Cassini Observations of Flow-Like Features in Western Tui Regio, Titan, J.W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cassini RADAR Images at Hotei Arcus and Western Xanadu, Titan: Evidence for Geologically Recent Cryovolcanic Activity S
GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L04203, doi:10.1029/2008GL036415, 2009 Click Here for Full Article Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity S. D. Wall,1 R. M. Lopes,1 E. R. Stofan,2 C. A. Wood,3 J. L. Radebaugh,4 S. M. Ho¨rst,5 B. W. Stiles,1 R. M. Nelson,1 L. W. Kamp,1 M. A. Janssen,1 R. D. Lorenz,6 J. I. Lunine,5 T. G. Farr,1 G. Mitri,1 P. Paillou,7 F. Paganelli,2 and K. L. Mitchell1 Received 21 October 2008; revised 5 January 2009; accepted 8 January 2009; published 24 February 2009. [1] Images obtained by the Cassini Titan Radar Mapper retention age comparable with Earth or Venus (500 Myr) (RADAR) reveal lobate, flowlike features in the Hotei [Lorenz et al., 2007]). Arcus region that embay and cover surrounding terrains and [4] Most putative cryovolcanic features are located at mid channels. We conclude that they are cryovolcanic lava flows to high northern latitudes [Elachi et al., 2005; Lopes et al., younger than surrounding terrain, although we cannot reject 2007]. They are characterized by lobate boundaries and the sedimentary alternative. Their appearance is grossly relatively uniform radar properties, with flow features similar to another region in western Xanadu and unlike most brighter than their surroundings. Cryovolcanic flows are of the other volcanic regions on Titan. Both regions quite limited in area compared to the more extensive dune correspond to those identified by Cassini’s Visual and fields [Radebaugh et al., 2008] or lakes [Hayes et al., Infrared Mapping Spectrometer (VIMS) as having variable 2008]. -
Mapping and Planetary Spatial Infrastructure Team
Mapping and Planetary Spatial Infrastructure Team INTRODUCTION SSB study on NASA PSD R&A Reorganization National Academy of Sciences, 13 May 2016 Jani Radebaugh, [email protected] Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products and associated geospatial infrastructure are integral to the success of the planetary science enterprise – Influence all phases of the mission lifecycle for science investigations and operations – Strategic needs must be anticipated and prioritized by the community – PSS recommended a “Cartography Research and Analysis Group” [CRAG] in Fall 2014. -
Titan's Near Infrared Atmospheric Transmission and Surface
40th Lunar and Planetary Science Conference (2009) 1863.pdf TITAN’S NEAR INFRARED ATMOSPHERIC TRANSMISSION AND SURFACE REFLECTANCE FROM THE CASSINI VISUAL AND INFRARED MAPPING SPECTROMETER. P. Hayne1,2 and T. B. McCord2, J. W. Barnes3, 1University of California, Los Angeles (595 Charles Young Drive East, Los Angeles, CA 90095; [email protected]), 2The Bear Fight Center (Winthrop, WA), 3University of Idaho (Moscow, ID). 1. Introduction: Titan’s near infrared spectrum is At the top of the atmosphere, the outgoing intensity is dominated by absorption by atmospheric methane. then Direct transmission of radiation from the surface ⎛ A 1 ⎞ (1) I↑ / I= A ⋅ e −τ(1/ μ1 + 1/ μ 2 ) +β ⋅ ⎜ e −τ/ μ1 + ⎟ through the full atmosphere is nearly zero, except in top 0 ⎜ μ μ ⎟ several methane “windows”. In these narrow spectral ⎝ 1 2 ⎠ regions, Titan’s surface is visible, but our view is akin where A is the (monochromatic) surface albedo, β ≡ to peering through a dirty window pane, due to both Γ/I0 is the ratio of the diffuse emergent intensity to the direct incident intensity at the top of the atmosphere, N2-induced pressure broadening of adjacent CH4 lines and multiple scattering by stratospheric haze particles. and μ2 is the cosine of the emergence angle. To solve Measured reflectance values in the methane windows Equation (1), we make an initial guess τ for the total are therefore only partially representative of true sur- optical depth, so that face albedo. ⎡ ⎛ A 1 ⎞⎤ (2) τ≈ − μ′lnII / −β ⋅⎜ ⋅e −τ/ μ1 + ⎟ + μ′ln A Using a simple radia- ⎢ 0 ⎜ ⎟⎥ ⎣ ⎝ μ1 μ 2 ⎠⎦ tive transfer model, we where μ′ ≡ /1 ( 1+ 1 ). -
Mapping and Planetary Spatial Infrastructure Team
