An Investigation of the Impact of Requirements Engineering Skills on Project Success Cynthia Atkins East Tennessee State University

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of the Impact of Requirements Engineering Skills on Project Success Cynthia Atkins East Tennessee State University East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2013 An Investigation of the Impact of Requirements Engineering Skills on Project Success Cynthia Atkins East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Operational Research Commons Recommended Citation Atkins, Cynthia, "An Investigation of the Impact of Requirements Engineering Skills on Project Success" (2013). Electronic Theses and Dissertations. Paper 1515. https://dc.etsu.edu/etd/1515 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. An Investigation of the Impact of Requirements Engineering Skills on Project Success ---------------- A thesis presented to the faculty of the Department of Computer and Information Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Computer Science ---------------- by Cynthia Atkins May 2013 ---------------- Dr. Tony Pittarese, Co-chair Dr. Phil Pfeiffer, Co-chair Dr. Chris Wallace Keywords: Project Management, Requirements Engineering, Software Engineering, Skills, Qualifications, Experiences ABSTRACT An Investigation of the Impact of Requirements Engineering Skills on Project Success by Cynthia Atkins A survey of project managers and requirements engineers was conducted to determine what skills, qualifications, and experiences were associated with project success. Survey results indicated that projects using Joint Application Development (JAD) sessions, use cases, and prototypes to engineer requirements were most successful. Other indicators of project success, according to participants, included an adequate allotment of time for requirements engineering—at least 15% of a project's time— and the use of project managers and requirements engineers with professional work experience. In particular, data indicated that Project Managers with at least five years of experience in Information Technology resulted in more successful projects. 2 TABLE OF CONTENTS Chapter Page ABSTRACT .................................................................................................................................................................. 2 TABLE OF CONTENTS .............................................................................................................................................. 3 LIST OF TABLES ......................................................................................................................................................... 6 LIST OF FIGURES ..................................................................................................................................................... 11 1. INTRODUCTION ................................................................................................................................................... 14 2. BACKGROUND ..................................................................................................................................................... 18 PROJECTS AND SUCCESS ................................................................................................................................... 18 PROJECT SUCCESS AND REQUIREMENTS QUALITY ............................................................................................ 19 OVERVIEW OF REQUIREMENTS ENGINEERING .................................................................................................. 20 REQUIREMENTS ENGINEERING: BEST PRACTICES ............................................................................................ 23 REQUIREMENTS ENGINEERING: KEY SKILLS .................................................................................................... 24 CERTIFICATIONS RELATED TO REQUIREMENTS ENGINEERING .......................................................................... 27 3. RESEARCH PLAN ................................................................................................................................................. 30 PURPOSE ........................................................................................................................................................... 30 METHODOLOGY ................................................................................................................................................ 31 TARGET AUDIENCE ........................................................................................................................................... 32 PARTICIPANTS ................................................................................................................................................... 33 SURVEY COLLECTION, CODING AND ANALYSIS ................................................................................................ 37 4. ANALYSIS AND DISCUSSION ........................................................................................................................... 38 PM1 / RE1: How many years have you been in the professional work force? ............................................ 38 PM2 / RE2: How many years have you worked in Information Technology? ............................................. 44 PM3: How many years have you been in a project management role? ....................................................... 53 RE3: How many years have you been in a requirements analyst role? ....................................................... 55 3 PM6 / RE6: What positions have you held during your career (select all that apply)? ............................. 57 PM7 / RE7: What is the highest academic degree you have received? ....................................................... 63 PM8 / RE8: What best describes your education background (if you’ve studied more than one area, choose the field where you have spent the most time or effort)? ............................................. 69 PM10 / RE9: Do you hold any of the following certifications (choose all that apply)? .............................. 75 PM12 / RE15: Did you have domain expertise when the project began? .................................................... 79 PM22 / RE25: What software development methodologies were used on the project (select all that apply)? ..................................................................................................................................... 85 PM25 / RE27: What percent of the overall project time was devoted to gathering requirements? ............ 88 RE28: How adequate was the amount of time planned for requirements gathering on the project? ......... 96 PM30 / RE29: Were any formal methods for gathering requirements followed on the project? ................ 98 PM31 / RE30: Were any of the following techniques used to gather requirements on the project (select all that apply)? ....................................................................................................................... 101 PM32 / RE31: Briefly, what do you think was most beneficial to the success of the project (optional)? . 103 PM33 / RE32: Briefly, what do you think was most detrimental to the project (optional)? ..................... 104 PM10 / RE9 and PM31 / RE30: Does having a certification lead to more formal requirements analysis? ................................................................................................................................ 