maintainedbyseveralgovernmentalandacademicorganizations.InWashingtonand

OregonthecollaboratinginstitutionsincludeCentralWashingtonUniversity,the

UniversityofWashington,OregonStateUniversity,andtheCascadeVolcano

Observatory.Theinstrumentsthattheyoperate,togetherwithreceiversoperatedbythe

UnitedStatesCoastGuardandtheGeologicalSurveyofCanada,constitutethePANGA array(Miller et al .,1998).ThegeodeticnetworkoperatedbythePANGAconsortium monitorscrustaldeformationfromaccumulatingtectonicstresswithmmlevelprecision.

Currently,thetimeseriesfor~350continuouslyoperating,highprecisionGPSreceivers

10 locatedthroughoutthePacificNorthwestareoperatingunderthemonitoringeffortsof thePANGAconsortium(Miller et al. ,2008).

PBO Stations Network

ThePBOnetwork,todate,includes875GPSinstrumentswhicharedispersed

acrossthewesternUnitedStates,includingAlaska(Blackman,2008).PBOisaconstruct

oftheUniversity(NavigationSignalTimingandRanging[commonlyknownas

NAVSTAR])Consortium(commonlyknownasUNAVCO)whichconsistsofover90

internationaluniversitiesandorganizations(Anderson,2004;Blackman,2008).PBO,as

aproductoftheEarthScopeproject,hasamandatetosupportandpromoteEarthscience byadvancinghighprecisiontechniquesforthemeasurementandunderstandingof

Earth’scrustaldeformation(Blackman,2008).TheGPSarraywasdesignedtostudythe threedimensionalstrainfieldresultingfromdeformationacrosstheactiveboundaryzone betweenthePacificandNorthAmericanplatesinthewesternUnitedStates(Anderson,

2004).TheobservatoryconsistsofarraysofGPSreceiversandstrainmeters,which eventually,willbeusedtodeducethestrainfieldontimescalesofdaystodecades.The observatorydataarealsousedforgeologicandpaleoseismicinvestigationstoexamine thestrainfieldoverlongertimescales(Anderson,2004).

WCDA Stations Network

TheWCDAisapermanentGPSnetworkestablishedbytheGeologicalSurveyof

CanadaaspartoftheCanadianNationalEarthquakeHazardsProgram(Schmidt et al .,

2000).Specifically,thearrayisusedtoinvestigatecrustaldeformationinsouthwestern

BritishColumbiaaspartofacomprehensivemultidisciplinarystudyofseismichazardin thedenselypopulatedareaofthelowermainlandandVancouverIsland(Geological 11 SurveyofCanada,2008).AspartoftheCanadianNationalEarthquakeHazardsProgram theGeologicalSurveyofCanadaembarkedonaprogramofcrustaldeformation measurementsin1981inordertomonitorpresenthorizontalstrainatthenorthernendof theCascadiasubductionzone(CSZ)(Schmidt et al .,2000;GeologicalSurveyofCanada,

2008).Thenetworkspansthemostseismicallyactiveandmostdenselypopulatedregion

inwesternCanada.ThefirstsitetobeinstalledwasDRAO(atPenticton,British

Columbia)in1991whichhasbeenusedasthebaselineterminusonthestableNorth

AmericanplatewhencomparedtotheotherstationsintheWCDA(Schmidt et al .,2000).

GroupedTimeSeries

Clustering Criteria

TheGPSstationsaregroupedtogetherin34clustersbasedonasubsetofcriteria.

First,thephysiographicregionwherethestationislocatedwasconsidered.Next,ifthe physiographicdescriptorspannedstateorprovincialboundariesthentheclusterwould

usuallybesplitalongtheterritorialboundary(i.e.,theCascademountainrangein

Washington,Oregon,orCalifornia).Lastly,astation’sproximitytootherstationsina

clusterwasalsogivenweightforinclusion.Itshouldbenotedthattoinsureseamless

coveragemanystations,especiallynearaclusterboundary,existinmultipleclusters.As

aresult,arepeatedstationtimeserieswillexistforeachclusterthatcontainsthatstation.

Thisduplicationallowsfordirectcomparisonoftimeseriesfromdifferentspatial perspectives.

DueinparttothegeographicalrealityoftheCSZ,thefocusoftheanalysiswas

necessarilylimitedtothewesternmostflankofNorthAmerica.Therefore,withfew

exceptionstheterritorialboundariesofAlaska,BritishColumbia,Washington,Oregon, 12 andCaliforniawereusedastheeasterndemarcationforstationinclusionconsideration.

Thenearborderexceptionsweremadeinfavorofstationinclusionratherthanstation exclusion.Theinclusionexceptionsweremadeeitherbecausethepaucityoflocal stationsneartheeasternterritorialborderwouldbesubstantiallyenrichedbythestation inclusionorbecausethestationwaspartofagroupofstationswhosearrangementwas duetophysiographicinterests(Figure5).

Figure5.Easternterritorialboundaryexample.Figureisdisplayingaportionofthe CaliforniaBasinandRangeclusterattheCaliforniaNevadastateboundary.Sitep627,in thebackground,isincludedintheclusterbecauseitispartofthelocalphysiographic identity,althoughitisclearlyinNevada.ModifiedfromGoogleEarth(2008).

Web Page

The34stationclustersaremaintained,displayed,andupdateddailyontheWeb pagewusdaily(www.geodesy.org/wusdaily).Thewusdailypageisanappendagetothe

PANGAhomepage(www.geodesy.org).Eachclusterofstationsincludesanareamap

createdfromkmlimagefilesdisplayedinGoogleEarthformatandarrangedwiththe 13 mostnortherlyclustersdisplayedatthetopofthepagewhileprogressingsoutherly towardsthepagebottom.Inadditiontothe34standardclusters,asectionofcustom composedstationclustersisappendedtothebottomoftheWebpage.Theseclusters werecompiledafterspecifictectoniceventsandconsistofthestationsthatmost accentuatedsurficialdeformationfromthatparticularevent.

Thetimeseriesforeachstationintheclusterisincludedwiththeclustermap image(seeAppendixfordetailsregardingmanipulatingthewusdailyWebpageand stationclusters).Eachtimeseriesisseparatedintothetwohorizontalmeasurement components(longitudeandlatitude)andtheradialcomponent.Eachstationinthecluster is,inturn,displayedfromthenorthernmostatthetopwhileprogressingsoutherly towardsthebottomofthepage.Athinhorizontallineisusedtoseparatethestations whichshareaspecialproximityfromtheotherstationsinthecluster.Inordertokeepthe timeseriesdistinctandseparatefromeachother,amediumofspatialeconomywas settledonwith10stationspersheet.Inthecaseofstationclustersconsistingofmore than10stations,multiplesheetsaregeneratedasneeded.Thetimeseriesaredisplayedon aCartesianaxiswithtime(years)beingtheindependentvariableanddisplacement(mm) thedependent.Thedisplacementscaleisdisplayedinincrementsof10with“0”inthe center,“150”atthetop,and“−150”atthebottom(forthehorizontaltimeseries).

Becausetheaccuracyfortheradialdisplacementissignificantlylessthantheaccuracy forthehorizontalcomponents,theradialdisplacementscalerangesfrom“300”to

“−300.”Ineffect,theradialdisplacementisexaggeratedbyafactorof2inordertosee thesamelevelofdetailasinthehorizontaltimeseriesdynamics.Thetimescaleonthe x axisprogressesfrom4.5yearsattheaxisorigintowardsthecurrentdate.Thetimescale 14 isessentiallyaslidingwindowwiththetimedifferentialfixedat4.5yearsandthecurrent day’sdatedictatingtheterminusforthemostrecentdisplacementdata(Figures69).