Mapping and Planetary Spatial Infrastructure Team Report to the Planetary Science Subcommittee March 2016 Introducing the Mapping and Planetary Spatial Infrastructure Team • Mosaics, geologic maps, derived regional and global data products, and associated geospatial infrastructure are integral to the success of the planetary science enterprise – Influences all phases of the mission lifecycle for science investigations and operations – Strategic needs must be anticipated and prioritized by the community – PSS recommended a “Cartography Research and Analysis Group” [CRAG] in Fall 2014. • A team fulfilling this role now exists in the form of MAPSIT – MAPSIT succeeds former PCGMWG and assumes strategic planning role But wait, I thought we did this already? • No, we didn’t (really!) • From 1974 to 2012: – 1974: Lunar Photography and Cartography Committee (LPACC) – 1977: Lunar and Planetary Photography and Cartography Committee (LPPACC) – 1979: Planetary Cartography Working Group (PCWG) – Produced two 10-year plans and a supplement (at right) – 1994-2012: Planetary Cartography & Geologic Mapping Working Group (PCGMWG) • PCGMWG ceased “advisory” role in ~2011 • PCGMWG disbanded 2015 with end of PGG • Looming gap for NASA long-term strategic planning and prioritization activities until addressed by MAPSIT formation 3/9/2016 3 Enabling Planetary Science • Planetary Spatial Infrastructure is the technology, policies, standards, human resources, software tools, and related activities necessary to Geographic Information Science and Technology acquire, -
EPSC-DPS2011-303, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
EPSC Abstracts Vol. 6, EPSC-DPS2011-303, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Cryovolcanism on Titan: a re-assessment in light of new data from Cassini RADAR and VIMS R. M.C. Lopes (1), R. Kirk (2), K. Mitchell (1), Alice LeGall (1), E. Stofan (3), J. Barnes (4), J. Kargel (5), M. Janssen (1), A. Hayes (6), J. Radebaugh (7), S. Wall (1), and the Cassini RADAR Team (1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, [email protected] (2) U.S. Geological Survey, Flagstaff, Arizona, USA , (3) Proxemy Research, Bowie, Maryland, USA; (4) University of Idaho, Moscow, Idaho, USA, (5) University of Arizona, Tucson, Arizona, USA, (6) California Institute of Technology, Pasadena, California, USA; (7) Brigham Young University, Provo, Utah, Abstract several cryovolcanic centers, including a tall peak and deep pit, which we consider the best example of Several surface features on Titan have been a cryovolcanic edifice so far found on Titan. interpreted as cryovolcanic in origin, however, alternative explanations have been proposed and the 2. Data existence of cryovolcanism on Titan is still debatable. Here we re-examine candidate cryovolcanic features The SAR Titan data, as of late 2010, comprise a rich using a combination of Cassini data sets from dataset that covers 48 % of Titan’s surface RADAR and VIMS to re-examine these features. We (excluding overlap), well distributed in both latitude find that Sotra Facula is the strongest candidate for a and longitude. SAR images are combined with other cryovolcanic origin, the interpretation being strongly data, where available, to re-examine candidate supported by new topographic data. -
NAI Icy Satellites Environments Focus Group
Discussion with NAI Icy Satellites Environments Focus Group NASA Outer Planets Assessment Group William B McKinnon, Chair Washington University Sept 8, 2010 1 What is OPAG? The Outer Planets Assessment Group (OPAG) was established by NASA in late 2004 to identify scientific priorities and pathways for solar system exploration beyond the asteroid belt. The group consists of an ~15-person steering committee which actively solicits input from the scientific community and reports its findings to NASAʼs Planetary Science Division and the Planetary Science Subcommittee of NASAʼs Advisory Council." !It is OPAG's goal that its findings represent the broad consensus of the scientific community. OPAG holds meeting semiannually, each attended by ~100 scientists. The meetings consist of a broad range of presentations from NASA HQ representatives, mission PIs, individual scientists, and technology researchers. Meetings often include breakout sessions where scientists work in small groups to prioritize scientific questions and mission requirements at specific destinations (e.g., Europa, Titan, giant planets, midsize icy satellites such as Enceladus). Community input is solicited at the meetings and through the OPAG email list containing over 500 members." 2 Outer Planets Assessement Group Steering Committee William McKinnon, Washington University (Chair, 2009- )" Torrence Johnson*, Jet Propulsion Laboratory" Fran Bagenal, University of Colorado (Chair, 2004-2009)" Bill Kurth, University of Iowa" Sushil Atreya, University of Michigan" Ralph Lorenz, JHU/APL" -
Lava Lakes in the Solar System Rosaly LOPES , Jani RADEBAUGH