105 5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK .......................................................... 108 CONCLUSIONS ................................................................................................................................................. 108 FUTURE WORK ............................................................................................................................................... 113 REFERENCES .......................................................................................................................................................... 115 APPENDICES ........................................................................................................................................................... 118 APPENDIX A: PROJECT MANAGER SURVEY .................................................................................................... 118 APPENDIX B: REQUIREMENTS ANALYST, BUSINESS ANALYST, OR REQUIREMENTS ENGINEER SURVEY ........ 125 APPENDIX C: ADDITIONAL ANALYSIS OF EXPERIENCES, SKILLS, AND QUALIFICATIONS ................................ 131 PM4 / RE4: How many total projects have you worked on in Information Technology? ......................... 131 PM5: How many total projects have you managed in Information Technology? ..................................... 137 4 RE5: How many projects have you served in the requirements gathering role? ....................................... 140 PM9: Do you have a degree in Project Management? ............................................................................. 142 PM23: How was the project team assembled? .......................................................................................... 144 PM24 / RE26: Who was tasked with gathering requirements for
Recommended publications
  • Quality Management for IT Support Services - a Case Study of an IT Helpdesk Service
    Quality Management for IT Support Services - A case study of an IT helpdesk service Master of Science Thesis in the Master Degree Programme, Quality and Operations Management JOHANNA IVARSSON Department of Technology Management and Economics Division of Quality Sciences CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2013 Report No. E2013:080 REPORT NO. E2013:080 QUALITY MANAGEMENT FOR IT SUPPORT SERVICES A CASE STUDY OF AN IT HELPDESK SERVICE JOHANNA IVARSSON Department of Technology Management and Economics Chalmers University of Technology Göteborg, Sweden QUALITY MANAGEMENT FOR IT SUPPORT SERVICES A CASE STUDY OF AN IT HELPDESK SERVICE JOHANNA IVARSSON © Ivarsson, J. 2013 Report no. E2013:080 Department of Technology Management and Economics Division of Quality Sciences Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Printed by Chalmers Reproservice Göteborg, Sweden 2013 Abstract IT services are a necessary support for most business processes; therefore the quality of IT support services is a topic of high importance. The aim of this study was to analyse how an IT helpdesk service can be improved in order to align with the organisation’s expectations. The study was conducted as a case study of an IT helpdesk service during spring 2013. The data collection combined a quantitative analysis of event logs data for a two-year period, with a qualitative approach conducting observations and ten interviews. The result showed that the quality issues arose from two main areas; resolution time of requests and professionalism of IT staff. The quality issues are, according to both the quantitative and qualitative analysis, caused by high workload for one of the IT department’s teams and high expectations of the organisation.
    [Show full text]
  • Project Management © Adrienne Watt
    Project Management © Adrienne Watt This work is licensed under a Creative Commons-ShareAlike 4.0 International License Original source: The Saylor Foundation http://open.bccampus.ca/find-open-textbooks/?uuid=8678fbae-6724-454c-a796-3c666 7d826be&contributor=&keyword=&subject= Contents Introduction ...................................................................................................................1 Preface ............................................................................................................................2 About the Book ..............................................................................................................3 Chapter 1 Project Management: Past and Present ....................................................5 1.1 Careers Using Project Management Skills ......................................................................5 1.2 Business Owners ...............................................................................................................5 Example: Restaurant Owner/Manager ..........................................................................6 1.2.1 Outsourcing Services ..............................................................................................7 Example: Construction Managers ..........................................................................8 1.3 Creative Services ................................................................................................................9 Example: Graphic Artists ...............................................................................................10
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • Innovations in Natural Language Document Processing for Requirements Engineering
    Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2008 Innovations in Natural Language Document Processing for Requirements Engineering Berzins, Valdis þÿB. Paech and C. Martell (Eds.): Monterey Workshop 2007, LNCS 5320, pp. 125 146, 2008. http://hdl.handle.net/10945/46073 Innovations in Natural Language Document Processing for Requirements Engineering Valdis Berzins, Craig Martell, Luqi, and Paige Adams Naval Postgraduate School, 1411 Cunningham Road, Monterey, California 93943 {berzins,cmartell,luqi,phadams}@nps.edu Abstract. This paper evaluates the potential contributions of natural language processing to requirements engineering. We present a selective history of the relationship between requirements engineering (RE) and natural-language processing (NLP), and briefly summarize relevant re- cent trends in NLP. The paper outlines basic issues in RE and how they relate to interactions between a NLP front end and system-development processes. We suggest some improvements to NLP that may be possible in the context of RE and conclude with an assessment of what should be done to improve likelihood of practical impact in this direction. Keywords: Requirements, Natural Language, Ambiguity, Gaps, Domain- Specific Methods. 1 Introduction A major challenge in requirements engineering is dealing with changes, especially in the context of systems of systems with correspondingly complex stakeholder communities and critical systems with stringent dependability requirements. Documentation driven development (DDD) is a recently developed approach for addressing these issues that seeks to simultaneously improve agility and de- pendability via computer assistance centered on a variety of documents [1,2]. The approach is based on a new view of documents as computationally active knowledge bases that support computer aid for many software engineering tasks from requirements engineering to system evolution, which is quite different from the traditional view of documents as passive pieces of paper.
