19 68ApJ. . .151. .105D o 2 2_11 in arcsecandmin. The AstrophysicalJournal,Vol.151,January1968 Reference Catalogue(G.andA.deVaucouleurs1964)arecentre-evaluationofdata posed night-skyluminosity.Untilthepresentstudyonlyavailableinformationonto- plate. grain focusofthe36-inchreflector(scale1mm= 16'H9) oftheMcDonaldObservatory. October 5and6,1961,December27,1962,with theUBVphotometeratCasse- photographs. Wereporthereonourattemptstoderiveintegratedmagnitudesandcolors in thesesystems. on theLocalGroup(deVaucouleurs1967). reflector ofMcDonaldObservatory. in theUBVsystemfromdirectphotoelectricscansacrosswith36-inch known becauseoftheextremefaintnessevenbrightertheseobjects;typically The trueabundanceofthisgalaxytypeinspacemaybemuchlargerthanonemight detected outtoanaveragediameterinexcessofI. The effectiveequivalentradiusis(r*)=9Í4wherefi(B)25.2magsec“andthesystemmaybe of theNavalObservatoryisshowninFigure1(Plate 5). other nearbygroups(vandenBergh1959)andclusters(Reaves1956,1966).Thevalu- po(B) =24.6magsec“inanenvelopeofgradientUCa)d(logI)/da——0.077minJ—1.15kpc“. scans withthe36-inchreflectorareB—9.04{M—13.0ifmAT=220),{BV)+063, able studiesbyHodge(1961a,6),includingstarcountsinFornax,haverenewedinterest tal magnitudewastheearlyestimatebyShapley(1939)ofwg=9.0,fromsmall-scale the surfacebrightnessincentralregionsisonlyone-tenth(orless)ofsuperim- assume fromtherelativelysmallsampleofadozenorsoatpresentknowninLocal the Sculptorsystem,typeexampleoflow-luminositydwarfspheroidalgalaxies. Group (deVaucouleurs1967).Similarsystemsareapparentlypresentinabundance —34°43', —34°44',—34°46'(1950)nearthecenterof thesystemmadeduringthreenights, e T P (U —B)=+008.. © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The observationsconsistofphotoelectricscans(96, 9v,6u)atdeclinations—34°41', % Exceptwhereunitsoftimeare explicitlystated,allangulardimensionsinthispaperare expressed A photographofthe40'X47'centralregion systemwiththe40-inchreflector The luminositydistribution,integratedmagnitudes,andcolorsarestillverypoorly * ContributionsfromtheMcDonaldObservatoryofUniversity ofTexas,No.414. The Fornaxsystem(Shapley1938,1939;BaadeandHubble1939)is,togetherwith The photometryiscomparedwithstarcountsbyHodgeandnewona40-inchreflector The luminositydistributionshowsanearlyuniformcentralcoreof(r)6'andmaximumbrightness General informationontheFornaxsystemisgiveninTable1,mainlyfrom Integrated magnitudesandcolorsoftheFornaxdwarfspheroidalgalaxyderivedfromphotoelectric f NowatU.S.NavalObservatory,FlagstaffStation. INTEGRATED MAGNITUDESANDCOLORINDICES II. INSTRUMENTALANBOBSERVATIONALBATA OF THEFORNAXDWARFGALAXY* G. BEVaUCOTJLEURSANBH.D.ABLEsf Received October24,1966;revisedMay31,1967 McDonald Observatory,UniversityofTexas I. INTROBUCTION ABSTRACT 105 PLATE 5

Fig. 1.— dwarf . 40-inch reflector, U.S. Naval Observatory, December 1, 1964; 2 h.; 103a-D + GG 11; north at top, east at left. Dark lines show declination limits of photoelectric scans. Area of figure is approximately 40' X 47'. de Vaucotjleurs and Ables (see page 105)