BeforetheGPStimeseriesdatawasusedfordailyuploadsitfirstwentthrough systematicprocessing.ContinuousGPSdatafromthePANGAarraywereprocessedwith theGipsyOasisIIsoftware(Miller et al. ,2001).Precisionpointpositioning,orbitsand

clockswereusedtoanalyzethephasedatawithambiguityresolutionapplied(Szeliga,

2005).AparticularreferenceframelocalizedtoNorthAmerica,theStableNorth

AmericanReferenceFrame(SNARF),isusedtodeterminethedailyGPSsolutionsfor

stationpositionsandcorrespondingmatricesofthecovarianceamongtheposition

components(Altamimi et al. ,2005;Szeliga,2005).Aregionalstabilizationislatterly

appliedtothedailyGPSpositionwhicheffectivelyminimizesnetworkwideposition

discrepanciesorcommonmodeerrors(Szeliga,2005).Troposphericdelaysandother

seasonaleffectswhichcompoundknowntimeseriesoffseterrorartifacts(hardware

upgrades,earthquakes,andannualandsemiannualsinusoidalsignals)werecorrectedfor

whenthefinaltimeseriesweredetrended(Szeliga,2005).

Summary

GPSacquiresitsprowessasananalytictoolfromstationlongevityandarray

density.Sincethemid1990stherehasbeenaconcertedeffortfromthevariousinterested

groupstoenrichthearrayfromafewhundredstationstothecurrent~1500stations.This

efforthasfavoredtheopportunitytoparseoutdeformationdetailswithintheactive

marginbyprovidinginformationwherepreviouslytherewasonlyintrastation

smoothing.Inconcert,thestations’longevityprovidesanadvancedlevelofdeformation

trendclarity.Althoughthelocalarrayswhichcomposetheencompassingarraynetwork 15

Figure6.Areamapofacustomstationcluster.TheMay2008eventisarepresentative example.Unlessstationsareaddedto,ordeletedfrom,thecluster,themapgraphicneed onlybegeneratedonce.ModifiedfromGoogleEarth(2008).

16

Figure7.May2008customstationsclusterlongitudeseries.Astheseculardisplacement andthetransientreactionispredominantlyinaneastwestdirectioninthenorthern Cascadiasubductionthrust,thelongitudetimeseriesisusuallythemostusefulfor pickingSSE.TheMay2008eventishighlightedbytherectangularbox.Thetimeseries isgenerateddailyfromacronscriptindicatedontheWebpagebyadateandtimestamp locatedoneachtimeseriessheet.

17

Figure8.May2008customstationsclusterlatitudeseries.Asthenorthsouthcomponent ofhorizontaldisplacementhasalowermagnitudethantheeastwestcomponentinthe northernCascadiasubductionthrusttheSSEappearanceismuchmoresubtleinthetime series.Infact,somestationsdonotrecordanydiscernablenorthsouthdisplacement.The rectangularboxishighlightingthesameareaasinFigure7.

18

Figure9.May2008customstationsclusterverticalseries.The yaxisisexaggeratedin ordertodisplaythedisplacementwitharelativemagnitudefromthetwohorizontal displacementtimeseriesgraphics(Figures7and8).Therectangularboxishighlighting thesametimeperiodasinFigures7and8;however,withtheradialtimeseries,theevent isnotasdiscernible. arestilllargelymanagedandmaintainedatthatlevel,thecooperationanddata

availabilityoutsideofthelocalsystemismorefluidduetoorganizationaloversight.Due

tothesheervolumeofcontinuousdatastream,thetimeseriesorganizationhasbecomea pressingneed;therefore,aninternetWebpageconsistingofthestations’timeserieswas

19 createdwithphysiographicandspatialproximityasastructuralguide.Asstructural guides,andnotdominantconstraints,theseparametersweretrumpedbyanorthsouthor eastwestprogressingstationorderorganizingdecisions.

CHAPTERIII

GEODETICCONSTRAINTSONGPSRECEIVERS

VerticalAccuracy

TheverticalcomponentofGPSmeasurementisthealgebraicresultofthegeoid separationdifferentialfromtheellipsoidheight:thedifferenceingeoidandellipsoid heightfromtheEarth’scentroidofmassatagivensurfacepoint(Lambeck,1988;Strang andBorre,1997).GPScomputesheightfromthesmoothWorldGeodeticSystem1984

(commonlyreferredtoasWGS84)referenceframedirectlyandGPSreceiverscanonly computelatitude,longitude,andellipsoidalheight.Becauseorthometric(meansealevel) heightsarewhataredesired,GPSreceiversincorporateatableofgeoidheightvalues.

Unfortunately,becauseofstorageconstraints,thesevaluesarenotsufficientlyaccurate.

MostGPSreceiversusea10×10geoidmodelwhichstoresonegeoidheightvalueper

10°×10°definedarea.However,geoidvaluescanvarygreatlywithina10°×10°area.

TheGPSreceivercomputestheheight:

h= H+ N where histheellipsoidheight, Histheorthometricheightand Nisthegeoidheight

(Figure10).ThedistancefromtheEarth’scentroidofmasstothesurfaceoftheellipsoid isdeterminedbythefunctionsoftrilaterationandfreespaceranging(Blewitt,2003).

Threedimensionalpositionsarecalculatedusingthepseudorangebetween satelliteandreceiveratagivenepochtodetermineaposition(Blewitt,2003;Altamimi et al. ,2005).Ifmorethanfoursatellitesareinview,thenmostreceiversoverdeterminethe positionusingallcombinationsoffoursatellitesfromthoseinviewtoestablish 20 21

Figure10.Verticalreferenceframes.MostGPSreceiversusea10×10geoidmodelthat storesonegeoidheightvalueper10°×10°area(Blewitt,2003).Geoidheightscanvary agreatdealwithina10°×10°area. positions,thenperformaleastsquaressolutiontoattempttodeterminewhichsatellite

combinationisbest(Lambeck,1988).Thiscombinationistestedperiodically,butusually

notforeverysolution.Togetagoodthreedimensionalposition,asatelliteisneeded

directlyoverheadandthreeothersmaximallyspacedbelowthehorizoninaconstellation.

SinceGPSsignalsdonottraverseEarthmaterialverywell,thisisimpracticalforsurface basedreceivers;asaresult,verticalaccuracysuffers.However,usingastrongreceiver

networkforadjustment,longperiod(multiplehours)dataacquisition,datadecimationto

removeautocorrelationeffects,andcarefulpostprocessingtoachieveagoodsolutionto

submittoleastsquaresadjustmentaverticalaccuracyofafactorof~3relativetothe

horizontalaccuracycanbeachieved(Lambeck,1988;StrangandBorre,1997).

22 StableNorthAmericanReferenceFrame

FortimeseriesanalysissolutionsthePANGAlaboratoryutilizesSNARFasa particularreferenceframeforcontinentalNorthAmerica(Altamimi et al .,2005).

Specifically,GPSisusedtomeasurethemovementsof~1000pointsspanningtheNorth

AmericanPacificplateboundaryandthesemotionsmustbedefinedrelativetoa

terrestrialreferenceframe(Blewitt,2008).Suchaframerequiresthedefinitionofits

Cartesiancoordinateaxesandtheevolutionoftheseaxesintime,aswellasprecise

modelsoftheEarth.ThemethodusedbyPANGAtoestablishSNARFreliesonthe

inclusionofsufficientstationsfromthestablecontinenttosolveforanEulerpoleforthe

internallyconsistentdataset(Miller et al .,2001).

