The Huygens Teams, Behind the Scenes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cassini RADAR Images at Hotei Arcus and Western Xanadu, Titan: Evidence for Geologically Recent Cryovolcanic Activity S
GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009 Click Here for Full Article Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity S. D. Wall,1 R. M. Lopes,1 E. R. Stofan,2 C. A. Wood,3 J. L. Radebaugh,4 S. M. Ho¨rst,5 B. W. Stiles,1 R. M. Nelson,1 L. W. Kamp,1 M. A. Janssen,1 R. D. Lorenz,6 J. I. Lunine,5 T. G. Farr,1 G. Mitri,1 P. Paillou,7 F. Paganelli,2 and K. L. Mitchell1 Received 21 October 2008; revised 5 January 2009; accepted 8 January 2009; published 24 February 2009. [1] Images obtained by the Cassini Titan Radar Mapper retention age comparable with Earth or Venus (500 Myr) (RADAR) reveal lobate, flowlike features in the Hotei [Lorenz et al., 2007]). Arcus region that embay and cover surrounding terrains and [4] Most putative cryovolcanic features are located at mid channels. We conclude that they are cryovolcanic lava flows to high northern latitudes [Elachi et al., 2005; Lopes et al., younger than surrounding terrain, although we cannot reject 2007]. They are characterized by lobate boundaries and the sedimentary alternative. Their appearance is grossly relatively uniform radar properties, with flow features similar to another region in western Xanadu and unlike most brighter than their surroundings. Cryovolcanic flows are of the other volcanic regions on Titan. Both regions quite limited in area compared to the more extensive dune correspond to those identified by Cassini’s Visual and fields [Radebaugh et al., 2008] or lakes [Hayes et al., Infrared Mapping Spectrometer (VIMS) as having variable 2008]. -
Surface of Ligeia Mare, Titan, from Cassini Altimeter and Radiometer Analysis Howard Zebker, Alex Hayes, Mike Janssen, Alice Le Gall, Ralph Lorenz, Lauren Wye
Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis Howard Zebker, Alex Hayes, Mike Janssen, Alice Le Gall, Ralph Lorenz, Lauren Wye To cite this version: Howard Zebker, Alex Hayes, Mike Janssen, Alice Le Gall, Ralph Lorenz, et al.. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophysical Research Letters, American Geophysical Union, 2014, 41 (2), pp.308-313. 10.1002/2013GL058877. hal-00926152 HAL Id: hal-00926152 https://hal.archives-ouvertes.fr/hal-00926152 Submitted on 19 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Surface of Ligeia Mare, Titan, from Cassini 10.1002/2013GL058877 altimeter and radiometer analysis Key Points: Howard Zebker1, Alex Hayes2, Mike Janssen3, Alice Le Gall4, Ralph Lorenz5, and Lauren Wye6 • Ligeia Mare, like Ontario Lacus, is flat with no evidence of ocean waves or wind 1Departments of Geophysics and Electrical Engineering, Stanford University, Stanford, California, USA, 2Department of • The -
The Science Case for a Titan Flagship-Class Orbiter with Probes (White Paper for the NRC Decadal Survey for Planetary Science and Astrobiology) Conor A
The Science Case for a Titan Flagship-class Orbiter with Probes (White paper for the NRC Decadal Survey for Planetary Science and Astrobiology) Conor A. Nixon, James Abshire, Andrew Ashton, Jason W. Barnes, Nathalie Carrasco, Mathieu Choukroun, Athena Coustenis, Louis-Alexandre Couston, Niklas Edberg, Alexander Gagnon, et al. To cite this version: Conor A. Nixon, James Abshire, Andrew Ashton, Jason W. Barnes, Nathalie Carrasco, et al.. The Science Case for a Titan Flagship-class Orbiter with Probes (White paper for the NRC Decadal Survey for Planetary Science and Astrobiology). 2020. hal-03085250 HAL Id: hal-03085250 https://hal.archives-ouvertes.fr/hal-03085250 Preprint submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Science Case for a Titan Flagship-class Orbiter with Probes Authors: Conor A. Nixon, NASA Goddard Space Flight Center, USA Planetary Systems Laboratory, 8800 Greenbelt Road, Greenbelt, MD 20771 (301) 286-6757 [email protected] James Abshire, University oF Maryland, USA Andrew Ashton, Woods Hole Oceanographic Institution, USA Jason W. Barnes, University oF Idaho, USA Nathalie Carrasco, Université Paris-Saclay, France, Mathieu Choukroun, Jet Propulsion Laboratory, Caltech, USA Athena Coustenis, Paris Observatory, CNRS, PSL, France Louis-Alexandre Couston, British Antarctic Survey, UK Niklas Edberg, Swedish Institute oF Space Physics, Sweden Alexander Gagnon, University oF Washington, USA Jason D. -
EPSC-DPS2011-303, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