© American Astronomical Society Provided by the NASA Astrophysics Data System 19 68ApJ. . .151. .105D Different fieldapertureswereusedforthe1961and1962observations.For The imageofthegalaxywasallowedtodriftacrossfieldapertureatdiurnalrate by Mr.F.Lopez.TheextinctioncoefficientsinmagnitudesarelistedTable2B. magnitudes persquaresecondofarc. parent magnitudemeasuredthroughtheholetocorrespondingsurfacebrightnessin in Table2A.Thelastcolumngivestheadditiveconstant2.5logAforconvertingap- range fromabout2to3mm. while theBrownrecorderwasdrivenatrateof0.5inch/mintime.Thiscombina- night werereducedseparatelytothel/BVsystembyacomputerprogramdeveloped ured throughairmassesgreaterthanthatoftheFornaxdwarf.Themeasuresforeach diameters oftheholeswereadopted(Nos.6and10).Theapertureconstantsarelisted observations theeffectivediametersofscanningholesweredeterminedbyrecording tion gaveascaleofabout62mm/degreeonwhichthediametersscanningholes 106 G.DEVAUCOULEURSANDH.D.ABLESVol.151 and timingstartransitsathighdeclinations;forthe1962observationsgeometric © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The photometerusedfortheobservationshasbeendescribedbyJohnson(1962). Four ofthesixtoeightJohnson-Morganstandardsobservedeachnightweremeas- I II11 I, P.. Type ... I, b. S (1950). L, B. Vo (km/sec) a (1950).. V (km/sec) ♦AfterHodge (19616)andShapley(1939). t MountWilsonvalueforglobularclusterNGC1049. Í Inglobularclusters,afterHodge(1961a). Oct. 6,1961. Oct. 5,1961. Dec. 27,1962 10.. 6.. 8 . 7.. Hole No h Date dE3 237™7 266?0, —30?2 237?3, —65?7 203?1, —64?5 _34°44' -141t/ - 7in Elements oftheFornaxSystem Effective Diameter Extinction Coefficients Instrumental Constants 161.0 115?0±0?5 114 5 148 4+05 TABLE 2B TABLE 2A TABLE 1 ¿1(6-*) 0 062 0 086 .084 Absorption correction Magnitude (pg)of Mean axisratio Mean diameter,envelope Mean diameter,core Distance (kpc) Distance modulus brightest kz(u—b) 0.255 0 259 10 772 10 034 10.595 +0010 10 041+0010 272 2 5logA 0.168 0 135 h(v) .129 [19 6-19.7f Í19.1-19 3* 22 0: 65' -95'* 15' -20' 0.23 0 2 0 65* 19 68ApJ. . .151. .105D No. 1,1968FORNAXDWARFGALAXY107 each scanasaprovisionaloriginoftheabscissascale.The“average”centerwasdeter- recorded onthetracing,andacontinuoustracewasdrawnthroughundisturbed zenith distancez*,amplifiergainG*,andaperture A*bytherelation mined byfoldingthebestscans,assumingasymmetricaleast-westluminositydistribu- each colorwasdeterminedbyaveragingthereduced scans,andfinallyageneralmean rejected becauseoflargefluctuations. passing throughthezeropoint.Thelevelschosen by thismethodagreedverywellwith with thevaluechosenfromvisualinspectionofmeancurves. scan. Asomewhatmoreobjectivedeterminationoftheskylevelispossiblefromaplot of thethree(ô*/)profilesforagivennight,meanskylevel,<5'),waschoseneach the nightskycomplicateddeterminationoflevel.Fromavisualinspection limits shownonthephotographinFigure1(Plate5). from thecenterofgalaxy. to representthetrueluminosityprofileofgalaxy.Aprominentstarwasselectedon regions andinterpolatedthroughtheaffectedbyfieldstars.Thiscurvewastaken profile wasderivedforall threenights. were plottedversus<($&>.Theproperchoiceofthe skylevelresultedinastraightline value ofthemeanskylevelwaschosenandresultingnetdeflections<5> profiles andskylevelsforthescanswithlargefluctuations. level, andthelowerlimitisreadbyextrapolationat1/r=0.Ingeneral,moreprob- where <ô'>isthemeandeflectionaboveanarbitraryreferencelevelatdistancer . Finally,eachscanwasfoldedaboutitscentertogiveameanprofile(ô')=/(r), center andQistheextinctioncoefficientforagiven color.Ameannightlyprofilein where (8)isthemeannetdeflectionofgalaxy aboveskyatanydistancerfromthe by assumingthe(6—u)and{ub)colorstobeconstantinmorereliablymeasured for eachofthevanduscanswasthendeterminedfrommeanbprofilenight for theapplicationofthismethod,upperlimitskylevelisincloseragreement outer regionsofthegalaxy,thisplotwilldefineastraightlinewhichgivesupperand of