Antarctic Iceberg Resources John L

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic Iceberg Resources John L kWde avaiblre unt'4r NA~ispisoflp E 74 - 1 0.2 0 0 nthe int'-m_ WsAedig- semination ofE .,l ,o:urces Survey 'rogram in0 ;.:! .vilhout liability for any :use .made thereof." R-1354-NASA/NSF November 1973 Applicability of ERTS for Surveying Antarctic Iceberg Resources John L. Hult and Neill C. Ostrander Final Report for Period February-July 1973 (E74-10200) APPLICABILITY OF ERTS FOR N74-15008 ISURVEYING ANTA.RCTIC ICEBERG RESOURCES iFinal Report, Feb.- Jul. 1973 (RAND Corp.) Sfwp BC $5.00 CSCL 08L Unclas 57 G3/13 00200 A Report prepared for GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND 20771 Original photography may b gurclbase f,2mh ? t 'EROS Data Center e 10ih and Dakota Avenue Sioux Falls,. SH Siow1 Falls, S SANTA MONICA,and CA. 90406 The Rand Corporation 1700 Main Street Santa Monica, California 90406 This report was sponsored by the National Aeronautics and Space Administra- tion under Contract NAS5-21905 and by the National Science Foundation under Grant GI-34981. Reports of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research. Published by The Rand Corporation TECHNICAL REPORT STANDARD TITLE PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. R-1354-NASA/NSF 4. Title and Subtitle 5. Report Date APPLICABILITY OF ERTS FOR SURVEYING ANTARCTIC November 1973 ICEBERG RESOURCES 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. John L. Hult and Neill C. Ostrander R-1354-NASA/NSF 9. Performing Organization Name and Address 10. Work Unit No. The Rand Corporation MMC #59 1700 Main Street 11. Contract or Grant No. Santa Monica, California 90406 NAS5-21905 13. Type of Report and Period Covered 12. Sponsoring Agency-Name and Address Final Report Goddard Space Flight Center National Aeronautics & Space Administration Greenbelt, Maryland 20771 14. Sponsoring Agency Code Mr. Edward Crump, Code 430-GSFC 15. Supplementary Notes Prepared under support of the National Science Foundation, Office of Exploratory Research and Problem Assessment. Monitor: H. Kenneth Gayer 16. Abstract This investigation explores the applicability of ERTS to (a) determine the Antarctic sea-ice and environmental behavior that may influence the harvesting of icebergs, and (b) monitor iceberg loca- tions, characteristics, and evolution. Imagery sampling in the west- ern Antarctic between the Peninsula and the Ross Sea is used in the analysis. It is found that the potential applicability of ERTS to the research, planning, and harvesting operations can contribute impor- tantly to the promise derived from broader scope studies for the use of Antarctic icebergs to relieve a growing global thirst for fresh water. Live Antarctic readout will permit timely acquisition of imagery on every orbital pass, which will be necessary to achieve adequate glimpses through the 80 percent cloud cover. Thermal sensor bands will provide coverage in daylight or darkness. Several years of comprehensive monitoring will be necessary to characterize sea-ice and environmental behavior and iceberg evolution. Live ERTS services will assist harvesting control and claiming operations and offer a means for harmonizing entitlements to iceberg resources. The valuable ERTS services will be more cost effective than other means and will be easily justified and borne by the iceberg harvesting operation. 17. Key Words (S, lected by Author(s)) 18. Distribution Statement Antarctic icebergs, sea ice, cloud cover, topography. ERTS applications potential in Antarctica 19. Security Clossif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price' None None 56 Virginia 22151. *For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, -iii- PREFACE This is a report on Applicability of ERTS for Surveying Antarctic Iceberg Resources, a project that was accepted for participation in NASA's first Earth Resources Technology Satellite program (ERTS-1). Most of the data analysis and work reported herein were supported by the Directorate of Research Applications, Office of Exploratory Research and Problem Assessment of the National Science Foundation, under an on- going program entitled A Feasibility Study of Polar Ice as a Fresh Water Resource. A recent report from the program, Antarctic Icebergs as a Global Fresh Water Resource (R-1255-NSF), provides background orientation and preliminary concepts for using Antarctic iceberg resources, and is a basis for evaluating the potential application for ERTS. This investigation was exploratory in nature. Only enough imagery sampling was requested to determine the applicability of ERTS for sur- veying Antarctic iceberg resources and to confirm estimates of the gen- eral abundance of icebergs with suitable