EPSC Abstracts Vol. 6, EPSC-DPS2011-303, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Cryovolcanism on Titan: a re-assessment in light of new data from Cassini RADAR and VIMS R. M.C. Lopes (1), R. Kirk (2), K. Mitchell (1), Alice LeGall (1), E. Stofan (3), J. Barnes (4), J. Kargel (5), M. Janssen (1), A. Hayes (6), J. Radebaugh (7), S. Wall (1), and the Cassini RADAR Team (1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, [email protected] (2) U.S. Geological Survey, Flagstaff, Arizona, USA , (3) Proxemy Research, Bowie, Maryland, USA; (4) University of Idaho, Moscow, Idaho, USA, (5) University of Arizona, Tucson, Arizona, USA, (6) California Institute of Technology, Pasadena, California, USA; (7) Brigham Young University, Provo, Utah, Abstract several cryovolcanic centers, including a tall peak and deep pit, which we consider the best example of Several surface features on Titan have been a cryovolcanic edifice so far found on Titan. interpreted as cryovolcanic in origin, however, alternative explanations have been proposed and the 2. Data existence of cryovolcanism on Titan is still debatable. Here we re-examine candidate cryovolcanic features The SAR Titan data, as of late 2010, comprise a rich using a combination of Cassini data sets from dataset that covers 48 % of Titan’s surface RADAR and VIMS to re-examine these features. We (excluding overlap), well distributed in both latitude find that Sotra Facula is the strongest candidate for a and longitude. SAR images are combined with other cryovolcanic origin, the interpretation being strongly data, where available, to re-examine candidate supported by new topographic data. -
Strategies for Detecting Biological Molecules on Titan
ASTROBIOLOGY Volume 18, Number 5, 2018 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2017.1758 Strategies for Detecting Biological Molecules on Titan Catherine D. Neish,1 Ralph D. Lorenz,2 Elizabeth P. Turtle,2 Jason W. Barnes,3 Melissa G. Trainer,4 Bryan Stiles,5 Randolph Kirk,6 Charles A. Hibbitts,2 and Michael J. Malaska5 Abstract Saturn’s moon Titan has all the ingredients needed to produce ‘‘life as we know it.’’ When exposed to liquid water, organic molecules analogous to those found on Titan produce a range of biomolecules such as amino acids. Titan thus provides a natural laboratory for studying the products of prebiotic chemistry. In this work, we examine the ideal locales to search for evidence of, or progression toward, life on Titan. We determine that the best sites to identify biological molecules are deposits of impact melt on the floors of large, fresh impact craters, specifically Sinlap, Selk, and Menrva craters. We find that it is not possible to identify biomolecules on Titan through remote sensing, but rather through in situ measurements capable of identifying a wide range of biological molecules. Given the nonuniformity of impact melt exposures on the floor of a weathered impact crater, the ideal lander would be capable of precision targeting. This would allow it to identify the locations of fresh impact melt deposits, and/or sites where the melt deposits have been exposed through erosion or mass wasting. Determining the extent of prebiotic chemistry within these melt deposits would help us to understand how life could originate on a world very different from Earth. -
Saturn Satellites As Seen by Cassini Mission
Saturn satellites as seen by Cassini Mission A. Coradini (1), F. Capaccioni (2), P. Cerroni(2), G. Filacchione(2), G. Magni,(2) R. Orosei(1), F. Tosi(1) and D. Turrini (1) (1)IFSI- Istituto di Fisica dello Spazio Interplanetario INAF Via fosso del Cavaliere 100- 00133 Roma (2)IASF- Istituto di Astrofisica Spaziale e Fisica Cosmica INAF Via fosso del Cavaliere 100- 00133 Roma Paper to be included in the special issue for Elba workshop Table of content SATURN SATELLITES AS SEEN BY CASSINI MISSION ....................................................................... 1 TABLE OF CONTENT .................................................................................................................................. 2 Abstract ....................................................................................................................................................................... 3 Introduction ................................................................................................................................................................ 3 The Cassini Mission payload and data ......................................................................................................................... 4 Satellites origin and bulk characteristics ...................................................................................................................... 6 Phoebe ............................................................................................................................................................................... -
