19 68Apj. . .151. .105D the Astrophysical Journal, Vol. 151

Total Page:16

File Type:pdf, Size:1020Kb

19 68Apj. . .151. .105D the Astrophysical Journal, Vol. 151 .105D The Astrophysical Journal, Vol. 151, January 1968 .151. 68ApJ. 19 INTEGRATED MAGNITUDES AND COLOR INDICES OF THE FORNAX DWARF GALAXY* G. BE VaUCOTJLEURS ANB H. D. ABLEsf McDonald Observatory, University of Texas Received October 24,1966; revised May 31,1967 ABSTRACT Integrated magnitudes and colors of the Fornax dwarf spheroidal galaxy derived from photoelectric scans with the 36-inch reflector are BT — 9.04 {MT — —13.0 if m — AT = 22 0), {B — V) = +0 63, (U — B) = +0 08. The luminosity distribution shows a nearly uniform central core of (r) 6' and maximum brightness po(B) = 24.6 mag sec“2 in an envelope of gradient UCa) = d(logI)/da — —0.077 min_1J = —1.15 kpc“1. 2 The effective equivalent radius is (re*) = 9Í4 where fie(B) = 25.2 mag sec“ and the system may be detected out to an average diameter in excess of Io. The photometry is compared with star counts by Hodge and with new counts on a 40-inch reflector plate. I. INTROBUCTION The Fornax system (Shapley 1938, 1939; Baade and Hubble 1939) is, together with the Sculptor system, the type example of the low-luminosity dwarf spheroidal galaxies. The true abundance of this galaxy type in space may be much larger than one might assume from the relatively small sample of a dozen or so at present known in the Local Group (de Vaucouleurs 1967). Similar systems are apparently present in abundance in other nearby groups (van den Bergh 1959) and clusters (Reaves 1956, 1966). The valu- able studies by Hodge (1961a, 6), including star counts in Fornax, have renewed interest in these systems. The luminosity distribution, integrated magnitudes, and colors are still very poorly known because of the extreme faintness of even the brighter of these objects; typically the surface brightness in the central regions is only one-tenth (or less) of the superim- posed night-sky luminosity. Until the present study the only available information on to- tal magnitude was the early estimate by Shapley (1939) of wPg = 9.0, from small-scale photographs. We report here on our attempts to derive integrated magnitudes and colors in the UBV system from direct photoelectric scans across the system with the 36-inch reflector of McDonald Observatory. General information on the Fornax system is given in Table 1, mainly from the Reference Catalogue (G. and A. de Vaucouleurs 1964) and a recent re-evaluation of data on the Local Group (de Vaucouleurs 1967). A photograph of the 40' X 47' central region of the system with the 40-inch reflector of the Naval Observatory is shown in Figure 1 (Plate 5). II. INSTRUMENTAL ANB OBSERVATIONAL BATA The observations consist of photoelectric scans (96, 9v, 6u) at declinations — 34°41', —34°43', —34°44',—34°46' (1950) near the center of the system made during three nights, October 5 and 6, 1961, and December 27,1962, with the UBV photometer at the Casse- grain focus of the 36-inch reflector (scale 1 mm = 16'H9) of the McDonald Observatory. * Contributions from the McDonald Observatory of the University of Texas, No. 414. f Now at U.S. Naval Observatory, Flagstaff Station. % Except where units of time are explicitly stated, all angular dimensions in this paper are expressed in arc sec and arc min. 105 © American Astronomical Society • Provided by the NASA Astrophysics Data System PLATE 5 Fig. 1.—Fornax dwarf galaxy. 40-inch reflector, U.S. Naval Observatory, December 1, 1964; 2 h.; 103a-D + GG 11; north at top, east at left. Dark lines show declination limits of photoelectric scans. Area of figure is approximately 40' X 47'. de Vaucotjleurs and Ables (see page 105) © American Astronomical Society Provided by the NASA Astrophysics Data System .105D 106 G. DE VAUCOULEURS AND H. D. ABLES Vol. 151 .151. The image of the galaxy was allowed to drift across the field aperture at the diurnal rate while the Brown recorder was driven at the rate of 0.5 inch/min of time. This combina- 68ApJ. tion gave a scale of about 62 mm/degree on which the diameters of the scanning holes 19 range from about 2 to 3 mm. The photometer used for the observations has been described by Johnson (1962). Different field apertures were used for the 1961 and 1962 observations. For the 1961 observations the effective diameters of the scanning holes were determined by recording and timing star transits at high declinations; for the 1962 observations the geometric diameters of the holes were adopted (Nos. 6 and 10). The aperture constants are listed in Table 2A. The last column gives the additive constant 2.5 log A for converting ap- parent magnitude measured through the hole to the corresponding surface brightness in magnitudes per square second of arc. Four of the six to eight Johnson-Morgan standards observed each night were meas- ured through air masses greater than that of the Fornax dwarf. The measures for each night were reduced separately to the l/BV system by a computer program developed by Mr. F. Lopez. The extinction coefficients in magnitudes are listed in Table 2B. TABLE 1 Elements of the Fornax System a (1950) .. 