Fundamentally,areferenceframeisrequiredbecauseGPSalonedoesnotprovide unambiguouscoordinates.GPSdataarerelativelyinsensitivetoglobalrotationsofthe entiresystem(Blewitt,2003;Calais,2006).Fixingtherotationaccordingtoawell documentedscientificschemecanfacilitategeophysicalinterpretation.GPSstationsare usedtomeasurethemovementsofpointsspanningtheplateboundaries.Thesemotions mustbedefinedrelativetoSNARF.SNARFrequiresthedefinitionofitsCartesian coordinateaxesandtheevolutionoftheseaxesintime,aswellasprecisemodelsofthe

Earth(Blewitt,2003).ThemotionsoftheEarth’ssurfaceduetotectonicprocessesare mostnaturallyexpressedwithrespecttothestableinteriorsofcrustalplates.SNARF,as astandardreferenceframe,thereforeallowsforamorestraightforwardinterpretationof thegeodeticdataintermsofwherethetotalbudgetofrelativeplatemotionisbeing 23 accommodated,andhowdeeplytheplateboundarydynamicspenetrateintotheplate interior(Lambeck,1988;Blewitt,2003).

SNARFprovidesacommonframeworkforcomparisonofgeodeticdataand geophysicalmodels.Definingastableframeatthesubmillimeterlevelrequiresadequate characterizationofEarthdeformationprocessesacrossthestableplateinterior(Blewitt,

2003);aregionthatbydefinitionisrelativelyunaffectedbyplateboundaryprocesses

(Lambeck,1988).Theplateinterior,therefore,providesastableplatformfromwhichto viewplateboundarydeformation.Thestableplateinterioractuallydeformsveryslowly inacomplexwayduetophenomenasuchasglacialisostaticadjustmentandother mantlescaleprocessescoupledtoaheterogeneouslithospherewhichisoccasionallyhost tolargeintraplateearthquakes(Lambeck,1988).

Summary

GPSgeodesy,asitisusedinthisresearch,isconstrainedthreedimensionallyby theaccuracyofitsverticalcomponent.Althoughverticalaccuracyisconstantlybeing improveditwilllikelynoteverbeasdependableasthehorizontalcomponentsbecauseof thephysicalrealitiesofgleaningtheverticalcomponentonspheroidalsurfaceswitha satelliteconstellation.Asitstands,thehorizontalcomponentaccuracyis~3timesthatof thevertical.

Anyreferenceframethatisusedforhighprecisioncrustaldeformationwillhave constraintsinherenttothesystem.ThemotionsoftheEarth’ssurfaceduetotectonic processesoftheregionspanningtheboundarybetweentheNorthAmericanandJuande 24 FucaplatesaremostnaturallyexpressedwithrespecttothestableinteriorsoftheNorth

Americanplate.Astandardreferenceframethereforemakesiteasiertointerpretthe geodeticdataintermsofwherethetotalbudgetofrelativeplatemotionisbeing accommodated.

CHAPTERIV

SUBDUCTIONTHRUST,ENERGYDISBURSEMENT

SlowSlipTremorEvents

TheCSZharboreddirectlyoffthecoastofthenorthwesternUnitedStatesand

southwesternCanadaisan ∼1100kmthrustfaultthatstretchesfromCapeMendocinoin northernCaliforniatonorthernVancouverIsland,BritishColumbia.TheCSZis truncatedtothesouthattheMendocinoFractureZonecreatedbythetripleplate interactionofthePacific,NorthAmerican,andGordatectonicplates.Similarly,theCSZ istruncatedtothenorthattheQueenCharlotteFaultcreatedbythetripleplate interactionoftheJuandeFuca,NorthAmerican,andExplorertectonicplates.TheJuan deFucaplatesubductstheNorthAmericaplateat3to4cm/yr(Savage,1983;DeMets andDixon,1999;Milleret al. ,2001)alonganinterfaceknownfromseverallinesof evidencetobeseismogenicandrupturemarginwideinrelativelyinfrequent Mw=9 eventsaveragingevery500600years(Satake et al. ,1996;AtwaterandHemphillHaley,

1997).

Thereisgeologicalandhistoricalevidencethatsuggeststhatthelastevent

occurredin1700A.D.asa,atleast,Mw=9earthquakeandcausedwidespreadtsunamic damageinJapan(Atwater,1987;Satakeet al. ,1996;Satakeet al. ,2003).Thesecular

deformationfieldfromongoinginterseismicconvergencemanifestsitselfasNEdirected

compressionalongthearcthatdropsoffmarkedlywithdistancefromthearc.SSEsare

knowntooccuralongtheCSZlengthandmanifestthemselvesasspatiallycorrelated

transientreversalsoftheGPSvelocitiesthatlastfrom1to2weeksatanygivenstation,

andareobservedtopropagateacrossthegeodeticarray(Dragertet al. ,2001).These

25 26 eventsareinterpretedasslowfaultingalongthedeeperCSZbyaseismicallyslipping, downdipofthelockedzone,ataround25kmto45kmdepth(Figure11).Similarevents

Figure11.SSElasting5.5weeksinearly2003.EventispropagatingthroughtheCSZ. Plateinterfacedepthcontoursareshown(whitelines)runningparalleltothesubduction strike.Theeventcanbeseenasaslipcolorationmovingthroughthesystembetweenthe 25and45kmdepthcontours. havebeenfoundwithrecurrenceof~14monthsinnorthernCascadia(Milleret al. ,

2002)and18and11monthsincentralOregonandnorthernCalifornia,respectively

(Szeliga et al. ,2007).Todate,overthreedozeneventshavebeenidentifiedalongthe

Cascadiaarcsince1997,includingeightinthenorthernCascadiaregion.

Temperaturedifferentialisanimportantconstraintforthedipprofile(Hyndman andWang,1995)anddepthonthesubductingslabisthedominantcontrollingfactoron temperaturevariation.However,theangleofplatedipalsohasanoticeableinfluenceand

27 thereforemustbeconsidered.Sincethedownthrustingplate,landwardofthe deformationfront,provideslessofaheatsinktheheatflowdecreaseslandward.Further, theincreasingprecisionwithwhichthesedowndiplimitscanbeconstrainedisadvanced byrecentGPSinferredmomentestimates(Aguiar,2007;Szeligaet al. ,2007)thathave

helpeddefinethedowndipextentoftheseismogeniczonewhencomparedwithseismic

tremordata.

ThecurrentdowndipextentofSSEruptureinnorthernCascadiawasfirst

estimatedfromseveralavenuesofgeodeticmeasurementtechniques(Dragertand

Hyndman,1995;HyndmanandWang,1995).Repeatedhighprecisionlevelinghasbeen

usedtoestablishverticalstraindataand,additionally,longtermtrendsintidegaugedata

andrepeatedveryaccurategravitymeasurementshavealsocontributedtothestraindata

(HyndmanandWang,1995).Asrepeatedtriangulationmeasurements(GPSandlaser

rangingtrilateration)havehelpedtoestablishhorizontalmotion,thisearlyefforthasbeen

usedtoensconcealineardowndipSSErupturerateandextent.Deformationdatahave

constrainedthedislocationmodelwithlinearlydefinedwidthstorepresent90kmforthe

lockedzonewitha90kmtransitionzoneinnorthernCascadia,wherethesubductiondip

angleismuchshallower.