The Lakes and Seas of Titan • Explore Related Articles • Search Keywords Alexander G
EA44CH04-Hayes ARI 17 May 2016 14:59 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations The Lakes and Seas of Titan • Explore related articles • Search keywords Alexander G. Hayes Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Earth Planet. Sci. 2016. 44:57–83 Keywords First published online as a Review in Advance on Cassini, Saturn, icy satellites, hydrology, hydrocarbons, climate April 27, 2016 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Analogous to Earth’s water cycle, Titan’s methane-based hydrologic cycle This article’s doi: supports standing bodies of liquid and drives processes that result in common 10.1146/annurev-earth-060115-012247 Annu. Rev. Earth Planet. Sci. 2016.44:57-83. Downloaded from annualreviews.org morphologic features including dunes, channels, lakes, and seas. Like lakes Access provided by University of Chicago Libraries on 03/07/17. For personal use only. Copyright c 2016 by Annual Reviews. on Earth and early Mars, Titan’s lakes and seas preserve a record of its All rights reserved climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan’s surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. -
Titan a Moon with an Atmosphere
TITAN A MOON WITH AN ATMOSPHERE Ashley Gilliam Earth 450 – Satellites of Jupiter and Saturn 4/29/13 SATURN HAS > 60 SATELLITES, WHY TITAN? Is the only satellite with a dense atmosphere Has a nitrogen-rich atmosphere resembles Earth’s Is the only world besides Earth with a liquid on its surface • Possible habitable world Based on its size… Titan " a planet in its o# $ght! R = 6371 km R = 2576 km R = 1737 km Ch$%iaan Huy&ns (1629-1695) DISCOVERY OF TITAN Around 1650, Huygens began building telescopes with his brother Constantijn On March 25, 1655 Huygens discovered Titan in an attempt to study Saturn’s rings Named the moon Saturni Luna (“Saturns Moon”) Not properly named until the mid-1800’s THE DISCOVERY OF TITAN’S ATMOSPHERE Not much more was learned about Titan until the early 20th century In 1903, Catalan astronomer José Comas Solà claimed to have observed limb darkening on Titan, which requires the presence of an atmosphere Gerard P. Kuiper (1905-1973) José Comas Solà (1868-1937) This was confirmed by Gerard Kuiper in 1944 Image Credit: Ralph Lorenz Voyager 1 Launched September 5, 1977 M"sions to Titan Pioneer 11 Launched April 6, 1973 Cassini-Huygens Images: NASA Launched October 15, 1997 Pioneer 11 Could not penetrate Titan’s Atmosphere! Image Credit: NASA Vo y a &r 1 Image Credit: NASA Vo y a &r 1 What did we learn about the Atmosphere? • Composition (N2, CH4, & H2) • Variation with latitude (homogeneously mixed) • Temperature profile Mesosphere • Pressure profile Stratosphere Troposphere Image Credit: Fulchignoni, et al., 2005 Image Credit: Conway et al. -
Titan's Cold Case Files
Titan’s cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, R.N. Clark, R. Courtin, A. Hayes, L. Iess, R.E. Johnson, et al. To cite this version: C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, et al.. Titan’s cold case files - Out- standing questions after Cassini-Huygens. Planetary and Space Science, Elsevier, 2018, 155, pp.50-72. 10.1016/j.pss.2018.02.009. insu-03318440 HAL Id: insu-03318440 https://hal-insu.archives-ouvertes.fr/insu-03318440 Submitted on 10 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Planetary and Space Science 155 (2018) 50–72 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Titan's cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon a,*, R.D. Lorenz b, R.K. Achterberg c, A. Buch d, P. Coll e, R.N. Clark f, R. Courtin g, A. Hayes h, L. Iess i, R.E. -
Discovery of Volcanic Activity on Io a Historical Review