log<ô&'>versus\¡rforeachscan.Foranexponentialluminositydistributioninthe respect tothesizeofgalaxyand(2)scansshowhavea“flat”cen- the initialvisualestimatesfrommeanluminosity profiles.Twoofthevscanswere central andintermediateregions.Foreachofthe<£/><5')profilesanapproximate lower limitsfortheskylevel.Thelastmeasuredpointsetsupperlimit the skylevelhasbeendeterminedforeach.Allofscanswerewithindeclination duction sinceallthescansofaparticularcolorongivennightcanbeaveragedafter through thecenterofgalaxybecause(1)theirseparationindeclinationissmallwith tion. Theabscissaofeachscanwasadjustedtofitthiscenterbymeansthereference able valuewouldbesomewherebetweentheselimits;but,forthescansuniformenough each ofthesemethods.Themoreuniformscanswereusedtointerpolatetheouter each abscissarfornightbyaveragingthethreebluescans.Themeanskylevel tral regionofalmostuniformbrightnesswitharadiusabout6'.Thissimplifiesthere- S VW M © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem All ofthenetprofilesforagivennightwereinitially reducedtostandardvaluesof Each scanwasaccuratelylocatedonaprintofthegalaxybymeansfieldstars Within theaccuracyofmeasurementsallscanscanbeconsideredtopass To converttheaverage deflections tomagnitudes,thesurfacebrightness, Bi(in A meanbluenetdeflection(i.e.,abovesky)<5&>=<5&'>—<5/>wasdeterminedat In mostofthescans,particularlyvandufluctuationsinbrightness The skylevelforeachscanwasadoptedafteracarefulcomparisonoftheresultsfrom log =<5>+{A*/A)0.4[<7—G-- <2(sec**-secz)], III. MEASUREMENTSANDREDUCTION 19 68ApJ. . .151. .105D 2 -2 mean errorsdeterminedfrom the combinationofsixbluescans{inset). and lowercurvesrepresentthe meanluminositydistributionwiththeadditionandsubtraction ofthe mag/sec outsidetheatmosphere),correspondingtooneunitofdeflectionatsecz*= lows foruncertaintiesinskylevelandinterferencebyfieldstarsaswellcalibration magnitudes (±0.018),(3)thetransformationequations(±0.015),and(4)amplifier The meanerrorincludesthatof(1)theapertureconstants(±0.015),(2)standard two nights,includingtheapertureconstants,is 2.50 wascomputedforthetwobestnights(Oct.5and6).TheaveragevalueB\ of thetypicalnightskyhavingaBsurfacebrightness22.2magsec). profile (anaverageofsixfoldedbluescans)isshowninFigure2{inset).Thiserroral- center anddecreasingbrightnesslevelsdowntothedetectionthreshold(~0.1percent errors. steps (±0.008). 108 G.DEVAUCOULEURSANDH.D.ABLESVol.151 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Fig. 2.—Meanblueluminosity distributionalongtheeast-westdirectionfromsixscans. Theupper As thefigureshows,error“blowsup”rapidlyatincreasingdistancesfrom The meanerrorofthesurfacebrightnessinmagnitudesatanypointblue 0 10'20*30* r 2 Bi =27.79±0.03(m.e.)magsec“. 19 68ApJ. . .151. .105D -2 -112 -2 -1 -2 o -1 No. 1,1968FORNAXDWARFGALAXY109 The centralbrightnessisjuo=24.6magsec. min, wherer*=(ab)istheequivalentradius. for theorientationandellipticity,meanluminositygradientsouterregions be soclosetoourphotoelectricvalue.Foranapparentmodulusm—M=22.0the factors intoaccount,weestimatethemeanerrorofintegratedBmagnitudetobe log /<—1.0(ja>30.3magsec)isonly1.1percentofthetotalluminosity. night-sky lightforr*>13')topermitreliablecolormeasurementsbypresenttechniques. 