Wang et al. (2003)employedtheeffectivetransitionzone(ETZ)toallowa

downdipdecreaseinslipdeficitalongthefaultandtoaccountfortheeffectof

viscoelasticrelaxationofthemantlewedgeinanelasticmodel.Further,Wang et al.

(2003)usesanexponentialfunctionalgorithmtoallowforslipdeficittoemployafaster

decreaserateintheseawardcomponentofthetransitionzoneandaslowerrateinthe

landwardcomponent,whicheffectivelyallowsthedowndipextentofrupturetoextend

28 landwardtofitthedata.Withthismoreflexiblemodel,thedowndiplimitoftheETZis notdefinedbyfaultpropertiesandthewidthshouldincreasewithinterseismictime differentials.McCaffrey et al. (2007)modifiedthedepthdistributionoflockingfrom

Wang et al. (2003)byconstrainingtheinstantaneouscreepfractiontodecreasewith depth.Thisgroupalsoforcedtheslopetoincreaseorremainapproximatelyconstantwith depth,whicheffectivelyconstrainstheseismogeniczonetoanarrowwidth(McCaffrey et al. ,2007).

TheTokaiSSEinsouthwestJapanisthoughttobeinteresting,inpart,because theslipregionisadjacenttotheexpectedsourceareaoftheTokaiearthquakeandthe

SSEmightpromotetheoccurrenceofthemegaearthquake(HiroseandObara,2006).

HiroseandObara(2006)reportthatepisodesofSSEandtremorshaverepeatedly occurredintheTokairegionandfurthersuggestthattheseETSepisodesarea characteristicbehaviorofthedeepregionofthesubductingplateboundarywhere nonvolcanictremoroccuralongtheNankaitrough.Theannualdisplacementreleasedby meansofSSEsalongtheNankaitroughiscomparabletotherelativeplateconvergence rate;thisindicatesthattheSSEsmaybetheprocessofstrainreleasewhichis accumulatedbytherelativeplatemotion(HiroseandObara,2006).Further,thismayalso supportthattheSSEsoccuronthesubductionplateinterface,whichisestimatedbythe

SSEfaultinversion.

TherecurrencefeaturesoftheSSEsattheNankaitroughsuggestthattheshort termSSEmaybetheprocessofstrainreleasewhichisaccumulatedbytherelativeplate motion.ThefrequencyofSSEepisodesthenmaybeatleastpartlycontrolledbyaplate convergencerate(HiroseandObara,2006).Tremorsimilaritiesandtectonicenvironment

29 betweentheCascadiamarginandsouthwestJapan,attheirrespectivesourcedepth

(between25and45km),hasbeenobservedbyObara et al. (2004).Thisgroupreports observeddatathatcanbeexplainedbyslowslipswithdislocationscorrespondingtoan equivalent Mw=~6.0onfaultswhicharelocatedjustabovethedippingseismiczonein thesubductingslab(Obaraet al. ,2004).Theupdiplimitoftheslipisreportedto correspondtothesourceareaoftremorsandthedeeperpartoftheruptureareato megathrustearthquakes(Obara et al. ,2004;HiroseandObara,2006).

TheSSEexertioninnorthernCascadiadriftsalongstrikeofthesubductionzone coincidentwiththedeepslipeventsatratesvaryingfrom~5to~15km/day(Rogersand

Dragert,2003).Theactivitythroughtheaffectedregiondeviatesfromgradual displacementtoamarkedtransformationfromoneregionofthesubductionfaultto anothersothatthemaximumextremeoftheamplitudespectrumcanbedetectedatleast asfaras300kmfromthesourceofnucleation(Melbourneet al. ,2005).GPSanalyses, usedtodetectthesurfacedisplacementpatterns,havebeenimplementedandhave efficaciouslymodeledthedeformation(Dragertet al. ,2001)usingfirstorderdislocations of2to4cmontheplateinterface,boundedbythe25kmand45kmdepthconstraints, whichstronglysuggestsaspatialcorrelationwiththeareaoftremornucleation(Rogers andDragert,2003).

GPSresolutionhasbeenablunttooltoinferdetailsofslip,duemostlytohistoric scarcityofstationsinthearray.However,sincethe2001Nisquallyearthquakethearea encapsulatingthePugetLowlandshasbeenblanketedwithdozensofstations.Becauseof thearraygrowth,especiallyinthisregion,Szeliga et al. (2007)wereabletodemonstrate thatslipinversionsbasedontheGreen’ssmoothingfunctioncanreliablyestimatetotal

30 equivalentmagnitude.Sincethisisareliablepredictivemethodforearthquakeresponse itisthereforeprudenttothensystematicallyinvertthelargestcreepeventsrecordedfor sliponmanystations.Whilepreviousmodelingofinterseismicdeformationvectorshave focusedonfittinglongterminterseismicvectors,theincreasingspatialresolutionof

GPSbasedslipinversionsallowsamoredetailedlookatstrainaccumulationbeneath regionsofthemegathrustthathavehadlongtermmonitoringandtheOlympicPeninsula isoneofthebestcandidatesforsuchmonitoring(Flück et al .,1997;Miller et al .,2001;

Mazzotti et al .,2003;Wang et al .,2003).

GPSDataAnalysis,InversionforSlip

RawGPSphaseobservablesfromthecombinednetworksofthePANGAand

WCDAarrayswereprocessedwiththeGIPSY(Zumbergeet al. ,1997)softwarepackage

asdescribedinSzeliga et al. (2007).TheresultanttimeseriesofCascadiaGPSpositions

relativetocratonicNorthAmericawerethendecomposedintoasetofbasisfunctions

thatincludelineartrends,annualandsemiannualsinusoids,andasummationofstep

functionsintroducedattimesofknownearthquakes,slowearthquakes,orGPS

instrumentationupgrades.Thisapproachofsimultaneousdecompositionyieldsthefull

covariancesofallestimatedparameters,andthetransientdeformationduetotheslow

slipeventsdiscussedhereisshowninFigure12.

Toinvertforsliptheplateboundaryisspecifiedbylinearlyinterpolatingbetween

depthcontourssuppliedbyFlück et al. (1997).Thissurfaceisthendividedintovariable

sizedsubfaultswhosetypicaldimensionsarearound25kmalongstrikeand15km

downdip.Positivity(thrustonlyslip)isenforcedintheinversionbyemployingthenon

31

Figure12.NineyearsofGPSlongitudemeasurements.ThisseriesfromtheCSZshows evidenceofover30slowslipevents.Verticaltickmarksare10mm.Bluelinesindicate slipeventseitherwellrecordedwithGPSorcorroboratedbyobservationsofsubduction zonetremor.RedlinesindicatespatiallycoherenttransientGPSdeformationrecordedon lessthan4stationsanduncorroboratedbytremor.Maximumgeodeticoffsetsare6mm andcorrespondtothespatiallylargesteventinearly2003.TheFebruary2001 Mw6.7 Nisquallyearthquakeappearsontwostations.