2h37™7 Mean diameter, core 15' -20' S (1950) . _34°44' Mean diameter, envelope 65' -95'* II, P .. 203?1, —64?5 Mean axis ratio 0 65* III, b11 . 237?3, —65?7 Distance modulus 22 0: L, B . 266?0, —30?2 Absorption correction 0 2 Type ... dE3 Distance (kpc) 0.23 V (km/sec) - 7in Magnitude (pg) of Í19.1-19 3* Vo (km/sec) -141t/ brightest star [19 6-19.7f ♦AfterHodge (19616) and Shapley (1939). t Mount Wilson value for globular cluster NGC 1049. Í In globular clusters, after Hodge (1961a). TABLE 2A Instrumental Constants Hole No Effective Diameter 2 5 log A 7.. 115?0±0?5 10 041+0 010 8 . 148 4+0 5 10.595 + 0 010 6.. 114 5 10 034 10.. 161.0 10 772 TABLE 2B Extinction Coefficients Date ¿1(6-*) kz(u—b) h(v) Oct. 5, 1961. 0 086 0 259 0 135 Oct. 6,1961. .084 272 .129 Dec. 27, 1962 0 062 0.255 0.168 © American Astronomical Society • Provided by the NASA Astrophysics Data System .105D No. 1, 1968 FORNAX DWARF GALAXY 107 .151. III. MEASUREMENTS AND REDUCTION 68ApJ. Each scan was accurately located on a print of the galaxy by means of the field stars 19 recorded on the tracing, and a continuous trace was drawn through the undisturbed regions and interpolated through the regions affected by field stars. This curve was taken to represent the true luminosity profile of the galaxy. A prominent star was selected on each scan as a provisional origin of the abscissa scale. The “average” center was deter- mined by folding the best scans, assuming a symmetrical east-west luminosity distribu- tion. The abscissa of each scan was adjusted to fit this center by means of the reference stars. Finally, each scan was folded about its center to give a mean profile(ô') =/(r), where <ô'> is the mean deflection above an arbitrary reference level at the distance r from the center of the galaxy. Within the accuracy of the measurements all the scans can be considered to pass through the center of the galaxy because (1) their separation in declination is small with respect to the size of the galaxy and (2) the scans show the galaxy to have a “flat” cen- tral region of almost uniform brightness with a radius of about 6'. This simplifies the re- duction since all the scans of a particular color on a given night can be averaged after the sky level has been determined for each. All of the scans were within the declination limits shown on the photograph in Figure 1 (Plate 5). In most of the scans, particularly the v and u scans, fluctuations in the brightness of the night sky complicated the determination of the sky level. From a visual inspection of the three (ô*/) profiles for a given night, a mean sky level, <5S'), was chosen for each scan. A somewhat more objective determination of the sky level is possible from a plot of log <ô&'> versus \¡r for each scan. For an exponential luminosity distribution in the outer regions of the galaxy, this plot will define a straight line which gives upper and lower limits for the sky level. The last measured point sets the upper limit for the sky level, and the lower limit is read by extrapolation at 1/r = 0. In general, the more prob- able value would be somewhere between these limits; but, for the scans uniform enough for the application of this method, the upper limit for the sky level is in closer agreement with the value chosen from visual inspection of the mean curves. The sky level for each scan was adopted after a careful comparison of the results from each of these methods. The more uniform scans were used to interpolate the outer profiles and sky levels for the scans with large sky fluctuations. A mean blue net deflection (i.e., above sky) <5&> = <5&'> — <5/> was determined at each abscissa r for each night by averaging the three blue scans. The mean sky level for each of the v and u scans was then determined from the mean b profile for each night by assuming the (6 — u) and {u — b) colors to be constant in the more reliably measured central and intermediate regions. For each of the <£/> and <5M') profiles an approximate value of the mean sky level was chosen and the resulting net deflections <5V> and <5W> were plotted versus <($&>.