0.05. Intheouterregionsbrightnesslevelistoolow(underone-twentiethof integrated magnitudedependsonthemeanerrorofZ?i,integrationerrorsand The integrationwascarriedoutforellipticalisophotes.Becauseoftheexponentialdecay Hodge’s valuesforthemajoraxisorientation(54°)andellipticity(Hodge19616,Fig.6). a andbrepresentthecorrespondingdistancesalongmajorminoraxesbasedon are G(a)=¿(logI)/da—0.077minalongthemajoraxisandG(r*)—0.098 It isremarkablethatShapley’searly(1939)photographicestimate=9.0:should respond todistancesfromthecenteralongeast-westdirectionofscanswhile about 56'=3.7kpc.Thiscorrespondstoathresholdbrightness29.5magsec. Figure 2.Itisapproximatelyexponentialforr>10'.AdoptingHodge’s(19616)values dwarf ellipticals(Baum1959;deVaucouleurs1961) asshowninFigure3. where themeanerrorsareestimatedfromresiduals foreachnight. in theFornaxsystemmeasuredindependentlyby us(tobepublishedshortly)andwith absolute magnitudeisMt{B)——13.0. the meancolorsofbluest(unreddened)globular clustersinthegalaxy(Johnson regions theaveragecolorindicesare{B—F)o^+0.66±0.02,<£/0.00 the errorsofadoptedmeanluminosityprofileshowninFigure2.Takingallthese the extrapolationto/=0issubjectlittleuncertainty.Theintegratedluminosityfor papers bydeVaucouleurs (1962)anddeVaucouleursJ.Page(1962). (de Vaucouleurs1967),I=4.0kpcandthemeanluminositygradientsareG{a) 1959). Theyalsoagreewiththecolor-colorandcolor-absolute magnituderelationsfor ±0.15 mag.Theadoptedtotalmagnitudeintheblueis U —Bcolorsweremeasuredononlytwonights.Inthebetter-determinedcentral — 1.15kpcandG(r*)=—1.46. © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The maximumdetectablediameterfromthescansalongeast-westdirectionis The meanblueluminositydistributionderivedfromsixeast-westscansisshownin The integratedcolorsouttor*=20'are The integratedluminositydistributionisgiveninTable3.rvaluescor- If weacceptadistanceof230kpc(BaadeandHubble1939correctedforzeropoint The totalBmagnitudeismt=18.90—2.5log88329.04.meanerrorofthe These meancolorsagreecloselywiththeintegrated colorsofseveralglobularclusters The notationanddefinition ofthephotometricparameterswillbefoundin previous B —Vcolorsweredeterminedfromobservationsoneachofthethreenights,but IV. THEBLUELUMINOSITYPROFILEANDINTEGRATEDMAGNITUDE (U —B/=0.08±0.15(m.e.)(66scans,uscans) , — F>=0.63±0.08(m.e.)(96scans,7vscans), VI. PHOTOMETRICPARAMETERS mriB) —9.04±0.15(m.e.). V. COLORINDICES 19 68ApJ. . .151. .105D 1 24 58 25 29 25 04 24 79 radius *=(ab)'*;A—area(min*);P,2P=differentialandintegrated luminosity;k(r*)=relativeintegrated 25 54 25 79 30 29 30 04. 28 79 27 79 27 04 26 79 26 54 26 29 26 04 a =a/a«;log////«. 29 54 28 54 28 04 27 29 29 79 29.29 29.04. 27 54 28 29 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem t FromHodge’s(1961)data. t a*ainmagsec“*;/=*relativeunits;r—distance(min)alongeast-west direction;a=semimajoraxis;r*—equivalent PB +1 2 +1 282 + 10 +1 1 +0 7 +0 9 +0 6 +0 8 +0 2 +0 3 +0 4 +0.5 +0 1 -1 0 -0 9 -0 8 -0 7 -0 5 -0 3 -0 2 -0 1 -0 6 -0 4 log I 0 20 75 31 25 30 2 21 8 10 2 29 15 28 1 24 95 23 9 22 85 27 05 26 0 17 6 16 5 14 45 11 3 19 7 18 65 15 5 13 4 12 3 0 8 9 7 2 Integrated LuminosityDistribution! 38 3 36 9 35 7 20 2 34 4 33 1 31 8 30 5 25 4 22 8 21 5 12 0 10 4 26 65 24 1 29 2 27 95 18 9 17.6 16 3 14 85 13 55 0 8 4 at 0 00 0 64 b/at .64 .65 .67 .65 .64 .64 .64 .64 65 68 66 73 64 70 64 64 64 64 64 64 64 64 TABLE 3 30 6 20 3 29 5 28 5 27 5 21 3 17 2 16 2 15 2 14 2 11.1 26 5 25 4 24 4 23 4 22 4 13 2 12 1 19 3 18 2 0 00 9 8 7 7.15 2948 2736 2563 2378 2033 2205 1297 1166 1046 1715 1427 1869 1572 932 457 309 633 387 239 825 545 725 161 0 P=1X&a 2804 1096 496 494 324 392 202 240 284 697 792 146 169 100 0 102 117 23 8 38 8 48 4 24 4 33 0 80 8 58 4 68 4 3900 4692 2804 6771 5884 5389 8137 7619 7379 6379 8732 8254 7821 7095 8708 