32 negativeleastsquaresalgorithmofLawsonandHanson(1995).Toavoidhighly oscillatoryandnonuniqueslipdistributions,smoothingisenforcedbyrowaugmenting thematrixofGreen’sfunctionswithafinitedifferenceapproximationtotheLaplacian operatorandaugmentingthecorrespondingrowsofthedatavectorwithanequalnumber ofzeros.Thisrequiresfindinganoptimumweightingfactortocontrolthedegreeof smoothing,whichisperformedbysolvingadatareducedvectorandconstructinga bootstrapestimateoftheremainingdatatopredictthemissingdatasubsets(Efronand

Tibshirani,1994).Althoughsmoothingtradesoffwithmaximumslip,theresultant momentinvertedfromthetransientdataislargelyinvariantwithrespecttosmoothing, andchangesinvertedmomentbylessthanonepercentoverfourordersofmagnitude changeinthesmoothingparameter.Detailsoftheparameterestimation,inversion,and signalfilteringcanbefoundinSzeliga et al. (2007).

ResultsforthelargesteventsovertheperiodfromApril1997toApril2007lay betweenmomentmagnitudesrangingbetween6.3and6.8.Furthercriteriadictatedthat

GPSinferablemomentmagnitudeswerenotbelow Mw=6.3becauseeventslowerin magnitudearenotresolvablewithGPSandthemaximuminvertedslipis3.6cmforall events(Szeligaet al. ,2007)(Figure13).Inordertoobtainafirstorderestimationofthe platecouplingstressreleaseandretention,thenineGPSstationsintheregionwitha

sufficientlylongdatacollectinghistorywereselectedandcoalescedasasummationof

totaltransientsliprecordedoverthetimedifferential.Thetransientslipratewasfirst

adjustedbysubtractingthe4cm/yrsecularconvergence,basedontheNUVEL1plate

motionmodel,andthentheslipwasnormalizedsothattheareaswithnoslipare100%

locked.Then,thedifferencebetweenthetotalaccruedslipovertheapproximate9year

33

Figure13.SlipdistributionsforCascadiaSSE.Thelargest12eventsfromthelastdecade areshown.GPSinferablemomentmagnitudesrangefrom6.7downto6.3,belowwhich theyarenotresolvable.Maximuminvertedslipis3cmforallevents,butthisisa functionofsmoothingcoefficientb,shownbeneatheachslipamount.Redvectorsshow misfitbetweendataandmodeledvectors.

34 periodandtheaccruedslipataparticularlocationinourstudyareagivesavaluerelative tototalslip(Figure14).

Figure14.ConvergenceaccruedalongtheOlympicPeninsula.Thissectionofthe Cascadiamegathrustisfrom19972005,assuming34mm/yrconvergencerate,minusthe summationoftheslipdistributionsforthe12largestslowslipevents.Redregions indicatewherenoknownsliphasoccurred;blueregionsindicatewhereasignificant amountofthetotalaccruedconvergencehasbeendissipatedbySSEthatoccurred between1997and2006.Theintegrationoftheslipdistributionsshowthatupto~50%of thetotalCascadiaconvergenceratemaybeaccumulatingalongthedeeperedgeofthe Cascadialockedzone,andincloseproximitytothemajormetropolitanregionsofthe PacificNorthwest.WetestthisbymodelinglongtermPANGAtimeserieswitha couplingprofile.Notethatregionstothenorthandsouthofthisareahavenothad sufficientGPSmonitoringdensityordurationtoperformthistypeofanalysisoutsideof theOlympicregion.

InterseismicModeling

TheGPSstationdensitywassufficientlyrobustatthetimeofmyinvestigationfor

afirstorderapproximationtoestimatetheslipdistributionfromGPSdeformationforthe

transients.Theplateboundarysurfacewasconditionedbylinearlyinterpolatingbetween

depthcontours,asprovisionedbyFlück et al. (1997).Thesurfaceisthenpartitionedinto subfaultsofvaryingdimensions;thealongstrikelineationis~25km,whereasthe 35 downdiplineationisnormally~15km.However,theprecisedimensionsofaparticular subfaultfluctuatewiththegeometry.InnorthernCascadiathesurficialgeometryisquite complex,exaggeratedbythedeflectionoftheobliqueangleofdipwhichdiffersgreatly alongstrike.ByfollowingtheshorelinenorthalongtheseawardsideofVancouverIsland theinlandbightbetraysasimulacrumoftheunderlyingsubductionobliqueness.The plateinterfaceheredisplaystheconspicuousthreedimensionalbendnorthof47°N, changingstrikefromnortheasttonorthwest(Flücket al. ,1997;Milleret al. ,2001;

Szeligaet al. ,2007).Thisequatestoflexiblesubfaultstrikesrangingover40°overless

than1°oflatitudedifferentialandrequiresthateachsubfaultbeautonomouslyspecified

withauniquestrike,dip,andpitch.Thesubfaultsonthedownthrustingconvergingplate

display60rowsofcellsalongstrikewith30cellcolumnsnormaltodip.This30×60

areacellmatrix,or1800areacells,terminatestothenorthbetweenthelatitudesof

~49°Nand~51°Nandthesouthernterminusisat~42°Nlatitude.Thewesternextent

approximates232°longitudeandterminatestotheeastat~238°longitude.

Attemptsweremadetofittheindependentlyderivedtremordata(Aguiar,2007;

Szeliga et al. ,2007)forafirstorderapproximationfrombothlinearandstepdigression

functionswithrelativesuccess.However,itbecameapparentthatmoreflexibilitywas

neededbyfollowingWang et al. (2003)andMiyazakiandLarson(2008)and

recognizingthattheafterslipupdiprelativetotheETZpropagatesfasterandafterslip

1 downdippropagatessignificantlyslower.Therefore,asimplealgorithmfunction( /ax ) wasmanipulatedandappliedforarelativelyrapiddampeningeffectasymptoticallywith distancefromthedeformationfront.Theproportionaldistanceforeachsubfaultrow

36 throughtheETZisrepresentedby xandfromrepeatedmodelingattempts,a=.1975(a

constant)(Figure15).

Figure15.Couplingstrengthnormalizedfromfullcoupling.Transitionisthroughthe lockedzoneanddecreasinginstrengthmovingdistallyfromthedeformationfront.The3 trendlinesrepresentthebestfittingtrends;theoverallbestfittingtrend(a),thebest fittingstepdigression(b),andthebestfittinglineardigression(c).

Foreconomyofmanipulation,eachcellisassignedacouplingstrengthvalue

equivalenttotheaveragevaluefortherowofcellstowhichitbelongs.BecausetheGPS

timeserieshistorybecomesmorelimitedthefurtherwemovealongstrikefromourarea

ofinterest,especiallynorthward,itwouldbedifficulttoconstraincouplingeffect

strengthfurtherforthemoredistalcells.Forthisreason,theareaofinterestisfurther

constrainedtobetweenthelatitudesof47°Nand49°N.Anerrorcaveatmustbe

37 highlightedherebyacknowledgingthatthecouplingstrength,asrecordedbythestations inthestudyareathatdataisbeingmanipulatedfrom,willbegreaterabovethe convergenceinterfacewhereGPSstationconcentrationisthedensest.Thisismanifested bythecellsontheperimeterofthestudyareabeingskewedmoreheavily.Evenso,this methodprovidedremarkablyaccurateresultsforbothnorthsouthandeastwest horizontaldeformationmodelfitsfortheninemonumentstationsusedinthestudy.Of