characteristics for economic global transport as a source of fresh water. Much more comprehensive imagery, supplemented with ground truth data, during several yearly seasonal cycles will be required to provide an adequate inventory of Antarctic icebergs, their characteristics, and their evolution, and to characterize confidently the sea-ice and environmental behavior critical to the design and planning of iceberg harvesting operations. This report should be useful for planning future ERTS programs and-in the collection of imagery for the harvesting of Antarctic ice- berg resources, as well as for potential users and suppliers of Ant- arctic icebergs and governments or agencies concerned with the develop- ment or control of these resources. The authors wish to acknowledge the assistance, comments, and sources of information provided by Edward W. Crump of the Goddard Space Flight Center, NASA; the review and comments of Rand colleagues Jeannine V. Lamar, Charles Schutz, Ralph E. Huschke, and S. M. Olenicoff; the collection of statistical details from the imagery by F. Y. Katayama; and the editorial assistance of Jeanne Dunn. The authors accept the responsibility for any errors of fact or interpretation. PRECEDING PAGE BLANK NOT FILED _v_ SUMMARY This report gives the results of an ERTS-1 investigation entitled Applicability of ERTS for Surveying Antarctic Iceberg Resources. The very limited sampling of the orbital passes over Antarctica from which imagery was obtained provided enough information to satisfy the objec- tives. This investigation is one of a series exploring various aspects of the feasibility of using Antarctic icebergs as a global fresh water resource. Related investigations that have explored concepts for trans- porting and using the icebergs indicate great promise for this continuous yield resource. However, icebergs of appropriate size and shape must be available for assembly into trains for economical transport, and methods must be found to cope successfully with the surrounding sea ice. Also, ways of harmoniously harvesting this international resource must be developed. These problems have been the concern of this in- vestigation. The results from ERTS-1 for the period from November 1972 through March 1973 reveal a general prevailing cloud cover more than 80 per- cent of the time over the Antarctic coastal and sea areas of interest. However, openings in the cloud cover can be exploited to piece together imagery of a large fraction of the earth's surface off Antarctica every few weeks, if every ERTS imaging opportunity is taken. The sea-ice belt girding Antarctica was very evident, but there was insufficient imagery to refine previous descriptions of its sea- sonal behavior. Many images of iceberg clusters were obtained that confirm the general abundance and dimensional characteristics of ice- bergs and that identify differing characteristics with different sample areas. However, the sea-ice and iceberg environment should be compre- hensively and continuously monitored for several years in order to ac- quire enough information to confidently plan and design efficient ice- berg harvesting operations. A wealth of additional information for mapping, resource exploration, and research can also.be obtained when imagery for iceberg resources is collected. PRECEDING PAGE BLANK NOT FILMED -vi- The potential application for ERTS would be greatly enhanced with live Antarctic readout to enable the timely acquisition of complete imagery on every orbital pass. Also, use of thermal bands should provide better imagery in daylight or darkness throughout the year. With these improvements in ERTS performance, the long-term monitoring for planning and design as well as the quick-use requirements for con- trol of harvesting operations and the registering of claims and entitle- ments could be achieved. ERTS has capabilities that could support new concepts for claiming service and establishing entitlements that would drastically reduce the costs, conserve the resources, harmonize the operations, and reserve the opportunity for anyone to acquire any en- titlement in the future. The iceberg harvesting operations can easily bear the costs of the ERTS services that appear to be essential to the success of economical large-scale use of the continuous Antarctic iceberg yield that other- wise melts and returns to sea water without benefit to man in the pro- cess. -vii- CONTENTS PREFACE .................................................... iii SUMMARY ...... .............................................. FIGURES ................................... ............... ix Section I. INTRODUCTION ........................................ 1 II. RESULTS FROM ERTS-1 IMAGERY ......................... 3 Cloud Cover ........... .