8684 8651 8612 8505 8437 7991 8832 8563 8356 SP 0 0 000 0 318 0 863 0 836 0 803 0 531 0 442 0 767 0 610 0 986 0.921 0 905 0 886 0.722 0 666 0 989 0 983 0 979 0 975 0 935 0 970 0 963 0 955 0 946 1 0 Hr*) 0 00 0 91 0 73 3 34 3 12 3 00 2 10 3 22 2 22 1 88 1 05 2 89 2 66 2 55 2 44 2 33 1 76 1 65 1 54 1 42 1 30 1 18 2 78 1 99 +0 242 +0 06 +0 16 -0 74 -0 64 -0 54 -0 44 -0.34 -0 14 -0 04 -0 24 -1 04 -0 84 -2 04 -1 94 -1 64 -0 94 -1 84 -1 74 -1 34 -1 24 -1 14 -1 54 -1 44 log/ 19 68ApJ. . .151. .105D 2 -2 _s andglobularclusters. brightness ß(B)(inmagsec“ ). Table 4. one-tenth ofthenight-skyluminosity.Otherphotometricparametersarelistedin The meansurfacebrightnessinsidetheeffectiveradiusisn,=24.8magsecorabout The equivalenteffectiveradiusis=9Í40.63kpc,wheren25.2magsec. e © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The relativeintegratedluminositycurve,k{r‘)=L{r’)/L,isshowninFigure4. Fig. 4—Relativeintegrated luminosity k(r*)versusequivalentradiusr*.Inset;k surface Fig. 3.—Relationbetweenintrinsiccolor(U—F)andabsoluteBmagnitudefordwarfelliptical T 0 FORNAX DWARFGALAXY111 112 G. DE VAÜCOULEURS AND H. D. ABLES Vol. 151

VII. COMPARISON WITH STAR COUNTS In Figure 5 we compare the luminosity distribution with the average star density according to Hodge (1961#, Table III). The agreement is not good: (1) In the central region the star counts indicate a rather sharp peak in the stellar density while the photometry shows a nearly constant luminosity plateau for r < 6'; (2) in the inter- mediate and outer regions the gradient of the luminosity curve is much steeper than indicated by the star counts. By integration of the star counts we derive an effective radius, r¿ = 12Í3, significantly larger than the photometric value of re* = 9Í4. Both studies agree, however, that the system is detectable to a major diameter in excess of Io = 4kpc. The discrepancy between star counts and photometry can be explained in part by the

TABLE 4 Photometric Parameters of the Galaxy Distance modulus (pg) m — M = 22.0: Galactic absorption A. A = 0.2 Geometric distance (kpc) A = 230 Integrated luminosity! hr = 8832 Surface brightness for unit defl } £i = 27.79 Total . mt(B) = 9.04 Absolute magnitude...... Mt{B) = -13.0 Integrated color indices B — V = +0.63, U - B = +0.08 Major axis position angle§|| 6 = 54° Threshold surface brightness J .. Pm — 29.5 Major axis at threshold! . 2am — 68' = 4.5 kpc Minor axis at threshold! . 2bm = 44' = 2.9 kpc Major axis at /* = 25.0 mag sec“2 . 2u(25) = 20:i = 1.3 kpc Luminosity within p = 25.0 mag sec“2 ¿(25) = 0.423 Gradient of exponential component G{a) — —0.077 min“1 = —1.15 kpc“1 Equivalent gradient of exp. comp. G(r*) = —0.098 min“1 = —1.46 kpc“1 Observed central brightness} . mo — 24.6 Parameters at & = 1/4: Semimajor axis . ui = 7 .'15 Axis ratio .. Ç! = 0.74 Equivalent radius rS = 6.'2 Surface brightness} . ju, - 24.7 Parameters at Æ = 1/2 (effective): Semimajor axis ae = ll'AS Axis ratio. . qe = 0.69 Equivalent radius Ye = 9.'4 Surface brightness} at re*. pe = 25.2 Mean surface brightness# inside pJ = 15.9 Parameters at Æ = 3/4: Semimajor axis . . us = 17.T Axis ratio . qz = 0.65 Equivalent radius rz* = 13.'9 Surface brightness} .. ... pz = 26.2 Concentration indices . C21 = Te/ri = 1.52 C32 = rz/re* = 1.48 t Units of surface brightness per square minute. t Mag (B) per square second. § Based on Hodge’s (1961) values for the orientation and ellipticity. II 40-inch plate gives 0 = 46°. # Mag (B) per square minute.