1 theninestations(Figure16)thelongitudemodeltrendsforthebestfitting /ax

Figure16.AreamapshowingthenineGPSmonuments.Thesestationshavebeen recordingcontinuously,withfewnotableexceptions,since1997.Thesestationsareused tomodeltheinterseismiccouplingprofilesfromthebestfittingparameter.Modified fromGoogleEarth(2008). dampeningfunctionmatchedremarkablywell(onarelativequalitativescale)forfourof

thestations(PABH,NEAH,ALBH,BLYN).Forthreemoreofthestationsthemodel

trendsfitreasonablywell(SATS,WHD1,SEDR).Themodeltrendsfortwoofthe 38 stations(SEAT,KTBW)appliedtoomuchweighttothemodelstrength(Figure17).The latitudetrendsfaredsimilarly,ifwithaslightlydifferentstationgrouping.Ofthenine stationsinthestudy,fivestations(NEAH,SATS,BLYN,KTBW,SEDR)displayed

1 Figure17.GPSlongitudetimeseriesfrom /ax showinghorizontaldeformation.Time seriesdata(dots)showingnorthwardandeastwarddirecteddeformationofstations showninFigure16.BecausetheGPSdatacontainbothinterseismicdeformationaswell ascoseismicresponsestoknownSSE,weincludebothmodeledsteadystateinterseismic deformationpredictedbythecouplingprofileand34mm/yrofconvergence.Using Savage(1983)backslipmethod,thesouthwestdirecteddeformationpredictedtheslow slipdistributions(Figure13)attheirtimeofoccurrence.Couplingstrengthasafunction offaultdepthandthecoseismicslowslipdeformationpredictedfromtheslip distributionsofFigure13fitalldeformationprofileswithin2mm/yr,withthemajority fittingwithin0.5mm/yr,possiblycausedbyunknowncrustalheterogeneityorfaulting. Thissupportstheinferencethatupto~50%ofthetotalJuandeFucaconvergence beneaththeOlympicsisavailabletodriveseismogenicslipduringthenextmegathrust rupture.

39 remarkablemodellatitudetrends.Onestation(ALBH)displayedareasonablefit.Three stations(PABH,WHD1,SEAT)faredmorepoorly(Figure18).Oftheninestations,two stations(NEAHandBLYN)displayedremarkablywellforbothlongitudeandlatitude trendfits.Onlyonestation(SEAT)faredrelativelypoorlyforbothhorizontal

1 Figure18.GPSlatitudetimeseriesfrom /ax showinghorizontaldeformation. AnomalousresultsareshowninthePugetLowlandsregion. displacementdirectiontrendfits.Modeltrenddifferenceswhicharedescribedas reasonablywellarestillnogreaterthan~5mmoffthedatatrendfitovertheentire approximatenineyearperiod(SATS,BLYN,andKTBWhaveshortertimeseries histories).Ofthestationswhichperformedpoorly,thetrendsweregenerallylessthan

~15%offthedatatrends(SEATisanotableexception).Therelativelypoorshowing, 40 especiallyattheSEATstation,islikelyduetotheunusuallylargeamountofsubfaulting inthatpartofthePugetLowlands(AtwaterandHemphillHaley,1997).

1 Comparingthedatamatchingresultsofthe /ax dampeningfunctiontothebest

fittinglineardigressionresults(Figures19and20)andthebestfittingstepdigression

1 results(Figures21and22)weobserveasuperiormatchforthemoreflexible /ax

functionresults.Thebestfittinglinearapplicationsuppliestoomuchweightforthe

longitudeseriestothestationsnearthecoastandonlyhascomparableresultsinthePuget

Lowlandsregionwherestressaccommodationislikelydistortingallapproximating

models.ThelinearapplicationfaredbetterforthelatitudeseriesforboththeSEATand

WHD1stationsbutoverallisnotcomparable.Again,thesetwostationsarewellwithin

thestressaccommodatingPugetLowlandsregion.Thebestfittinglongitudeseriesforthe

stepfunctionapplicationprovidesamuchbetterfitfortheSEATstationandaslightly

1 betterfitfortheSATSstationbutotherwiseitisnotcomparabletothe /ax dampening application.ThelatitudeseriesforthestepfunctionsuppliesbetterfitsfortheKTBWand

SEATstationsbutotherwiseitisalsonotcomparable.Overall,exceptfortheoneoutlier

1 attheSATSstation,theonlystationswherethe /ax functionapplicationdidnotexcelor

showcomparabilityarelocatedinthecomplexstressaccommodatingPugetLowlands

region.

Thesubfaultingthenislikelyaccommodatingmuchoftheslipdeficit.Ascanbe

seenbythecouplingstrengthprofile(Figure23),dictatedbythehorizontallydirected

modeltrendfits,nearlyhalfofthecouplingstrengthismaintainedsignificantlymoreeast

ofthedeformationfrontthanpreviousmodelspredicted.Thesummationforthenine

41

Figure19.GPSlongitudetimeseriesfromlinearmodel.Thisisfromthebestfitting linearmodel.Digressionisshowinghorizontaldeformation.Thissolutionappliestoo 1 muchweighttothenearcoastreceiversandisonlycomparablewiththe /ax solutionin thepoorlyconstrainedPugetLowlandsregion.

42

Figure20.GPSlatitudetimeseriesfromlinearmodel.Thisisfromthebestfittinglinear model.Digressionisshowinghorizontaldeformation.Thissolutionfaredbetteratthe 1 SEATandWHD1stations(inthePugetLowlandsregion)thanthe /ax solution,but overallitsuppliedinferiorresults.

43

Figure21.GPSlongitudetimeseriesfromstepmodel.Thisisfromthebestfittingstep model.Digressionisshowinghorizontaldeformation.Thissolutionsuppliesaslightly 1 betterfitattheSATSandSEATstationsbutotherwiseitisnotcomparabletothe /ax solution.

44

Figure22.GPSlatitudetimeseriesfromstepmodel.Thisisfromthebestfittingstep model.Digressionisshowinghorizontaldeformation.Thissolutionsuppliesabetterfit 1 fortheSEATandKTBWstations(bothinthePugetLowlandsregion)thanthe /ax solutionbutotherwiseitisinferior.

45

Figure23.Couplingstrengthasafunctionoffaultdepth.Thisrepresentationbest matchestheaccruedslipprofileoffaultdepththatcompareswiththeaccruedslipprofile inFigure14,butinwhichthe~50%lockingprofileundertheOlympicsispropagated alongstrike(wherelittleGPSdataexiststoconstrainit).Thiscouplingmodelissimilar toWang et al. (2003),buthassomewhatmoreaccruedslipundertheOlympics.The modelresultsforeachofthestationsarecomparedherewiththedatasummationover9 years.

46 stationsinvolvedinthestudy,whencomparedwiththemodeltrends,displaysa compellingcasefortheaccuracyofthestudy’sbaseassumptions.Thecouplingstrength thatisbeingmaintainedfurtherdowndipislikelyaccumulatingstressforpotential megathrusttremordisturbancesfurthereastwardintotheheavilypopulatedurbanareas.

CHAPTERV

CONCLUSIONS

Thecouplingstrengthfromthebestfitmaintainsnearlyhalfitsenergyasfarfrom

thedeformationfrontaswheretheconcentrationofaccruedslipmeasuredoveranearly

nineyearperiodislocated.MiyazakiandLarson(2008)reportthatapossibleexplanation

foraftershockfromtheTokachiokiearthquakeisthatthevelocitystrengtheningzone betweentwoweakeningzonesispartiallylockedduringtheinterseismicperiod.Itis

furtherreportedthattheeffectisduetoweakeningzonesontheedgesofbothplates

whicharestronglylockedpreventingthestrengtheningzonefromfreelyslippingwith platevelocity(MiyazakiandLarson,2008).Further,MiyazakiandLarson (2008)derived

thattheshearstressintheafterslipregionsdecreasedwhilethesliprateswerenearly

constantandadeeperpartofthefaulteventuallyslipped.Althoughthesubductionangle

attheKurileTrenchconvergenceisdifferentthanthatofCascadiaandthesecularmotion

maintainsadifferentrate,thesefindingshavepotentialsignificanceforourobservations

inCascadia.Also,MiyazakiandLarson(2008)reportthatthereisfurtherevidencefor

slipoccurringdeeperontheKurileslipinterface.