Recommended publications
  • Article Is Available On- J.: the International Bathymetric Chart of the Southern Ocean Line At
    The Cryosphere, 14, 1399–1408, 2020 https://doi.org/10.5194/tc-14-1399-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Getz Ice Shelf melt enhanced by freshwater discharge from beneath the West Antarctic Ice Sheet Wei Wei1, Donald D. Blankenship1, Jamin S. Greenbaum1, Noel Gourmelen2, Christine F. Dow3, Thomas G. Richter1, Chad A. Greene4, Duncan A. Young1, SangHoon Lee5, Tae-Wan Kim5, Won Sang Lee5, and Karen M. Assmann6,a 1Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas, USA 2School of GeoSciences, University of Edinburgh, Edinburgh, UK 3Department of Geography and Environmental Management, University of Waterloo, Waterloo, Ontario, Canada 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA 5Korea Polar Research Institute, Incheon, South Korea 6Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden apresent address: Institute of Marine Research, Tromsø, Norway Correspondence: Wei Wei ([email protected]) Received: 18 July 2019 – Discussion started: 26 July 2019 Revised: 8 March 2020 – Accepted: 10 March 2020 – Published: 27 April 2020 Abstract. Antarctica’s Getz Ice Shelf has been rapidly thin- 1 Introduction ning in recent years, producing more meltwater than any other ice shelf in the world. The influx of fresh water is The Getz Ice Shelf (Getz herein) in West Antarctica is over known to substantially influence ocean circulation and bi- 500 km long and 30 to 100 km wide; it produces more fresh ological productivity, but relatively little is known about water than any other source in Antarctica (Rignot et al., 2013; the factors controlling basal melt rate or how basal melt is Jacobs et al., 2013), and in recent years its melt rate has spatially distributed beneath the ice shelf.
    [Show full text]
  • FRISP 2018 PROGRAM (Abstracts Below)
    FRISP 2018 PROGRAM (Abstracts below) Monday 3rd 19h00: Arrival in Aussois. 20h00: Dinner. Tuesday 4th 7h30 – 8h30: Breakfast. 8h30 – 8h40: Welcome and Introduction (JB. Sallée & N. Joudain) 8h40 – 10h20: 5 presentations. [Weddell/FRIS, 1st part] • Svenja Ryan. • Markus Janout. • Tore Hattermann. • Camille Akhoudas. • Kaitlin Naughten. 10h20 – 10h40: Tea or coffee Break. 10h40 – 12h00: 4 presentations. [Weddell/FRIS, 2nd part] • Kjersti Daae. • Keith Nicholls. • Ole Zeising. • Lukrecia Stulic. 12h00 – 14h00: Lunch. 14h00 – 16h00: 6 presentations. [Greenland] • Lu An. • Jérémie Mouginot. • Irena Vankova. • Fiama Straneo. • Julia Christmann. • Donald Slater. 16h00 – 18h00: Posters. 19h00: Dinner. Wednesday 5th 7h30 – 8h30: Breakfast. 8h30 – 10h10: 5 presentations. [Processes and parameterizations] • Lionel Favier. • Adrian Jenkins. • Catherine Vreugdenhil. • Lucie Vignes. • Stephen Warren. 10h10 – 10h40: Tea or coffee break. 10h40 – 12h00: 4 presentations. [Ross] • Stevens Craig. • Alena Malyarenko. • Carolyn Branecky Begeman. • Justin Lawrence. 12h00 – 14h00: Lunch. 14h00 – 16h00: 6 presentations. [Amundsen] • Karen Assmann. • Tae-Wan Kim. • Yoshihiro Nakayama. • Paul Holland. • Alessandro Silvano. • Won Sang Lee. 16h00 – 18h00: Posters. 19h00: Dinner. Thursday 6th 7h30 – 8h30: Breakfast. 8h30 – 9h50: 4 presentations. [Antarctic ice sheet/Southern Ocean] • Ole Richter. • Xylar Asay-Davis. • Bertie Miles. • William Lipscomb. 9h50 – 10h20: Tea or coffee Break. 10h20 – 11h20: 3 presentations [East Antarctica] • Minowa Masahiro. • Chad Greene.
