Refractive Index Change Mechanisms in Different Glasses Induced by Femtosecond Laser Irradiation ", Proc
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fluoride-Fiber-Based Side-Pump Coupler for High-Power Fiber Lasers at 2.8 Μm
2340 Vol. 43, No. 10 / 15 May 2018 / Optics Letters Letter Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm 1, 2 1 1 2,3 1 C. A. SCHÄFER, *H.UEHARA, D. KONISHI, S. HATTORI, H. MATSUKUMA, M. MURAKAMI, 1,4 2,5 S. SHIMIZU, AND S. TOKITA 1Mitsuboshi Diamond Ind. Ltd. 32-12 Koroen, Settsu, Osaka 566-0034, Japan 2Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan 3Current Address: Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki-Aza-Aoba, Sendai 980-8579, Japan 4Current Address: Spectronix Corporation, 3-28-15, Tarumi-cho, Suita, Osaka 564-0062, Japan 5e-mail: [email protected] *Corresponding author: [email protected] Received 1 March 2018; revised 18 April 2018; accepted 18 April 2018; posted 23 April 2018 (Doc. ID 324956); published 9 May 2018 A side-pump coupler made of fluoride fibers was fabricated although side pumping would benefit such applications, the and tested. The tested device had a coupling efficiency of active fiber was still end pumped by a laser diode (LD), and 83% and was driven with an incident pump power of up the seed light was injected via a dichroic mirror into the to 83.5 W, demonstrating high-power operation. Stable la- amplifying fiber. ser output of 15 W at a wavelength of around 2.8 μm was In this Letter, we fabricate an FF-based side-pump coupler achieved over 1 h when using an erbium-doped double-clad (SPC) by splicing the power-delivering multimode fiber onto fiber as the active medium. -
UV-Transmitting Step-Index Fluorophosphate Glass Fiber
Optical Materials 64 (2017) 524e532 Contents lists available at ScienceDirect Optical Materials journal homepage: www.elsevier.com/locate/optmat UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique * Gustavo Galleani a, b, , Yannick Ledemi b, Elton Soares de Lima Filho b, Steeve Morency b, Gaelle€ Delaizir c,Sebastien Chenu c, Jean Rene Duclere c, Younes Messaddeq b a Institute of Chemistry, Sao~ Paulo State University/UNESP, Araraquara, SP, Brazil b Center for Optics, Photonics and Lasers, Laval University, Quebec, QC, Canada c Laboratoire de Sciences des Procedes Ceramiques et de Traitements de Surface, Universite de Limoges, Limoges, France article info abstract Article history: In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical Received 24 October 2016 fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium Received in revised form metaphosphate and 90 mol% of metal fluorides (AlF3eCaF2eMgF2eSrF2) have been studied in order to 28 December 2016 produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic Accepted 4 January 2017 temperatures, viscosity around softening temperature and optical transmission in the UVevisible region Available online 17 January 2017 of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While Keywords: fi Glass uncontrolled crystallization of the ber was observed during the preform stretching by using the con- fi fi Fibers ventional method, we successfully obtained crystal-free ber by using a modi ed crucible technique. -
Photonic Glass-Ceramics: Consolidated Outcomes and Prospects Brigitte Boulard1, Tran T
Photonic glass-ceramics: consolidated outcomes and prospects Brigitte Boulard1, Tran T. T. Van2, Anna Łukowiak3, Adel Bouajaj4, Rogéria Rocha Gonçalves5, Andrea Chiappini6, Alessandro Chiasera6, Wilfried Blanc7, Alicia Duran8, Sylvia Turrell9, Francesco Prudenzano10, Francesco Scotognella11, Roberta Ramponi11, Marian Marciniak12, Giancarlo C. Righini13,14, Maurizio Ferrari6,13,* 1 Institut des Molécules et Matériaux du Mans, UMR 6283, Equipe Fluorures, Université du Maine, Av. Olivier Messiaen, 72085 Le Mans cedex 09, France. 2 University of Science Ho Chi Minh City, 227 Nguyen Van Cu, Dist.5, HCM Vietnam. 3 Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, 50-950 Wroclaw, Poland. 4 Laboratory of innovative technologies, LTI, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco. 5 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - Av. Bandeirantes, 3900, CEP 14040-901, Ribeirão Preto/SP, Brazil 6 CNR-IFN, CSMFO Lab., Via alla Cascata 56/c, Povo, 38123 Trento, Italy. 7 Université Nice Sophia Antipolis, CNRS LPMC, UMR 7336, 06100 Nice, France. 8 Instituto de Ceramica y Vidrio (CSIC), C/Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain. 9 LASIR (CNRS, UMR 8516) and CERLA, Université Lille 1, 59650 Villeneuve d’Ascq, France. 10 Politecnico di Bari, DEI, Via E. Orabona 4, Bari, 70125, Italy. 11 IFN-CNR and Department of Physics, Politecnico di Milano, p.zza Leonardo da Vinci 32, 20133 Milano, Italy 12 National Institute of Telecommunications, 1 Szachowa Street, 04 894 Warsaw, Poland. 13 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 2, 00184 Roma, Italy. 14 MipLAB. IFAC - CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy. -
Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical
Eliminating Crystals in Non‐Oxide Optical Fiber Preforms and Optical Fibers Short Running Title Gravity and Magnetic Effects on Glass Author’s Names and Affiliations Dennis S. Tucker Michael R. LaPointe NASA NASA/ZP10 EM20 National Space Science and Technology Center MSFC, Alabama, USA, 35812 320 Sparkman Drive Telephone: 256‐544‐7022 Huntsville, Alabama 35805 FAX: 256‐961‐9604 Telephone: 256‐961‐7555 [email protected] [email protected] Abstract Non‐oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non‐oxide glasses utilizing a magnetic field will be detailed. -
The American Ceramic Society 25Th International Congress On
The American Ceramic Society 25th International Congress on Glass (ICG 2019) ABSTRACT BOOK June 9–14, 2019 Boston, Massachusetts USA Introduction This volume contains abstracts for over 900 presentations during the 2019 Conference on International Commission on Glass Meeting (ICG 2019) in Boston, Massachusetts. The abstracts are reproduced as submitted by authors, a format that provides for longer, more detailed descriptions of papers. The American Ceramic Society accepts no responsibility for the content or quality of the abstract content. Abstracts are arranged by day, then by symposium and session title. An Author Index appears at the back of this book. The Meeting Guide contains locations of sessions with times, titles and authors of papers, but not presentation abstracts. How to Use the Abstract Book Refer to the Table of Contents to determine page numbers on which specific session abstracts begin. At the beginning of each session are headings that list session title, location and session chair. Starting times for presentations and paper numbers precede each paper title. The Author Index lists each author and the page number on which their abstract can be found. Copyright © 2019 The American Ceramic Society (www.ceramics.org). All rights reserved. MEETING REGULATIONS The American Ceramic Society is a nonprofit scientific organization that facilitates whether in print, electronic or other media, including The American Ceramic Society’s the exchange of knowledge meetings and publication of papers for future reference. website. By participating in the conference, you grant The American Ceramic Society The Society owns and retains full right to control its publications and its meetings. -
Chapter 22 Reflection and Refraction of Light
Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501. -
Table of Contents
Halide Glasses I ISBN(softcover): 978-0-87849-540-5 ISBN(eBook): 978-3-0357-0420-4 Table of Contents Preparation and Properties of High Optical Quality Bulk Fluoride Glasses M.G. Drexhage 1 Preparation and Purification of Fluoride Glass Starting Materials M. Robinson 19 Dry Box Melting of Heavy Metal Fluoride Glasses:Apparatus,Techniques and Problems M.J. Suscavage, J.J. Hutta, M.G. Drexhage, N. Perazzo, R. Mossadegh and C.T. Moynihan 35 Chemical Vapor Purification of Fluorides R.C. Folweiler and D.E. Guenther 43 Selective Complexing and Ion Exchange for Purification of Fluoride Glass Components P.E.R. Nordquist and A.H. Singer 49 An Extraction Process for Purifying Fluoride Glass Starting Materials C.F. Fisher, D.C. Tran, P. Hart and G.H. Sigel Jr. 51 Synthesis of Ultra-Pure Zirconium Tetrafluoride from Zirconium Tetraborohydride M. Bridenne, G. Folcher and H. Marquet-Ellis 59 Impurity Analysis of Fluoride Glass Starting Materials H. Poignant, J. Le Mellot, Y. Bossis, A. Rupert, M. Minier and M. Gauneau 63 Fabrication of Fluoride Glasses by Chemical Vapor Deposition D.A. Thompson 69 Purification and Analysis of Zirconium and Hafnium Tetrafluoride M.F. Churbanov, N.K. Rudnevsky, A.M. Tumanova, V.I. Zvereva and Y.V. Maslov 73 Removal of Surface Hydroxide from Fluoride Glass Components Below 500°C P.H. Klein 77 Fluoride Glass Evaporation H. Poignant, J. Le Mellot and Y. Bossis 79 Purification of Ba and Rare Earth Fluorides for Optical Fibers D.R. Gabbe 85 Synthesis Properties and Crystallization Behavior of PbF2-AIF3-LaF3-ZrF4 System Glasses J.J. -
Teng-Cheong Ong Thesis
