This Article Appeared in a Journal Published by Elsevier. the Attached Copy Is Furnished to the Author for Internal Non-Commerci
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs. -
Bacteroides Gingivalis, and Bacteroides Endodontalis in a New Genus, Porphyromonas H
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1988, p. 128-131 Vol. 38, No. 1 0020-7713/88/010128-04$02.00/0 Copyright 0 1988, International Union of Microbiological Societies Proposal for Reclassification of Bacteroides asaccharolyticus , Bacteroides gingivalis, and Bacteroides endodontalis in a New Genus, Porphyromonas H. N. SHAH1* AND M. D. COLLINS’ Department of Oral Microbiology, London Hospital Medical College, London El 2AD,l and Division of Microbiology, AFRC Institute of Food Research, Shinfeld, Reading RG2 9AT,= United Kingdom The asaccharolytic, pigmented Bacteroides, Bacteroides asaccharolyticus, Bacteroides gingivalis, and Bacte- roides endodontalis, form a group of relatively homogeneous species which differ markedly in biochemical and chemical properties from the type species of Bacteroides, Bacteroides fragilis (Castellani and Chalmers), such that they should not be retained within this genus. Therefore, we propose that Bacteroides asaccharolyticus (Holdeman and Moore) Finegold and Barnes, Bacteroides gingivalis Coykendhll, Kaczmarek and Slots, and Bacteroides endodontalis van Steenbergen, van Winkelhoff, Mayrand, Grenier and de Graaff be reclassified in a new genus, Porphyromonas, as Porphyromonas asaccharolytica comb. nov., Porphyromonas gingivalis comb. nov., and Porphyromonas endodontalis comb. nov., respectively. In Bergey ’s Manual of Determinative Bacteriology, 8th quite unrelated to the type species of the genus Bacteroides, ed. (12), the asaccharolytic, pigmented Bacteroides were Bacteroides fragilis. All of the asaccharolytic, pigmented regarded as a single homogeneous taxon, Bacteroides mela- bacteroides accumulate major levels of protoheme rather ninogenicus subsp. asaccharolyticus. As the clinical signif- than protoporphyrin when cells are cultured on blood agar icance of these microorganisms in oral cavities was recog- (3,25, 27). The three species are nonfermentative and utilize nized, extensive taxonomic studies were carried out. -
Intestinal Virome Changes Precede Autoimmunity in Type I Diabetes-Susceptible Children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D
Correction MEDICAL SCIENCES Correction for “Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children,” by Guoyan Zhao, Tommi Vatanen, Lindsay Droit, Arnold Park, Aleksandar D. Kostic, Tiffany W. Poon, Hera Vlamakis, Heli Siljander, Taina Härkönen, Anu-Maaria Hämäläinen, Aleksandr Peet, Vallo Tillmann, Jorma Ilonen, David Wang, Mikael Knip, Ramnik J. Xavier, and Herbert W. Virgin, which was first published July 10, 2017; 10.1073/pnas.1706359114 (Proc Natl Acad Sci USA 114: E6166–E6175). The authors wish to note the following: “After publication, we discovered that certain patient-related information in the spreadsheets placed online had information that could conceiv- ably be used to identify, or at least narrow down, the identity of children whose fecal samples were studied. The article has been updated online to remove these potential privacy concerns. These changes do not alter the conclusions of the paper.” Published under the PNAS license. Published online November 19, 2018. www.pnas.org/cgi/doi/10.1073/pnas.1817913115 E11426 | PNAS | November 27, 2018 | vol. 115 | no. 48 www.pnas.org Downloaded by guest on September 26, 2021 Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children Guoyan Zhaoa,1, Tommi Vatanenb,c, Lindsay Droita, Arnold Parka, Aleksandar D. Kosticb,2, Tiffany W. Poonb, Hera Vlamakisb, Heli Siljanderd,e, Taina Härkönend,e, Anu-Maaria Hämäläinenf, Aleksandr Peetg,h, Vallo Tillmanng,h, Jorma Iloneni, David Wanga,j, Mikael Knipd,e,k,l, Ramnik J. Xavierb,m, and -
The Impact of Sequence Database Choice on Metaproteomic Results in Gut Microbiota Studies
Tanca et al. Microbiome (2016) 4:51 DOI 10.1186/s40168-016-0196-8 RESEARCH Open Access The impact of sequence database choice on metaproteomic results in gut microbiota studies Alessandro Tanca1, Antonio Palomba1, Cristina Fraumene1, Daniela Pagnozzi1, Valeria Manghina2, Massimo Deligios2, Thilo Muth3,4, Erdmann Rapp3, Lennart Martens5,6,7, Maria Filippa Addis1 and Sergio Uzzau1,2* Abstract Background: Elucidating the role of gut microbiota in physiological and pathological processes has recently emerged as a key research aim in life sciences. In this respect, metaproteomics, the study of the whole protein complement of a microbial community, can provide a unique contribution by revealing which functions are actually being expressed by specific microbial taxa. However, its wide application to gut microbiota research has been hindered by challenges in data analysis, especially related to the choice of the proper sequence databases for protein identification. Results: Here, we present a systematic investigation of variables concerning database construction and annotation and evaluate their impact on human and mouse gut metaproteomic results. We found that both publicly available and experimental metagenomic databases lead to the identification of unique peptide assortments, suggesting parallel database searches as a mean to gain more complete information. In particular, the contribution of experimental metagenomic databases was revealed to be mandatory when dealing with mouse samples. Moreover, the use of a “merged” database, containing all metagenomic sequences from the population under study, was found to be generally preferable over the use of sample-matched databases. We also observed that taxonomic and functional results are strongly database-dependent, in particular when analyzing the mouse gut microbiota. -