TheSSEssummationfromtheinversionofsliptechniquesystematicallylocates

theaccruedslipfocusontheeastsideoftheOlympicPeninsula,considerablyfurther

(~100mi)fromthedeformationfrontthanpreviousmodelshavepredicted(Wang et al. ,

2003;McCaffreyet al. ,2007).Further,whencomparingtheseresultstothe

independentlyderivedcouplingstrengthprofile,thepotentialisremarkable.Thecoupling

strengthderivedfromthisfirstorderfittingalgorithmculminatedinaprofiledowndip

throughthelockedzoneandtheETZ,whichmaintains~50%ofitsstrengththroughthe

47 48 strikedeflectionoppositetheOlympicsandwellintothePugetLowlands.Notonlyisthe slippotentiallyoccurringdeeperontheplateinterface,itisconsequentlywideningthe seismogeniczoneeastwardinCascadia.Thesignificanceofthispotentialshouldnotbe underestimated.MostbuildingstructuresinthePacificNorthwestarevulnerabletoa megathrusteventofthispotentialmagnitudeduetotheabsenceofearthquakecoding, especiallybridgesandreinforcedbrickbuildings.Further,asoftheCensus2000(U.S.

CensusBureau,2003),theSeattleTacomametropolitanareasituatedinthePuget

Lowlandsregionreportedapopulationofover3millionpeople;approximatelyhalfof

Washington’stotalpopulation.

Summarily,ifitisassumedthattheplateconvergenceismaintaining~50%ofits energy,then~3.8cm/yrofslipfor~500yearsapproximatesapotential Mw=~9.2(Table

1)earthquakewithaunderthePugetLowlandsandverynearthepopulation

centersofPortland,Seattle,andVancouver.

Table1 CascadiaPotentialMomentMagnitude Dimension Magnitude Sliplength(km) 1100 Slipdepth(km) 90 Slipamount(m) 10 Sliprate(cm/yr) 3.2 Durationofslipaccumulation(yr) 500 2 Mw( /3log 10 M 0−10.7) 9.2

REFERENCES

Adams,J.(1990).PaleoseismicityoftheCascadiasubductionzone:Evidencefrom turbiditesofftheOregonWashingtonmargin, Tectonics 9,569583. Aguiar,A.(2007).SeismicconstraintsonslowslipeventswithintheCascadia subductionzone.MScthesis,CentralWashingtonUniversity. Altamimi,Z.,C.Boucher,andD.Gambis(2005).Longtermstabilityofthe terrestrialreferenceframe, Advances in Space Research 36,342349. Anderson,G.(2004).PlateBoundaryObservatoryDataManagementPlan, pboweb.unavco.org/dmsdocs/Root%20Folder/Data%20Management/Planni ng/Data%20Management%20Plan/pbo_dataplan.pdf(lastaccessed February2008). Atwater,B.(1987).EvidenceforgreatHoloceneearthquakesalongtheoutercoast ofWashingtonState, Science 236,942944. Atwater,B.,andE.HemphillHaley(1997).Recurrenceintervalsforgreat earthquakesofthepast3500yearsatnorthwesternWillapaBay,Washington, US Geol. Surv. Prof. Pap . 1576,108. Blackman,B.(2008).Plateboundaryobservatory,www.pboweb.unavco.org(last accessedSeptember2008). Blewitt,G.(2003).Selfconsistencyinreferenceframes,geocenterdefinition,and surfaceloadingofthesolidEarth, J. Geophys. Res . 108,B2210, doi:10.1029/2002JB002082. Blewitt,G.(2008).StableNorthAmericanReferenceFrameWorkingGroup, www.unavco.org/research_science/workinggroups_projects/snarf/snarf.html(last accessedSeptember2008). Bock,Y.,L.Prawirodirdjo,andT.Melbourne(2004).Detectionofarbitrarilylarge dynamicgroundmotionswithadensehighrateGPSnetwork, Geophys. Res. Lett . 31,L06604,doi:10.1029/2003GL019150. Calais,E.(2006).DeformationoftheNorthAmericanplateinteriorfromadecade ofcontinuousGPSmeasurements, J. Geophys. Res . 111,B06402, doi:10.1029/2005KB004253. Darienzo,M.,andC.Peterson(1995).Magnitudeandfrequencyofsubductionzone earthquakesalongthenorthernOregoncoastinthepast3,000years, Oregon Geology 57,312.

49 50 DeMets,C.,andT.Dixon(1999).KinematicmodelsforPacificNorthAmericamotion from3Matopresent,I:EvidenceforsteadymotionandbiasesintheNUVEL1A model, Geophys. Res. Lett. 26,19211924. Dragert,H.,andR.Hyndman(1995).ContinuousGPSmonitoringofelasticstraininthe northernCascadiasubductionzone, Geophys. Res. Lett. 22,755758. Dragert,H.,R.Hyndman,G.Rogers,andK.Wang(1994).Currentdeformationandthe widthoftheseismogeniczoneofthenorthernCascadiasubductionthrust, J. Geophys. Res. 99,653668. Dragert,H.,K.Wang,andT.James(2001).Asilentslipeventonthedeeper Cascadiasubductioninterface, Science 292,1525. Efron,B.,andR.Tibshirani(1994). An Introduction to the Bootstrap ,ChapmanandHall, London,U.K.,456pp. Flück,P.,R.Hyndman,andK.Wang(1997).Threedimensionaldislocationmodel forgreatearthquakesoftheCascadiasubductionzone, J. Geophys. Res . 102, no.B9,20,53920,550. GeologicalSurveyofCanada(2008).WesternCanadaDeformationArray, www.gsc.nrcan.gc.ca/geodyn/wcda/index_e.php(lastaccessedSeptember2008). GoogleEarth4.3(2008).GoogleInc.,MountainView,California. Hirose,H.,andK.Obara(2006).Shorttermslowslipandcorrelatedtremorepisodesin theTokairegion,centralJapan, Geophys. Res. Lett. 33,L17311, doi:10.1029/2006GL026579. Hyndman,R.,andK.Wang(1993).Thermalconstraintsonthezoneofmajorthrust earthquakefailure:TheCascadiasubductionzone,J. Geophys. Res. 98,2039 2060. Hyndman,R.D.,andK.Wang(1995).TherupturezoneofCascadiagreatearthquakes fromcurrentdeformationandthethermalregime, J. Geophys. Res . 100,no.B11, 22,13322,154. Lambeck,K.(1988). Geophysical Geodesy: The Slow Deformations of the Earth ,Oxford SciencePublications,Oxford,171225. Lawson,C.,andR.Hanson(1995). Solving Least Squares Problems .SIAMPublications, Philadelphia,pp.337. 51 Malone,S.,andD.Bor(1979).AttenuationpatternsinthePacificNorthwestbased onintensitydataandthelocationofthe1872NorthCascadesearthquake,Bull. Seismol. Soc. Am. 69,531546. Mazzotti,S.,H.Dragert,J.Henton,M.Schmidt,R.Hyndman,T.James,Y.Lu,and M.Craymer(2003).CurrenttectonicsofnorthernCascadiafromadecadeof GPSmeasurements, J. Geophys. Res . 108,no.B12,2554, doi:10.1029/2003JB002653. McCaffrey,R.,A.Qamar,R.King,R.Wells,G.Khazaradze,C.Williams,C.Stevens,J. Vollick,andP.Zwick(2007).Faultlocking,blockrotationandcrustal deformationinthePacificNorthwest, Geophys. J. Int. 169,13151340. Melbourne,T.I.,W.Szeliga,M.Miller,andV.Santillan(2005).Extentandduration ofthe2003Cascadiaslowearthquake, Geophys. Res. Lett . 32,L04301, doi:10.1029/2004GL021790. Melbourne,T.I.,F.Webb,J.Stock,andC.Reigber(2002).Rapidpostseismic transientsinsubductionzonesfromcontinuousGPS, J. Geophys. Res . 107, no.B10,2241,doi:10.1029/2001JB000555. Miller,M.,H.Dragert,E.Endo,J.Freymueller,C.Goldfinger,H.Kelsey,E. Humphreys,D.Johnson,R.McCaffrey,J.Oldow,A.Qamar.C.Rubin(1998). PreciseMeasurementsHelpGaugePacificNorthwest’sEarthquakePotential, Eos 79,no.23,269275. Miller,M.,D.Johnson,C.Rubin,H.Dragert,K.Wang,A.Qamar,andC.Goldfinger (2001).GPSdeterminationofalongstrikevariationinCascadiamargin kinematics:Implicationsforrelativeplatemotion,subductionzonecoupling,and permanentdeformation, Tectonics 20,161176. Miller,M.,T.Melbourne,R.Flake,A.Miner,C.Scrivner,andM.Santillan(2008). GeodesyLabandPANGA,www.geodesy.org(lastaccessedSeptember2008). Miller,M.,T.Melbourne,D.Johnson,andW.Sumner(2002).Periodicslow earthquakesfromtheCascadiasubductionzone, Science 295,2423. Miyazaki,S.andK.Larson(2008).Coseismicandearlypostseismicslipforthe2003 TokachiokiearthquakesequenceinferredfromGPSdata, Geophys. Res. Lett. 35, L04302,doi:10.1029/2007GL032309.