Lava Lakes in the Solar System Rosaly LOPES1#+, Jani RADEBAUGH2, Tracy GREGG3, Robert HOWELL4, Andrew HARRIS5 1 Jet Propulsion Laboratory, California Institute of Technology, United States, 2 Brigham Young University , United States, 3 SUNY Buffalo, United States, 4 University of Wyoming, United States, 5 Universite Blaise Pascal, Clermont-Ferrand, France #Corresponding author: [email protected] +Presenter Lava lakes are rare on Earth but common on Jupiter’s moon Io and likely occurred on other bodies such as Venus and Mars. Data from the Galileo spacecraft revealed that many Ionian paterae (calderas) are active, and several showed greater thermal emission around their edges (Lopes et al., 2004), which can be explained by the crust of a lava lake breaking up against the patera walls. Observations from both Galileo and ground-based telescopes reveal that several paterae, including Pele and Janus, have persistently high thermal output with regions of exposed, high-temperature lavas, indicative of large, vigorously active lava lakes similar to the Marum/Mbwelesu lava lake on Ambrym, Vanuatu. The volcano on Io that is the largest and has the greatest thermal output, Loki, has semi-periodic cycles of intense activity, interpreted as the foundering crust of a lava lake (Rathbun et al., Geophys. Res. Lett. 29; de Kleer et al., DPS, 2016), similar to the crusted, active lava lakes in Erta Ale, Ethiopia and Halemaumau, Hawaii. Alternatively, Loki Patera could be underlain by a thin, persistent magma “lens” that feeds thin, temporary lava lakes within the patera (Gregg and Lopes, 2008, Icarus 194). One significant and yet unexplained difference between Ionian and terrestrial paterae is the existence of cold “islands” in Ionian paterae that persist for decades (e.g., observed by both Voyagerand Galileo) despite intense and likely continuous activity. -
Saturn Satellites As Seen by Cassini Mission
Saturn satellites as seen by Cassini Mission A. Coradini (1), F. Capaccioni (2), P. Cerroni(2), G. Filacchione(2), G. Magni,(2) R. Orosei(1), F. Tosi(1) and D. Turrini (1) (1)IFSI- Istituto di Fisica dello Spazio Interplanetario INAF Via fosso del Cavaliere 100- 00133 Roma (2)IASF- Istituto di Astrofisica Spaziale e Fisica Cosmica INAF Via fosso del Cavaliere 100- 00133 Roma Paper to be included in the special issue for Elba workshop Table of content SATURN SATELLITES AS SEEN BY CASSINI MISSION ....................................................................... 1 TABLE OF CONTENT .................................................................................................................................. 2 Abstract ....................................................................................................................................................................... 3 Introduction ................................................................................................................................................................ 3 The Cassini Mission payload and data ......................................................................................................................... 4 Satellites origin and bulk characteristics ...................................................................................................................... 6 Phoebe ............................................................................................................................................................................... -
The Lakes and Seas of Titan • Explore Related Articles • Search Keywords Alexander G
EA44CH04-Hayes ARI 17 May 2016 14:59 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations The Lakes and Seas of Titan • Explore related articles • Search keywords Alexander G. Hayes Department of Astronomy and Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853; email: [email protected] Annu. Rev. Earth Planet. Sci. 2016. 44:57–83 Keywords First published online as a Review in Advance on Cassini, Saturn, icy satellites, hydrology, hydrocarbons, climate April 27, 2016 The Annual Review of Earth and Planetary Sciences is Abstract online at earth.annualreviews.org Analogous to Earth’s water cycle, Titan’s methane-based hydrologic cycle This article’s doi: supports standing bodies of liquid and drives processes that result in common 10.1146/annurev-earth-060115-012247 Annu. Rev. Earth Planet. Sci. 2016.44:57-83. Downloaded from annualreviews.org morphologic features including dunes, channels, lakes, and seas. Like lakes Access provided by University of Chicago Libraries on 03/07/17. For personal use only. Copyright c 2016 by Annual Reviews. on Earth and early Mars, Titan’s lakes and seas preserve a record of its All rights reserved climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan’s surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the seas can constrain the age and nature of atmospheric methane, as well as its interaction with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. -