GI Ecologix™ Gastrointestinal Health & Microbiome Profile Phylo Bioscience Laboratory
INTERPRETIVE GUIDE GI EcologiX™ Gastrointestinal Health & Microbiome Profile Phylo Bioscience Laboratory DISCLAIMER: THIS INFORMATION IS PROVIDED FOR THE USE OF PHYSICIANS AND OTHER LICENSED HEALTH CARE PRACTITIONERS ONLY. THIS INFORMATION IS NOT FOR USE BY CONSUMERS. THE INFORMATION AND OR PRODUCTS ARE NOT INTENDED FOR USE BY CONSUMERS OR PHYSICIANS AS A MEANS TO CURE, TREAT, PREVENT, DIAGNOSE OR MITIGATE ANY DISEASE OR OTHER MEDICAL CONDITION. THE INFORMATION CONTAINED IN THIS DOCUMENT IS IN NO WAY TO BE TAKEN AS PRESCRIPTIVE NOR TO REPLACE THE PHYSICIANS DUTY OF CARE AND PERSONALISED CARE PRACTICES. INTRODUCTION Due to recent advancements in culture-independent molecular techniques, it is now possible to measure the composition of the human microbiota. Billions of microorganisms colonise the gastrointestinal tract, which extends from the stomach to the rectum. The presence and activity of these microorganisms is fundamental for the homeostasis of the organism. They play a key role in the development of the immune system, digestion of fibres, production of energy metabolites, vitamins and neurotransmitters and in the defence against pathogen colonisation. The disruption of these microbial communities, defined as dysbiotic profiles, has been associated with several diseases including metabolic syndrome, systemic inflammation, autoimmune and mental health conditions. Monitoring the gut microbiota is fundamental to obtain a holistic view of host current health and predict future health trajectories. The obtained information can be used to tailor specific interventions and to informatively adjust personal lifestyle choices in order to promote health. To this end, Phylobioscience have developed the GI EcologiX™ Gastrointestinal Health and Microbiome Profile, a ground-breaking tool for analysis of gastrointestinal microbiota composition and host immune responses. -
Towards a Functional Hypothesis Relating Anti-Islet Cell Autoimmunity
Endesfelder et al. Microbiome (2016) 4:17 DOI 10.1186/s40168-016-0163-4 RESEARCH Open Access Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production David Endesfelder1, Marion Engel1, Austin G. Davis-Richardson2, Alexandria N. Ardissone2, Peter Achenbach3, Sandra Hummel3, Christiane Winkler3, Mark Atkinson4, Desmond Schatz4, Eric Triplett2, Anette-Gabriele Ziegler3 and Wolfgang zu Castell1,5* Abstract Background: The development of anti-islet cell autoimmunity precedes clinical type 1 diabetes and occurs very early in life. During this early period, dietary factors strongly impact on the composition of the gut microbiome. At the same time, the gut microbiome plays a central role in the development of the infant immune system. A functional model of the association between diet, microbial communities, and the development of anti-islet cell autoimmunity can provide important new insights regarding the role of the gut microbiome in the pathogenesis of type 1 diabetes. Results: A novel approach was developed to enable the analysis of the microbiome on an aggregation level between a single microbial taxon and classical ecological measures analyzing the whole microbial population. Microbial co-occurrence networks were estimated at age 6 months to identify candidates for functional microbial communities prior to islet autoantibody development. Stratification of children based on these communities revealed functional associations between diet, gut microbiome, and islet autoantibody development. Two communities were strongly associated with breast-feeding and solid food introduction, respectively. The third community revealed a subgroup of children that was dominated by Bacteroides abundances compared to two subgroups with low Bacteroides and increased Akkermansia abundances. -
Human Microbiota Reveals Novel Taxa and Extensive Sporulation Hilary P