Recommended publications
  • Arxiv:Astro-Ph/0507464V2 14 Jan 2009 Eso H Ai Fitgae A-Vpooer.The Photometry
    Astrophysics and Space Science DOI 10.1007/s•••••-•••-••••-• Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy M. Catelan1,2 c Springer-Verlag •••• Abstract We review and discuss horizontal branch importance of bright type II Cepheids as tracers of (HB) stars in a broad astrophysical context, includ- faint blue HB stars in distant systems is also empha- ing both variable and non-variable stars. A reassess- sized. The relationship between the absolute V mag- ment of the Oosterhoff dichotomy is presented, which nitude of the HB at the RR Lyrae level and metallic- provides unprecedented detail regarding its origin and ity, as obtained on the basis of trigonometric parallax systematics. We show that the Oosterhoff dichotomy measurements for the star RR Lyr, is also revisited. and the distribution of globular clusters in the HB Taking into due account the evolutionary status of RR morphology-metallicity plane both exclude, with high Lyr, the derived relation implies a true distance mod- statistical significance, the possibility that the Galac- ulus to the LMC of (m−M)0 = 18.44 ± 0.11. Tech- tic halo may have formed from the accretion of dwarf niques providing discrepant slopes and zero points for galaxies resembling present-day Milky Way satellites the MV (RRL) − [Fe/H] relation are briefly discussed. such as Fornax, Sagittarius, and the LMC—an argu- We provide a convenient analytical fit to theoretical ment which, due to its strong reliance on the ancient model predictions for the period change rates of RR RR Lyrae stars, is essentially independent of the chem- Lyrae stars in globular clusters, and compare the model ical evolution of these systems after the very earli- results with the available data.
    [Show full text]
  • Distance Scale and Variable Stars in Local Group Galaxies: LMC and Fornax
    1 Ò ÚÖÐ ×ØÖ× Ò ÄÓ ÖÓÙÔ ÐÜ× ÄÅ Ò ÓÖÒÜ M. Maio1, L. Baldacci1, G. Clementini1, C. Greco1, M. Gullieuszik2, E.V. Held2, E. Poretti3, L. Rizzi2, A. Bragaglia1, E. Carretta2, L. Di Fabrizio4, R. Gratton2, E. Taribello1 1 INAF - Osserv. Astron. di Bologna, via Ranzani 1, 40127 Bologna, Italy 2 INAF - Osserv. Astron. di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 INAF - Osserv. Astron. di Brera, Via Bianchi 46, 23807 Merate, Italy 4 INAF - Centro Galileo Galilei & Telescopio Nazionale Galileo, PO Box 565, 38700 Santa Cruz de La Palma, Spain Abstract. We briefly review our photometric and spectroscopic study of RR Lyrae variable stars in the bar of the Large Magellanic Cloud (LMC), that allowed us to reconcile the so-called short and long distance moduli of the LMC on the value µLMC = 18.51 ± 0.085 mag. Then we present preliminary results from the photometric study of a 33’×34’ area in the Fornax dwarf spheroidal galaxy containing the stellar clusters Fornax 3 (NGC 1049) and 6. We identified about 1000 candidate variables in this field of Fornax, and report the first detection and measure of about 60 RR Lyrae variable stars in the globular cluster Fornax 3. Key words. Magellanic Clouds – Fornax – Variable stars – Distance scale 1. Introduction 2. The Large Magellanic Cloud Variable stars are important to set the as- tronomical distance scale, and to sample The distance to the LMC has for a long time remained uncertain notwithstanding arXiv:astro-ph/0303666v2 28 Apr 2003 different stellar populations in galaxies. RR Lyrae stars, in particular, trace the old- its vicinity to the Milky Way.