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 68ApJ. . .151. .105D -1 difference. A partialrepetitionofbothcountsandphotometrywasperformedtohelpresolvethe measurements nearthesouthernhorizon:“Theaveragesurfacebrightnesswithina us toquotepreviouslyunpublishedresultsofobservationsmadebyhimwiththe100- inherent difficultyoftheobservationsandinpartbydifferentdefinitionscenter. inch reflectorofMountWilsonObservatorywhenlowcloudsoverLosAngelesallowed No. 1,1968FORNAXDWARFGALAXY113 of thebrightestforegroundstarCD—35°919andmarkedHinFigure6. is 0.69±O.^.”Thepeakdensity,accordingtoHodge,located32"south,270"east circle of0Í93radius,centeredonthecentralpeak,is=23.78±0.14andcolor regions, butthesurfacebrightnessismorethandouble thatindicatedbyourvalueof Abscissae aremeasuredfrom(C)fortheluminosityprofileandFlagstaffcounts{H) per unitsquarevariesbetween 0and9,indicatingthatcrowdingerrorsare notserious. Naval Observatory61-inchreflectoronJanuary11, 1967.Anareanearthecenterof Hodge’s counts. /¿o =24.6.Thediscrepancyof0.8magismuch greater thantheestimatedcombined system definedbythescanswasmeasuredwith an aperture1.'9indiametercentered errors (0.3mag).Additionalindependentmeasurements weremade,therefore,withthe Figs. 2-5)arebasedonaverages of25squares(5X5countingsquares)with aGaussian and i?—F=+0.61,incloseagreementwiththe McDonalddata. 180" eastand10"southofthereferencestarCD—35°919. Theresultis£=24.71 (scale =29'7mm)overanarea37'X38'60 X62squares.Thenumberofstars © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Concerning thephotometry,Dr.P.Hodgehaskindlycommunicatedandpermitted The smoothedisopleths in Figure6(whichmaybecomparedwithHodge’s [19616] To checkthestarcounts,oneofus(H.D.A.)has countedstarsonthe40-inchplate The coloragreeswellenoughwithourmoreprecise value0.66±0.02forthecentral Fig. 5.—ComparisonofmeanluminosityIandstellardensitydistributionsTV*alongmajoraxis. B 19 68ApJ. . .151. .105D -2 -2 dental peakPor#istakenastheorigin.Similarfluctuationsareobservedinlow- west asymmetrydiscussedbyHodgevanisheswhenthecenterCratherthanacci- does notappearinHodge’scounts,noristhereanytraceofHFigure6.Theeast- density globularclusterssuchaswCentauri(BurrandGascoigne1956). various centroidswithrespecttotheCDstararelistedinTable5. weight functionofstandarddeviationcr~lunit^Oí6thatcorrespondstoabout in Figure6bycontour4.Becauseofthefluctuationssmallnumbers,center system isbetterdefinedbyconsideringthecenterofsymmetryCroughlyelliptical east, 1Í3northofthereferencestar,butseveralothersonlyslightlylowerareindicated outer isoplethssuchascontour25starsmin).Therectangularcoordinatesofthe 1Í3 resolution.ThereisamainpeakcountPinsidecontour5(N>12starsmin),75 114 G.DEVAUCOULEURSANDH.D.ABLESVol.151 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem It isdoubtfulthatthedensitypeaksHandPhavemuchsignificance;wenote 19 68ApJ. . .151. .105D -2 -2 No. 1,1968FORNAXDWARFGALAXY115 sumed foregrounddensityof0.9starminderivedbycomparisonwithHodge^data. of thetotalluminositysystemsincemt—9.0andm*=m2.SlogNt19.7 they gowiththephotoelectricluminosityprofile.Thecountswerecorrectedforanas- along themajoraxisreflectedaboutC.Thenewcountsagreereasonablywellasfar diaphragm ontheADHSchmidttelescope.Webelievethatmagnitudelimitismuch correct. NowaccordingtoHodge(1961a)thestellarpopulationinmagnituderange of 0.52starminat=—65°correspondsthroughSeares’stables(Scares,vanRhijn, fainter thanestimatedbyHodgeandintherange20.5-20.7.Thebackgrounddensity 2500 tothelimitingmagnitudeofplateADH5094exposedfor90minwitha24-inch observations. preliminary draftofthispaperandDr.P.Hodge foradditionalinformationonhis and Joyner1925)to20.3intheoldphotographicscalethatrequiresapositive 19.1

Copyright 1968. The University of Chicago. Printed in U.S.A.

© American Astronomical Society • Provided by the NASA Astrophysics Data System