52 Obara,K.,H.Hirose,F.Yamamizu,andK.Kasahara(2004).Episodicslowslipevents accompaniedbynonvolcanictremorsinsouthwestJapansubductionzone, Geophys. Res. Lett. 31,L23602,doi:10.1029/2004GL020848. Rogers,G.,andH.Dragert(2003).EpisodictremorandslipontheCascadia subductionzone:Thechatterofsilentslip, Science 300,19421943. Satake,K.,K.Shimazaki,Y.Tsuji,andK.Ueda(1996).Timeandsizeofagiant earthquakeinCascadiainferredfromJapanesetsunamirecordsofJanuary1700, Nature 379,246249. Satake,K.,K.Wang,andB.Atwater(2003).Faultslipandseismicmomentofthe1700 CascadiaearthquakeinferredfromJapanesetsunamidescriptions, J. Geophys. Res. 108,2196. Savage,J.(1983).Adislocationmodelofstrainaccumulationandreleaseata subductionzone, J. Geophys. Res. 88,49844996. Schmidt,M.,H.Dragert,W.Hill,andN.Courtier(2000).NewGPSmonumentdesign forpermanentGPSinstallationsintheWesternCanadaDeformationArray, http://gsc.nrcan.gc.ca/geodyn/wcda/gpsmon_e.php,paperpresentedattheIGS NetworkWorkshop2000,SoriaMoria,Oslo,Norway(lastaccessedSeptember 2008). Strang,G.,andK.Borre(1997). Linear Algebra, Geodesy, and GPS ,Wellesley CambridgePress,Wellesley,447544. Szeliga,W.(2005).Transientdetectionandmodelingofcontinuousgeodeticdata.MSc thesis,CentralWashingtonUniversity. Szeliga,W.,T.Melbourne,M.Miller,andM.Santillan(2004).SouthernCascadia episodicslowearthquakes, Geophys. Res. Lett . 31,L16602, doi:10.1029/2004GL020824. Szeliga,W.,T.Melbourne,M.Santillan,andM.Miller(2007).GPSconstraintson 34slowslipeventswithintheCascadiasubductionzone,19972005, J. Geophys. Res .113,doi:10.1029/2007JB004948. U.S.CensusBureau(2003).Table1a.PopulationinMetropolitanandMicropolitan StatisticalAreasinAlphabeticalOrderandNumericalandPercentChangeforthe UnitedStatesandPuertoRico:1990and2000, www.census.gov/population/cen2000/phct29/tab01a.pdf(lastaccessed September2008). 53 Wang,K.,T.Mulder,G.Rogers,andR.Hyndman(1995).Caseforverylowcoupling stressontheCascadiasubductionfault, J. Geophys. Res. 100,12,90712,918. Wang,K.,R.Wells,S.Mazzotti,R.Hyndman,andT.Sagiya(2003).Arevised dislocationmodelofinterseismicdeformationoftheCascadiasubductionzone, J. Geophys. Res . 108,no.B1,2026,doi:10.1029/2001JB00122. Zumberge,J.,M.Heflin,D.Jefferson,M.Watkins,andF.Webb(1997).Precisepoint positioningfortheefficientandrobustanalysisofGPSdatafromlargenetworks, J. Geophys. Res. 102,50055017.

APPENDIX ThespecificstepsformanipulatingthewusdailyWebpagestationclusters:

1.TomakeorchangeaGPSclustercopythedesiredstations,includinglatitudeand

longitude,(thefirstthreecolumns)from

/home/chapmanj/list_clusters/master_appendtoanewfilecreatedin

/home/chapmanj/lists_clusters/station_clusters.

2.Addthenewclusternameandinformationto

/home/chapman/lists_clusters/station_clusters/custom_abrevor*/cluster_abrev

(dependingonwhetheryouareamendingthecustomclustersortheoriginalclusters.)

Theformatoftheexistingfilesshouldbefollowed.

3.Createthekmlfilesbyexecuting

/home/chapmanj/list_clusters/station_clusters/kml_files/bin/rewrite_clusterfile

..new_cluster1../new_cluster2.Thisprocessreversesthelatitudeandlongitudeorder

whichisnecessarybecauseGMTdemandstheorderonewayandkmldemandsthe

orderintheoppositearrangement.Copyclusters.kmltoclusters.kml.bakinthecase

ofcarelessness.

4.Createthekmlfilesbyexecuting

/home/chapmanj/lists_clusters/station_clusters/kml_files/bin/lists2kml*_list.txt>

clusters.kml.

5.RetrievethekmlfilesonacomputerwhichisGoogleEarthenabled.Itisbesttousea

securefiletransferclient.

54 55 6.MakeajpgimageofthenewclusterinGoogleEarth.Move,orcopy,theimageinto

/home/chapmanj/array_jpegsonaPANGAUNIXcomputer.

7.Totestthemanipulatedfile,orfiles,execute

/home/chapmanj/experimental/plot_lists_toweb.pl.Thenexecute

/chapmanj/lists_clusters/wusdaily/make_wusdaily_web.pl.

8.Finally,refreshthewusdailyWebpageforimmediateeffect;otherwisethedailycron

willgeneratetheupdatethefollowingday.