This is the author’s version of a work that was submitted/accepted for pub- lication in the following source: Ong, Teng-Cheong (2018) Research of the suppression effects of cooling rate on crystallization in ZBLAN glass. PhD thesis, Queensland University of Technology. This file was downloaded from: https://eprints.qut.edu.au/116614/ Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: https://doi.org/10.5204/thesis.eprints.116614 Research of the suppression effects of cooling rate on crystallization in ZBLAN glass Teng-Cheong Ong Bachelor of Engineering (Mechanical) (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Chemistry, Physics and Mechanical Engineering Science & Engineering Faculty Queensland University of Technology 2018 Abstract ZBLAN glass is a heavy metal fluoride glass that has great potential in the application of long- haul telecommunication cables. However, during processing in the fibre-drawing temperature region, the material tends to undergo heavy devitrification, resulting in a crystalline fibre that is not usable for such purposes. There are many papers exploring various processing techniques in the aims of creating a test sample that can transmit with the theoretical minimum attenuation loss predicted for ZBLAN. As ZBLAN glass is cooled from its melt, crystallites form throughout the medium, their size and structure dependent on the rate of cooling and degree of undercooling. These crystallites act as scattering centres that degrade a signal that is propagated through the glass. -
Crystallization Behavior of New Transparent Glass-Ceramics Based on Barium Borate Glasses
Journal of the Ceramic Society of Japan 116 [5] 624-631 2008 Paper Crystallization behavior of new transparent glass-ceramics based on barium borate glasses Fatma Hassan MARGHA,*,** Salwa Abdel-Hameed Mohamed ABDEL-HAMEED,* Nagwa Abd El-Shafy GHONIM,* Shigeo SATOKAWA**,† and Toshinori KOJIMA** *Glass Research Department, National Research Center, Dokki, Cairo 12622, Egypt **Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan This paper describes the preparation of several new transparent and very fine crystal glass-ceramics from the BaO–B2O3 system utilizing an appropriate additive of fluorides, partial replacement of B2O3 by SiO2, and introducing nucleating agents, such as TiO2. The physical properties of the prepared materials and the changes with varying base glass compositions and heat treatment programs were investigated. The thermal behavior and microstructure of the developed phases were characterized using DTA, XRD, and SEM. Glass-ceramics with marked transparency were prepared. These transparent derivatives owe their transparency to the distinctive properties of the nano-crystalline samples. The dielectric constant of transparent glass- ceramics samples at 100 kHZ were between 14–20, which is very suitable for a wide range of applications, such as the high- – speed switching of large-scale integrators. It was found that the addition of F and SiO2 greatly influenced the transparency of the produced glass-ceramics. Also, the addition of TiO2 greatly enhanced transparency, in spite of increasing cutoff in the UV region to a higher wavelength. ©2008 The Ceramic Society of Japan. All rights reserved. Key-words : Glass-ceramics, Transparent, Barium borate, Dielectric [Received December 8, 2007; Accepted March 21, 2008] ride crystal phase, offer an economical alternative with substan- 1. -
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification. -
Fluoride Glasses: Synthesis and Properties
Brazilian Jmrnal of Physics, vol. 22, no. 3, Sep tember, 1992 Fluoride Glasses: Synthesis and Properties M. Poulain and A. Soufiane Centre d'Etude des Matériaux Auancés, Rennes, France Y. Messaddeq and M. A. Aegerter Instituto de Física e Química de São Carlos, Universidade de São Paulo Caixa Postal 369, São Carlos, 13560-970, SP, Brasil Received July 16 , 1992 The discovery of heavy metal fluoride glasses has opened new prospects for fiber optics operating beyond 2 pm with expected losses less than 1od2 dB/Km. The main interest of fluoride glasses lies in their infrared transmission up to 8 pm in the bulk form and 4.5 pm for optical fibers. We have reported here the preparation, the glass forming systems and properties of heavy metal fluoride glasses. with respect to divitrification. Consequently, process- ing may be critica1 for the quality of the final material. The development of optoelectronic devices and sys- It starts with batch preparation and ends with sample tems for tel~communications,sensing and miscellaneous polishing. application~has stimulated intense research on vitre- ous materials. Insofar as it becomes possible to reach the theoretit:al limits of silica-based glasses, further im- 11.1.1. Starting materials provements in performances depend only on the dis- The manufacturing of high quality optical compo- covery of new glasses and their optimization. The dis- nents such as optical fibers implies that starting mate- covery of uiiexpected glases at Rennes University in rials meet severe purity requiremerits. However, they 1974l was tlie beginning of numerous researches on flu- are different from current chemical specifications be- oride and, more generally, halide glasses, resulting in cause one may tolerate significant amounts of diamag- the description of hundreds of new glass forming sys- netic cations, while trace levels of optically abscrbent ten~.Fluor de glass fiber technology was investigated, impurities must be reduced drasticdlly. -
High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,