    [Show full text]
  • Managing Requirements Engineering Risks: an Analysis and Synthesis of the Literature
    Lars Mathiassen – Timo Saarinen – Tuure Tuunanen – Matti Rossi MANAGING REQUIREMENTS ENGINEERING RISKS: AN ANALYSIS AND SYNTHESIS OF THE LITERATURE W-379 HELSINKI SCHOOL OF ECONOMICS ISSN 1795-1828 WORKING PAPERS ISBN 951-791-895-X (Electronic working paper) W-379 2004 Lars Mathiassen* – Timo Saarinen** – Tuure Tuunanen** – Matti Rossi** MANAGING REQUIREMENTS ENGINEERING RISKS: AN ANALYSIS AND SYNTHESIS OF THE LITERATURE *Center for Process Innovation, Georgia State University **Helsinki School Economics, Department of Management, Information Systems Science November 2004 HELSINGIN KAUPPAKORKEAKOULU HELSINKI SCHOOL OF ECONOMICS WORKING PAPERS W-379 HELSINGIN KAUPPAKORKEAKOULU HELSINKI SCHOOL OF ECONOMICS PL 1210 FIN-00101 HELSINKI FINLAND © Lars Mathiassen, Timo Saarinen, Tuure Tuunanen, Matti Rossi and Helsinki School of Economics ISSN 1795-1828 ISBN 951-791-895-X (Electronic working paper) Helsinki School of Economics - HeSE print 2004 Managing Requirements Engineering Risks: An Analysis and Synthesis of the Literature Lars Mathiassen ([email protected]) Center for Process Innovation, Georgia State University P. O. Box 4015, Atlanta, GA 30303-4015, USA Phone: +1-404-651-0933, Fax: +1-404-463-9292 Timo Saarinen ([email protected]) Helsinki School Economics, Department of Management, Information Systems Science P. O. Box 1210, FIN-00101 Helsinki, Finland Phone: +358-9-431-38272, Fax: Fax: +358-9-431-38700 Tuure Tuunanen ([email protected]) Helsinki School Economics, Department of Management, Information Systems Science P. O. Box 1210, FIN-00101 Helsinki, Finland Phone: +358-40-544-5591, Fax: +358-9-431-38700 http://www.tuunanen.fi Matti Rossi ([email protected]) Helsinki School Economics, Department of Management, Information Systems Science P.
    [Show full text]
  • Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Project
    sustainability Article Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Project Lidija Rihar and Janez Kušar * Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected] Abstract: In this paper, we present the impact of concurrent engineering strategies, methods, and tools on product sustainability. Concurrent engineering can be used to achieve the primary goals of a product realization project: lower costs, shorter times, high quality, and increasing value. Currently, it is important that new products also meet product sustainability goals, such as economic, environmental, and social goals. The sustainability of a product can be influenced the most in the early stages of product development, so in this paper, we present a customized quality function deployment (QFD) method called the house of sustainability, which translates sustainability requirements into technical solutions for a product. A seven-step process for implementing a sustainable product realization project is also proposed, in which the house of sustainability is one of the most important tools. The proposed process is illustrated with an example of a concurrent product realization project in engineering to order production. Keywords: concurrent engineering; product sustainability; production sustainability; new product development; QFD Citation: Rihar, L.; Kušar, J. 1. Introduction Implementing Concurrent Sustainability has lately become one of the key features of new products. Sustainabil- Engineering and QFD Method to ity implies product properties that characterize it from the idea, through development, Achieve Realization of Sustainable production, use, and maintenance, to the end of the life of the product (disposal).