OPEN LETTER doi:10.1038/nature17645 Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation Hilary P. Browne1*, Samuel C. Forster1,2,3*, Blessing O. Anonye1, Nitin Kumar1, B. Anne Neville1, Mark D. Stares1, David Goulding4 & Trevor D. Lawley1 Our intestinal microbiota harbours a diverse bacterial community original faecal sample and the cultured bacterial community shared required for our health, sustenance and wellbeing1,2. Intestinal an average of 93% of raw reads across the six donors. This overlap was colonization begins at birth and climaxes with the acquisition of 72% after de novo assembly (Extended Data Fig. 2). Comparison to a two dominant groups of strict anaerobic bacteria belonging to the comprehensive gene catalogue that was derived by culture-independent Firmicutes and Bacteroidetes phyla2. Culture-independent, genomic means from the intestinal microbiota of 318 individuals4 found that approaches have transformed our understanding of the role of the 39.4% of the genes in the larger database were represented in our cohort human microbiome in health and many diseases1. However, owing and 73.5% of the 741 computationally derived metagenomic species to the prevailing perception that our indigenous bacteria are largely identified through this analysis were also detectable in the cultured recalcitrant to culture, many of their functions and phenotypes samples. remain unknown3. Here we describe a novel workflow based on Together, these results demonstrate that a considerable proportion of targeted phenotypic culturing linked to large-scale whole-genome the bacteria within the faecal microbiota can be cultured with a single sequencing, phylogenetic analysis and computational modelling that growth medium. -
Bacteroides Fragilis Type VI Secretion Systems Use Novel Effector and Immunity Proteins to Antagonize Human Gut Bacteroidales Species
Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species Maria Chatzidaki-Livanisa, Naama Geva-Zatorskya,b, and Laurie E. Comstocka,1 aDivision of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115; and bDepartment of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 Edited by Lora V. Hooper, University of Texas Southwestern, Dallas, TX, and approved February 16, 2016 (received for review November 14, 2015) Type VI secretion systems (T6SSs) are multiprotein complexes best intoxicate other bacteria or eukaryotic cells. The T6 apparatus is studied in Gram-negative pathogens where they have been shown to a multiprotein, cell envelope spanning complex comprised of core inhibit or kill prokaryotic or eukaryotic cells and are often important Tss proteins. A key component of the machinery is a needle-like for virulence. We recently showed that T6SS loci are also widespread structure, similar to the T4 contractile bacteriophage tail, which is in symbiotic human gut bacteria of the order Bacteroidales, and that assembled in the cytoplasm where it is loaded with toxic effectors (8– these T6SS loci segregate into three distinct genetic architectures (GA). 10). Contraction of the sheath surrounding the needle apparatus GA1 and GA2 loci are present on conserved integrative conjugative drives expulsion of the needle from the cell, delivering the needle and elements (ICE) and are transferred and shared among diverse human associated effectors either into the supernatant of in vitro grown gut Bacteroidales species. GA3 loci are not contained on conserved ICE bacteria, or across the membrane of prey cells. -
Toward Defining the Autoimmune Microbiome for Type 1 Diabetes
The ISME Journal (2011) 5, 82–91 & 2011 International Society for Microbial Ecology All rights reserved 1751-7362/11 www.nature.com/ismej ORIGINAL ARTICLE Toward defining the autoimmune microbiome for type 1 diabetes Adriana Giongo1, Kelsey A Gano1, David B Crabb1, Nabanita Mukherjee2, Luis L Novelo2, George Casella2, Jennifer C Drew1, Jorma Ilonen3,4,5, Mikael Knip5,6,7, Heikki Hyo¨ty5,8, Riitta Veijola5,9, Tuula Simell5,10, Olli Simell5,10, Josef Neu11, Clive H Wasserfall12, Desmond Schatz11, Mark A Atkinson12 and Eric W Triplett1 1Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA; 2Department of Statistics, University of Florida, Gainesville, FL, USA; 3Department of Clinical Microbiology, University of Kuopio, Kuopio, Finland; 4Immunogenetics Laboratory, University of Turku, Turku, Oulu, and Tampere, Finland; 5Juvenile Diabetes Research Foundation (JDRF), Center of Prevention of Type 1 Diabetes, Turku, Finland; 6Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland; 7Department of Pediatrics and Research Unit, Tampere University Hospital, Tampere, Finland; 8Department of Virology, University of Tampere, Medical School and Center for Laboratory Medicine, Tampere University Hospital, Tampere, Finland; 9Department of Pediatrics, University of Oulu, Oulu, Finland; 10Department of Pediatrics, Turku University Hospital, Turku, Finland; 11Department of Pediatrics, University of Florida, Gainesville, FL, USA and 12Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA Several studies have shown that gut bacteria have a role in diabetes in murine models. Specific bacteria have been correlated with the onset of diabetes in a rat model. However, it is unknown whether human intestinal microbes have a role in the development of autoimmunity that often leads to type 1 diabetes (T1D), an autoimmune disorder in which insulin-secreting pancreatic islet cells are destroyed. -
The Influence of Diet on the Gut Microbiome