Discovery of Volcanic Activity on Io A Historical Review Linda A. Morabito1 1Department of Astronomy, Victor Valley College, Victorville, CA 92395 [email protected] Borrowing from the words of William Herschel about his discovery of Uranus: ‘It has generally been supposed it was a lucky accident that brought the volcanic plume to my view. This is an evident mistake. In the regular manner I examined every Voyager 1 optical navigation frame. It was that day the volcanic plume’s turn to be discovered.” – Linda Morabito Abstract In the 2 March 1979 issue of Science 203 S. J. Peale, P. Cassen and R. T. Reynolds published their paper “Melting of Io by tidal dissipation” indicating “the dissipation of tidal energy in Jupiter’s moon Io is likely to have melted a major fraction of the mass.” The conclusion of their paper was that “consequences of a largely molten interior may be evident in pictures of Io’s surface returned by Voyager 1.” Just three days after that, the Voyager 1 spacecraft would pass within 0.3 Jupiter radii of Io. The Jet Propulsion Laboratory navigation team’s orbit estimation program as well as the team members themselves performed flawlessly. In regards to the optical navigation component image extraction of satellite centers in Voyager pictures taken for optical navigation at Jupiter rms post fit residuals were less than 0.25 pixels. The cognizant engineer of the Optical Navigation Image Processing system was astronomer Linda Morabito. Four days after the Voyager 1 encounter with Jupiter, after performing image processing on a picture of Io taken by the spacecraft the day before, something anomalous emerged off the limb of Io. -
The Titan Mare Explorer Mission (Time): a Discovery Mission to a Titan Sea
EPSC Abstracts Vol. 6, EPSC-DPS2011-909-1, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 The Titan Mare Explorer Mission (TiME): A Discovery mission to a Titan sea E.R. Stofan (1), J.I. Lunine (2), R.D. Lorenz (3), O. Aharonson (4), E. Bierhaus (5), J. Boldt (3), B. Clark (6), C. Griffith (7), A-M. Harri (8), E. Karkoschka (7), R. Kirk (9), P. Mahaffy (10), C. Newman (11), M. Ravine (12), M. Trainer (10), E. Turtle (3), H. Waite (13), M. Yelland (14) and J. Zarnecki (15) (1) Proxemy Research, Rectortown, VA 20140; (2) Dipartimento di Fisica, Università degli Studi di Roma “Tor Vergata", Rome, Italy; (3) Applied Physics Laboratory, Johns Hopkins University, Laurel MD 20723; (4) California Institute of Technology, Pasadena, CA 91125; (5) Lockheed Martin, Denver, CO; (6) Space Science Institute, Boulder CO 80301; (7) LPL, U. Arizona, Tucson, AZ 85721; (8) Finnish Meteorological Institute, Finland; (9) U.S.G.S. Flagstaff, AZ 86001; (10) NASA Goddard SFC, Greenbelt, MD 20771; (11) Ashima Research, Pasadena, CA 91106; (12) Malin Space Science Systems, San Diego, CA 92191; (13) SWRI, San Antonio, TX 78228; (14) NOC, Univ. Southampton, Southampton, UK SO14 3ZH; (15) PSSRI, The Open University, Milton Keynes, UK MK7 6B Abstract subsurface liquid hydrocarbon table, and are likely hold some combination of liquid methane and liquid The Titan Mare Explorer (TiME) is a Discovery class ethane. Titan’s seas probably contain dissolved mission to Titan, and would be the first in situ amounts of many other compounds, including exploration of an extraterrestrial sea. -
Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC
DOCUMENT RESUME ED 312 131 SE 050 900 AUTHOR Morrison, David; Samz, Jane TITLE Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch. REPORT NO NASA-SP-439 PUB DATE 80 NOTE 208p.; Colored photographs and drawings may not reproduce well. AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 ($9.00). PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PC09 Plus Postage. DESCRIPTORS Aerospace Technology; *Astronomy; Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; Scientists; *Space Exploration; *Space Sciences IDENTIFIERS *Jupiter; National Aeronautics and Space Administration; *Voyager Mission ABSTRACT This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are:(1) "The Jovian System" (describing the history of astronomy);(2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4) "Science and Scientsts" (listing 11 science investigations and the scientists in the Voyager Mission);.(5) "The Voyage to Jupiter--Cetting There" (describing the launch and encounter phase);(6) 'The First Encounter" (showing pictures of Io and Callisto); (7) "The Second Encounter: More Surprises from the 'Land' of the Giant" (including pictures of Ganymede and Europa); (8) "Jupiter--King of the Planets" (describing the weather, magnetosphere, and rings of Jupiter); (9) "Four New Worlds" (discussing the nature of the four satellites); and (10) "Return to Jupiter" (providing future plans for Jupiter exploration). Pictorial maps of the Galilean satellites, a list of Voyager science teams, and a list of the Voyager management team are appended. Eight technical and 12 non-technical references are provided as additional readings.