    [Show full text]
  • Globular Cluster Club
    Globular Cluster Observing Club Raleigh Astronomy Club Version 1.2 22 June 2007 Introduction Welcome to the Globular Cluster Observing Club! This list is intended to give you an appreciation for the deep-sky objects known as globular clusters. There are 153 known Milky Way Globular Clusters of which the entire list can be found on the seds.org site listed below. To receive your Gold level we will only have you do sixty of them along with one challenge object from a list of three. Challenge objects being the extra-galactic globular Mayall II (G1) located in the Andromeda Galaxy, Palomar 4 in Ursa Major, and Omega Centauri a magnificent southern globular. The first two challenge your scope and viewing ability while Omega Centauri challenges your ability to plan for a southern view. A Silver level is also available and will be within the range of a 4 inch to 8 inch scope depending upon seeing conditions. Many of the objects are found in the Messier, Caldwell, or Herschel catalogs and can springboard you into those clubs. The list is meant for your viewing enrichment and edification of these types of clusters. It is also meant to enhance your viewing skills. You are encouraged to view the clusters with a critical eye toward the cluster’s size, visual magnitude, resolvability, concentration and colors. The Astronomical League’s Globular Clusters Club book “Guide to the Globular Cluster Observing Club” is an excellent resource for this endeavor. You will be asked to either sketch the cluster or give a short description of your visual impression, citing seeing conditions, time, date, cluster’s size, magnitude, resolvability, concentration, and any star colors.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Galactic and Extragalactic Studies, I. Notes on Fornax
    VOL. 25, 1939 ASTRONOMY: H. SHAPLEY 565 GALACTIC AND EXTRAGALACTIC STUDIES, I. NOTES ON THE PECULIAR STELLAR SYSTEMS IN SCULPTOR AND FORNAX By HARLOW SHAPLEY HARVARD COLLEGE OBSERVATORY Communicated October 7, 1939 1. Results of a General Search.-The examination of one hundred and fifty-two small-scale plates, covering something more than fifteen thousand square degrees of the sky in galactic latitudes higher than 120°, has failed to show any other objects similar to the stellar systems in Sculptor and Fornax reported last year.' The plates were made at the Boyden Station, Bloemfontein, with the AX camera attached to the Bruce tele- scope; the exposures are each uniformly three hours in length; the scale is 1 mm = 11 5. Since the new objects in Sculptor and Fornax are readily shown on such plates, we must infer from the fruitless search that stellar systems of this sort are infrequent in the neighborhood of our Galaxy and probably not frequent within a million light years.2 In the course of the search, two new globular clusters and two new objects of the Magellanic Cloud type have been noted. The new globular clusters are in (or superposed upon) the Fornax system. One, of magnitude 14.2, is in the position 2h 35m 585, -34058' (1900), practically at the center of the system.3 The other, a loose globular cluster near the southern edge, is in the position 2h 34m 33S, _35°14', and of magnitude approximately 14.4. There is a third very faint cluster of unidentified character, magnitude 16.6:, at 2" 35m 56', -34°51', which is also prob- ably a part of the Fornax system.
    [Show full text]
  • DEEP-SKY CHALLENGE OBJECTS by Alan Dyer a Nd Alister Ling the Beauty of the Deep Sky Extends Well Past the Best and Brightest Objects