    [Show full text]
  • Requirements Management Applied in an Agile Project Management Environment
    Requirements Management applied in an agile Project Management environment Franco (Frank) Curtolo CEng, Principal Consultant, Program Planning Professionals Ltd, [email protected] Categorisation • Accessibility: PRACTITIONER • Application: GOOD PRACTICE • Topics: Agile Systems Engineering; Project Management Abstract This paper looks at how the Requirements Management process of Systems Engineering may benefit from some of the aspects derived from developing systems within an agile Project Management environment, using as example, the Scaled Agile Framework® of © Scaled Agile, Inc. The aim is to see if some of these agile techniques can enhance the Systems Engineering approach. Systems Engineering (SE) is well suited to develop large, complex products in a project environment where the requirements can be defined and fixed upfront. In fact, SE relies on an initial, well-defined End User’s need specified in for example, a User Requirements Specification (URS), to establish an initial requirements baseline which is used to drive the rest of the development process. However not all development projects happen that way. Sometimes the End User’s need is not clear, or cannot be well defined upfront, thus not allowing it to be captured in a fixed requirements baseline. Furthermore, the project environment may need to accommodate rapid change, both in the End Users’ need and in the technologies available to satisfy this need. In such a project environment, an agile development approach, as described in the Scaled Agile Framework® (SAFe®), may be more suitable since it allows for incremental delivery of the product and change to requirements. This can accommodate undefined End User needs, rapid change in requirements and allow for the introduction of innovation during the development and implementation stages.
    [Show full text]
  • Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses
    of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and
    [Show full text]
  • Requirements Engineering Objectives
    Requirements Engineering Chapter 2 Requirements Engineering Processes Learning Objective ...to give a general introduction to the requirements engineering process. Different approaches to modeling requirements engineering processes are suggested and why human, social and organizational factors are important influences on those processes. Other concepts that are evaluated include process maturity, tools and process improvement. Frederick T Sheldon Assistant Professor of Computer Science University of Colorado at Colorado Springs CS 531 Software Requirements Analysis and Specification Chapter 2 From Requirements Engineering Processes and Techniques by G. Kotonya and I. Sommerville 1998 Slide 1 Objectives ⊗ To introduce the notion of processes and process models for requirements engineering ⊗ To explain the critical role of people in requirements engineering processes ⊗ To explain why process improvements is important and to suggest a process improvement model for requirements engineering CS 531 Software Requirements Analysis and Specification Chapter 2 From Requirements Engineering Processes and Techniques by G. Kotonya and I. Sommerville 1998 Slide 2 Processes ⊗ A process is an organized set of activities which transforms inputs to outputs ⊗ Process descriptions encapsulate knowledge and allow it to be reused ⊗ Examples of process descriptions • Instruction manual for a dishwasher • Cookery book • Procedures manual for a bank • Quality manual for software development CS 531 Software Requirements Analysis and Specification Chapter 2 From Requirements Engineering Processes and Techniques by G. Kotonya and I. Sommerville 1998 Slide 3 Design processes ⊗ Processes which involve creativity, interactions between a wide range of different people, engineering judgement and background knowledge and experience ⊗ Examples of design processes • Writing a book • Organizing a conference • Designing a processor chip • Requirements engineering CS 531 Software Requirements Analysis and Specification Chapter 2 From Requirements Engineering Processes and Techniques by G.