Mapping and Planetary Spatial Infrastructure Team
The Ol Doinyo Lengai volcano, Tanzania, as an analogue for Carbon Planets Jani Radebaugh, Rory Barnes, Jeff Keith Department of Geological Sciences, Brigham Young University, Department of Physics, University of Washington Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets MEDUSA FOSSE FORMATION, MARS DUNHUANG, CHINA, 40 N 93 E Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets TITAN Field Analogues are Valuable • Knowledge of landforms on other planets is incomplete • Similar physics, materials can be found on Earth • Earth landscapes can yield important information about other planets DUNHUANG, CHINA, 40 N 93 E Field Analogues are Valuable • Yardangs: Wind important, but also bedrock, rainfall, gravels LUT DESERT, IRAN Field Analogues of exoplanets?? • We’ve yet to even “see” an exoplanet • They are planetary surfaces worth studying as we do for our solar system TRAPPIST-1 Carbon Planets • Postulated to form in carbon-rich nebular environments (Seager and Kuchner 2005) • When C/O>0.8 in the disk (Bond et al. 2010) • May reach >75% carbon in the habitable zone! ARTIST LUYTEN Carbon Planets • Even in our solar system, carbon is enriched in certain locations • Mercury may have had graphite crust on magma ocean (Peplowski et al. 2016) Mercury MESSENGER M-dwarf Carbon Planets • Carbon planets orbiting M-dwarf stars could spend millions/billions of years closer than the habitable zone during pre-main-sequence (e.g. -
Titan's Cold Case Files
Titan’s cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, R.N. Clark, R. Courtin, A. Hayes, L. Iess, R.E. Johnson, et al. To cite this version: C.A. Nixon, R.D. Lorenz, R.K. Achterberg, A. Buch, P. Coll, et al.. Titan’s cold case files - Out- standing questions after Cassini-Huygens. Planetary and Space Science, Elsevier, 2018, 155, pp.50-72. 10.1016/j.pss.2018.02.009. insu-03318440 HAL Id: insu-03318440 https://hal-insu.archives-ouvertes.fr/insu-03318440 Submitted on 10 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Planetary and Space Science 155 (2018) 50–72 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Titan's cold case files - Outstanding questions after Cassini-Huygens C.A. Nixon a,*, R.D. Lorenz b, R.K. Achterberg c, A. Buch d, P. Coll e, R.N. Clark f, R. Courtin g, A. Hayes h, L. Iess i, R.E. -
Lineations and Structural Mapping of Io's Paterae and Mountains
1 Lineations and structural mapping of Io’s paterae and mountains: Implications for internal stresses Alexandra A. Ahern, Jani Radebaugh, Eric H. Christiansen, Ronald A. Harris Brigham Young University Department of Geological Sciences, S-389 ESC, Provo, UT 84606 Abstract Io is the most volcanically active and tidally influenced body in the solar system. Its paterae and mountains are among its most distinguishing features. Paterae, similar to calderas, are volcano- tectonic collapse features, often with active lava flows on their floors. Io’s mountains are some of the highest in the solar system and contain many linear features that reveal global and regional stresses. This study investigates the relationship of linear features associated with paterae and mountains to stress fields associated with proposed mechanisms of formation: tidal forces, crustal loading, and local tectonics. 1. Introduction global scale processes. Paterae and Io, the innermost of the Galilean mountains are widely distributed and satellites, experiences great amounts of among Io’s most important volcanic and tidal stress as it orbits between Jupiter tectonic features. As such, they can and the other Galilean moons Europa, provide valuable insight into the Ganymede, and Callisto. This has volcanic and tectonic processes enabled accumulation of vast stores of operating on Io. internal heat (Peale et al., 1979) and has made Io the most volcanically active object in the solar system (Davies, 2001), evidenced by abundant lava flows and lava fountains (Radebaugh et al., 2001). Io also contains some of the largest mountains in the solar system, supported by a silicate-rich crust interlayered with sulfurous frosts (Schenk et al., 2001).