    322 Challenge Objects DEEP-SKY CHALLENGE OBJECTS BY ALAN DYER A ND ALISTER LING The beauty of the deep sky extends well past the best and brightest objects. The attraction of observing is not the sight of an object itself but our intellectual contact with what it is. A faint, stellar point in Virgo evokes wonder when you try to fathom the depths of this quasar billions of light-years away. The eclectic collection of objects below is designed to introduce some “fringe” catalogs while providing challenging targets for a wide range of apertures. Often more important than sheer aperture are factors such as the quality of sky, quality of the optics, use of an appropriate filter, and the observer’s experience. Don’t be afraid to tackle some of these with a smaller telescope. Objects are listed in order of right ascension. Abbreviations are the same as in THE MESSIER CATALOGUE and THE FINEST NGC OBJECTS, with the addition of DN = dark nebula and Q = quasar. Chart # indicates the chart in which the object can be found in Uranometria 2000.0 Deep Sky Atlas (2nd Ed., 2001). The last column suggests the minimum aperture, in millimetres, needed to see that object. Most data are taken from Sky Catalogue 2000.0, Vol. 2. Some visual magnitudes are from other sources. RA (2000) Dec Size Minimum Aperture # Object Con Type h m ° ′ mv ′ Chart # mm 1 NGC 7822 Cep E/RN 0 03.6 +68 37 — 60 × 30 8 300 large, faint emission nebula; rated “eeF”; also look for E/R nebula Ced 214 (associated w/ star cluster Berkeley 59) 1° S 2 IC 59 Cas E/RN 0 56.7 +61 04 — 10 × 5
    [Show full text]
  • THE LOCAL GROUP of GALAXIES* Sidney Van Den Bergh
    THE LOCAL GROUP OF GALAXIES* Sidney van den Bergh National Research Council of Canada Dominion Astrophysical Observatory Herzberg Institute of Astrophysics 5071 West Saanich Road Victoria, British Columbia, V8X 4M6 Canada e-mail: [email protected] Summary Hubble's (1936, p. 125) view that the Local Group (LG) is "a typical, small group of nebulae which is isolated in the general field" is confirmed by modern data. The total number of certain and probable Group members presently stands at 35. The half-mass radius of the Local Group is found to be Rh . 350 kpc. The zero-velocity surface, which separates the Local Group from the field that is expanding with the Hubble flow, has a radius Ro = 1.18 " 0.15 Mpc. The 12 total mass of the LG is MLG = (2.3 " 0.6) x 10 Mu . Most of this mass appears to be concentrated in the Andromeda and Milky Way subgroups of the LG. The total luminosity of the Local Group is found to be MV = -22.0:. This yields a mass-to-light ratio (in solar units) of M/LV = 44 " 12. The solar motion with respect to the LG is 306 " 18 km s-1 , directed towards an apex at R = 99E " 5E, - 1 and b = -4E " 4E. The velocity dispersion within the LG is Fr = 61 " 8 km s . The galaxies NGC 3109, Antlia, Sextans A and Sextans B appear to form a distinct grouping with Vr = +114 " 12 kpc relative to the LG, that is located * Based, in part, on a series of lectures given at the University of Victoria in the early spring of 1999.
    [Show full text]
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†‰€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H x x NGC 3511 GALXY CRT 11 03.4 -23 05 11 6 m 2.1 m 76 SBc vF,vL,mE 98 x x NGC 3513 GALXY CRT 11 03.8 -23 15 11.5 2.9 m 2.4 m 75 SBb vF,vL,mE 98 IC 2627 GALXY CRT 11 09.9 -23 44 12 2.6 m 2.1 m SBbc eF,L,R,stell N 98 NGC 3573 GALXY CEN 11 11.3 -36 53 12.3 3.6 m 1 m 4 Sa eF,S,R,glbM,3 st 11 f 98 NGC 3571 GALXY CRT 11 11.5 -18 17 12.1 3 m 0.9 m 94 SBa pF,pL,iF,bM 98 B,pL,E,vsmbMN,2 B st x NGC 3585 GALXY HYA 11 13.3 -26 45 9.9 5.2 m 3.1 m 107 Elliptical 98 tri NGC 3606 GALXY HYA 11 16.3 -33 50 12.4 1.5 m 1.4 m Elliptical eF,S,R,gbM 98 x x x NGC 3621 GALXY HYA 11 18.3 -32 49 9.7 12.4 m 5.7 m 159 SBcd cB,vL,E 160,am 4 st 98 NGC 3673 GALXY HYA 11 25.2 -26 44 11.5 3.7 m 2.4 m 70 SBb F,vL,gvlbM,*7 s 6' 98 PK 283+25.1 PLNNB HYA 11 26.7 -34 22 12.1 188 s 174 s 98 x NGC 3693 GALXY CRT 11 28.2 -13 12 13 3.4 m 0.7 m 85 Sb cF,S,E,gbM 98 NGC 3706 GALXY CEN 11 29.7 -36 24 11.3 3.1 m 1.8 m 78 E-SO pB,cS,R,psmbM 98 NGC 3717 GALXY HYA 11 31.5 -30 19 11.2 6.2 m 1 m 33 Sb pB,S,mE,*13 att 98 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Appendix Appendix