    [Show full text]
  • Development of a Multi-Bus Platform for Automation Testbed
    A Master Thesis Work in Electronics Development of a Multi‐bus platform for automation testbed By Lukas Knapik and Mathias Isaksson Examiner: Professor Lars Asplund, Mälardalens University Supervisor: Martin Ekström, PhD Student in Electronics, Mälardalen University Dan Olsson, M.SC Physics, Infotiv AB Lukas Knapik Mathias Isaksson 070‐7124691 073‐8079350 [email protected] [email protected] Mälardalen University, Västerås 2010‐02‐17 Development of a Multi‐bus platform for automation testbed Master Thesis CEL505 ABSTRACT The task for this thesis was to develop, construct and evaluate a multi‐bus communication system, connected to a PC via USB and capable of communicating in CAN, I2C and SPI and develop drivers for it in National Instruments LabVIEW. In the beginning a study was made of the communication buses followed by an investigation of what type of hardware that could accomplish this task. A microcontroller unit was selected and programmed in MikroElektronika MikroC Pro v.3.2 to act as the interface between the communication busses and PC. A PCB prototype of the system was constructed by using Eagle Cad software v.5.6.0. General drivers for this system where created in LabVIEW v.8.6.1 so the end‐user simply can create their own applications and control the compatible hardware depending on their type of purposes. The system was tested on criteria’s such as: speed, power consumption, burst performance and transmission length depending on which communication bus was used. Lukas Knapik, Mathias Isaksson Mälardalen University, Västerås 2010‐02‐17 Development of a Multi‐bus platform for automation testbed Master Thesis CEL505 ACKNOWLEDGEMENTS We would like to thank Infotiv AB for giving us the opportunity to do this thesis.
    [Show full text]
  • DAVID J. ERICKSON 6 Oak Drive Topsfield, MA 01983 978-887-0125 [email protected]
    DAVID J. ERICKSON 6 Oak Drive Topsfield, MA 01983 978-887-0125 [email protected] Objective: To develop successful products from concept to production using my skills in analog, digital and firmware design engineering, team and project management Management: Hands-on Engineering Management, Hardware Engineering and Project Management Education: B.S.E.E., 1976 Worcester Polytechnic Institute, Worcester, MA Design Analog processing including video, PLL, A/D, D/A, video timing, Specialties: video analog and digital LSI, graphics LCDs. Digital circuitry: Image memory (DRAM), multiport memory, pipelined image processors, bus interfaces, state machine, digital components used: PALs, DRAMs, SRAMs, PROMs, ASICs, TTL, ECL, PGAs (Xilinx, Actel, Altera), DSP blocks, FIFOs bit slice, VLSI. Instrument design for chemical and ATE industries. Medical (patient monitoring and display) electronics. Sensor interfacing, power supplies, low power design. Microprocessor hardware and firmware design, C and assembler: AVR, Z80 and 68hc11. Audio processing and control, amplifiers, test equipment. Marine and weather electronics. Troubleshooting all types of problems. Bus interfacing to MicroBus, VME/VXI, PC/AT, Multibus, Q-Bus LabView Experience: STH Company (Consultant, part time) Wayland, MA 4/02 - 9/02 Hardware and firmware design of Colorimeter Instrument complete redesign. Product development from specification to final release. Instrument uses an AVR microprocessor to implement a complete optical / chemical measurement instrument. Implemented complex acquisition timing, math, communications, display and serial interface, menu system. Development cost and product cost goals were met. Analogic Corp., Peabody, MA 1/98 to 6/02 Chief Engineer, Test and Measurement Division Directed the engineering department of the division that was the leading 3rd party supplier of mixed-signal instruments to the ATE industry.
    [Show full text]
  • Elicitation of Quality Agile User Stories Using QFD
    Elicitation of Quality Agile User Stories Using QFD NDIA 20th Annual Systems Engineering Conference “Agile in Systems Engineering“ 10:15 – 10:40 AM October 25, 2017 Sabrina J. Ussery, Shahryar Sarkani, Thomas Holzer Dissertation Topic Department of Engineering Management and Systems Engineering School of Engineering and Applied Science The George Washington University 1176 G Street NW Washington, DC 20052 1 Agile Requirements Engineering (RE) The lack of standard Requirements Engineering (RE) practices in Agile negatively impacts system quality, contributing to 24% of the causes for challenged or failed projects. • The 2015 CHAOS Standish Group report indicates Agile projects are 3x more likely to succeed than Waterfall projects due to increased customer collaboration and customer satisfaction. [2] • The Agile community claims that they do not really tackle requirements in a structured way, which may bring problems to the software organization responsible for software built following an Agile method. [1] • Though more successful in some respects, the Image source: [2] lack of stand RE practices in Agile contributes to 24% of the reasons for challenged or failed projects due to poor requirements quality (i.e., unclear or volatile). [2] 2 What is Agile? 3 Agile RE: As Is Requirements Requirements engineering (RE) refers to the process of defining, documenting and maintainingEngineering requirements. [5] Requirements Requirements Development Management Elicitation Priorities Specification Traceability Analysis Specifications Validation Configuration
    [Show full text]