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Health and Nutritional Sciences Graduate Students Plan B Capstone Projects Health and Nutritional Sciences 2020 The Influence of Diet on the Gut Microbiome Kayla Wede Follow this and additional works at: https://openprairie.sdstate.edu/hns_plan-b Part of the Human and Clinical Nutrition Commons The Influence of Diet on the Gut Microbiome Kayla Wede [email protected] [email protected] Kendra Kattelmann, PhD, RDN, LN, FAND Master of Science in Nutrition and Exercise Science, Department of Health and Nutritional Sciences, 2020 Department of Health and Nutritional Sciences Abstract: There is growing research that directly looks at the relationship between the human diet and the gut microbiome. This paper is a narrative review of the current literature on how the human diet can influence the gut microbiome. Without a healthy gut, bacterial imbalances can occur which have been linked to health complications. There are many factors that affect the gut microbiome such as diet, medications, and exercise. There is also limited research that looks at the macronutrients and their role in gut health. It is known that the type of food that people consume is a major influencer of the overall abundance and variety of bacteria in the microbiota. Keywords: gut microbiome, diet, lifestyle, gut microbiota, health, and disease 1 Introduction: There are over 100 trillion bacteria that live in the human gut along with viruses, fungi, and protozoa that all work together to make up the human intestinal tract. [1-3] The gut microbiome is thought to have a role in prevention and treatment for a variety of diseases including obesity, Alzheimer’s Disease, diabetes, and some types of cancer. -
Microbiome Report רינת אישק Client ID 8617 Overview
Generated on 03/03/2019 Microbiome Report רינת אישק Client ID 8617 Overview DayTwo™ provides solutions based on the DayTwoTM Microbiome Platform aiming to prevent and treat metabolic diseases, primarily diabetes and obesity. The DayTwo™ App provides personally tailored nutrition guidelines aimed at balancing blood sugar levels post meal. As high blood sugar is linked to energy dips, excessive hunger, weight gain, and increased risk for metabolic diseases like obesity and diabetes, balancing blood sugar levels presents a significant health benefit. Users provide personal and clinical information, a stool sample (we use full shotgun next generation sequencing technology to sequence the DNA of the gut microbiome), blood tests etc. - all this data is used to create for each user their personalized cloud-based DayTwo predictor. Users get a personalized report that includes details of their better and worse foods and complex meals; the ability to search and receive a prediction for various foods and meals; and a detailed report on their microbiome. 2 Introduction to the Microbiome Report Intro What is the Gut Microbiome? The importance of your Gut Microbiome Taxonomic Classification Interpretation of your Results 3 Intro Microbes are everywhere, they live in and on all animals and plants and they fill our oceans. Right now, they are on your phone, your hands (even if you wash them), in your drinking water (about a million per one milliliter!), in aerosols around you and present at any moment in time. In fact, the ecosystem of planet earth, which is composed of a multitude of habitats, contains different sets of microbes that are essential for proper ecosystem functioning. -
Covalent DNA Modifications in Phage and Bacterial Dynamics Alexandra Bryson University of Pennsylvania, [email protected]
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2016 Covalent DNA Modifications in Phage and Bacterial Dynamics Alexandra Bryson University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Microbiology Commons Recommended Citation Bryson, Alexandra, "Covalent DNA Modifications in Phage and Bacterial Dynamics" (2016). Publicly Accessible Penn Dissertations. 1627. https://repository.upenn.edu/edissertations/1627 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1627 For more information, please contact [email protected]. Covalent DNA Modifications in Phage and Bacterial Dynamics Abstract The microorganisms on and in the human body play a significant role in health and disease; however, little is known about how the interactions between these complex communities affect our wellbeing. This study examines how bacteria and phage interact through bacterial nucleases that restrict infection, such as restriction enzymes and CRISPR systems, and the covalent DNA modifications that neutralize them. Multiple targeted nucleases equip bacteria with an innate immune response against phage, and CRISPR systems provide an adaptive immune response. I report three main studies. 1) To study the human gut microbiome and virome (comprised predominately of phage), we collected fecal samples from a healthy individual over four years. From the fecal samples, total bacterial DNA and DNA from purified virus like particles (VLPs) were sequenced using Illumina and Pacific iosB cience single-molecule real-time (SMRT) sequencing to yield information about genome sequences and covalent modifications. Using computational methods we identified seven bacterial contigs and one phage contig with CRISPR arrays targeting phage contigs.