    Appendix Appendix Abbreviations Here general abbreviations, as used in the text, are explained. Excluded: galaxy classifica- tion (Table 1.2), catalog designations and names (Chapter 3), publications (see next Appendices), or directions (e.g., NW). AGN Active galactic nucleus BCD Blue compact dwarf (galaxy) BSO Blue stellar object CCD Charge coupled device CDM Cold dark matter DSS Digital Sky Survey fst Faintest star GA Great attractor GC Globular cluster GRB Gamma ray burst HII HII region HDF Hubble Deep Field HST Hubble Space Telescope LBV Luminous blue variable LF Luminosity function LG Local Group LPR Light pollution reduction (filter) LSB Low surface brightness (galaxy) OC Open cluster PN Planetary nebula POSS Palomar Observatory Sky Survey QSO Quasi stellar object (quasar) SC Star cloud SCT Schmidt-Cassegrain telescope SDSS Sloan Digital Sky Survey SSC Super star cluster UHC Ultra high contrast (filter) ULIRG Ultra luminous infrared galaxy WR Wolf-Rayet (galaxy) ZOA Zone of avoidance 230 General Literature Books on Galaxies and Related Subjects Appendix Binney, J., Merrifield, M., Galactic Astronomy, Princeton University Press, Princeton, NJ, 1998 Bok, B. J., Bok, P. F., The Milky Way, Harvard University Press, Cambridge, MA, 1981 Combes, F., Boisse, P., Mazure, A., Blanchard, A., Galaxies and Cosmology, Springer- Verlag, Heidelberg, 2002 Elmegreen, D. M., Galaxies and Galactic Structure, Prentice-Hall Inc., Upper Saddle River, NJ, 1998 Ferris, T., Galaxies, Stewart, Tabori & Chang Publ., New York, NY, 1982 Hodge, P. W., Galaxies, Harvard University Press, Cambridge, MA, 1986 Hubble, E. P., Realm of the Nebulae, Dover Publ., Mineola, NY, 1958 Jones, M., Lambourne, R. (eds), An Introduction to Galaxies and Cosmology, Cambridge University Press, Cambridge, 2004 Keel, C.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • For – Objektauswahl NGC
    For – Objektauswahl NGC NGC 686 NGC 857 NGC 1210 NGC 1326 NGC 1366 NGC 1385 NGC 1428 NGC 689 NGC 897 NGC 1217 NGC 1327 NGC 1387 NGC 1459 NGC 696 NGC 922 NGC 1255 NGC 1336 NGC 1371 NGC 1396 NGC 698 NGC 964 NGC 1288 NGC 1339 NGC 1373 NGC 1398 NGC 727 NGC 986 NGC 1292 NGC 1341 NGC 1374 NGC 1399 NGC 749 NGC 1049 NGC 1302 NGC 1344 NGC 1375 NGC 1404 NGC 775 NGC 1079 NGC 1306 NGC 1350 NGC 1379 NGC 1406 NGC 823 NGC 1097 NGC 1310 NGC 1351 NGC 1380 NGC 1412 NGC 824 NGC 1165 NGC 1316 NGC 1360 NGC 1381 NGC 1425 NGC 854 NGC 1201 NGC 1317 NGC 1365 NGC 1382 NGC 1427 Zur Objektauswahl: Nummer anklicken Sternbild- Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken For Sternbildübersichtskarte Auswahl NGC 686_689_775 Aufsuchkarte Auswahl NGC 696_698_727_749 Aufsuchkarte Auswahl NGC 823 Aufsuchkarte Auswahl NGC 824_854_857_897 Aufsuchkarte Auswahl NGC 922 Aufsuchkarte Auswahl NGC 964_986 Aufsuchkarte Auswahl NGC 1049 Aufsuchkarte Auswahl NGC 1079_1097 Aufsuchkarte Auswahl NGC 1165 Aufsuchkarte Auswahl NGC 1201_1210_1255 Aufsuchkarte Auswahl NGC 1217_1310_1316_1317_1326 Aufsuchkarte Auswahl NGC 1288_1339_1344_1350_1366_1406_1425 Aufsuchkarte Auswahl NGC 1292_1302_06_27_60_71_85_98_1412_59 Aufsuchkarte Auswahl NGC 1336_1341_1365 Aufsuchkarte Auswahl NGC 1351_73_74_75_79_80_81_82_87_96_99_1404_27_28Aufsuchkarte Auswahl NGC 686 Übersichtskarte Aufsuch- Auswahl karte NGC 689 Übersichtskarte Aufsuch- Auswahl karte NGC 696_698 Übersichtskarte Aufsuch- Auswahl karte NGC 727 Übersichtskarte Aufsuch-
    [Show full text]