    [Show full text]
  • Glacier Change Along West Antarctica's Marie Byrd Land Sector
    Glacier change along West Antarctica’s Marie Byrd Land Sector and links to inter-decadal atmosphere-ocean variability Frazer D.W. Christie1, Robert G. Bingham1, Noel Gourmelen1, Eric J. Steig2, Rosie R. Bisset1, Hamish D. Pritchard3, Kate Snow1 and Simon F.B. Tett1 5 1School of GeoSciences, University of Edinburgh, Edinburgh, UK 2Department of Earth & Space Sciences, University of Washington, Seattle, USA 3British Antarctic Survey, Cambridge, UK Correspondence to: Frazer D.W. Christie ([email protected]) Abstract. Over the past 20 years satellite remote sensing has captured significant downwasting of glaciers that drain the West 10 Antarctic Ice Sheet into the ocean, particularly across the Amundsen Sea Sector. Along the neighbouring Marie Byrd Land Sector, situated west of Thwaites Glacier to Ross Ice Shelf, glaciological change has been only sparsely monitored. Here, we use optical satellite imagery to track grounding-line migration along the Marie Byrd Land Sector between 2003 and 2015, and compare observed changes with ICESat and CryoSat-2-derived surface elevation and thickness change records. During the observational period, 33% of the grounding line underwent retreat, with no significant advance recorded over the remainder 15 of the ~2200 km long coastline. The greatest retreat rates were observed along the 650-km-long Getz Ice Shelf, further west of which only minor retreat occurred. The relative glaciological stability west of Getz Ice Shelf can be attributed to a divergence of the Antarctic Circumpolar Current from the continental-shelf break at 135° W, coincident with a transition in the morphology of the continental shelf. Along Getz Ice Shelf, grounding-line retreat reduced by 68% during the CryoSat-2 era relative to earlier observations.
    [Show full text]
  • Interannual Variability in Transpolar Drift Ice Thickness and Potential Impact of Atlantification
    https://doi.org/10.5194/tc-2020-305 Preprint. Discussion started: 22 October 2020 c Author(s) 2020. CC BY 4.0 License. Interannual variability in Transpolar Drift ice thickness and potential impact of Atlantification H. Jakob Belter1, Thomas Krumpen1, Luisa von Albedyll1, Tatiana A. Alekseeva2, Sergei V. Frolov2, Stefan Hendricks1, Andreas Herber1, Igor Polyakov3,4,5, Ian Raphael6, Robert Ricker1, Sergei S. Serovetnikov2, Melinda Webster7, and Christian Haas1 1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 2Arctic and Antarctic Research Institute, St. Petersburg, Russian Federation 3International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, US 4College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, US 5Finnish Meteorological Institute, Helsinki, Finland 6Thayer School of Engineering at Dartmouth College, Hanover, US 7Geophysical Institute, University of Alaska Fairbanks, Fairbanks, US Correspondence: H. Jakob Belter ([email protected]) Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried 5 out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20% thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years.
    [Show full text]
  • ICENET: a Semantic Segmentation Deep Network for River Ice by Fusing Positional and Channel-Wise Attentive Features
    remote sensing Article ICENET: A Semantic Segmentation Deep Network for River Ice by Fusing Positional and Channel-Wise Attentive Features Xiuwei Zhang 1,2,† , Jiaojiao Jin 1,2,†, Zeze Lan 1,2,*, Chunjiang Li 3, Minhao Fan 4, Yafei Wang 5, Xin Yu 3 and Yanning Zhang 1,2 1 School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (X.Z.); [email protected] (J.J.); [email protected] (Y.Z.) 2 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi’an 710072, China 3 Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China; [email protected] (C.L.); [email protected] (X.Y.) 4 Hydrology Bureau of the Yellow River Conservancy Commission, Zhengzhou 450004, China; [email protected] 5 Ningxia–Inner Mongolia Hydrology and Water Resource Bureau, Baotou 014030, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 30 October 2019; Accepted: 3 January 2020; Published: 9 January 2020 Abstract: River ice monitoring is of great significance for river management, ship navigation and ice hazard forecasting in cold-regions. Accurate ice segmentation is one most important pieces of technology in ice monitoring research. It can provide the prerequisite information for the calculation of ice cover density, drift ice speed, ice cover distribution, change detection and so on. Unmanned aerial vehicle (UAV) aerial photography has the advantages of higher spatial and temporal resolution. As UAV technology has become more popular and cheaper, it has been widely used in ice monitoring.
    [Show full text]
  • Summary of Drift Ice in the Okhotsk Sea
    Title Summary of Drift Ice in the Okhotsk Sea Author(s) WATANABE, Kantaro Citation Physics of Snow and Ice : proceedings, 1(1), 667-686 Issue Date 1967 Doc URL http://hdl.handle.net/2115/20333 Type bulletin (article) International Conference on Low Temperature Science. I. Conference on Physics of Snow and Ice, II. Conference on Note Cryobiology. (August, 14-19, 1966, Sapporo, Japan) File Information 1_p667-686.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Summary of Drift Ice in the Okhotsk Sea* Kantaro WATANABE lilt ill llt *- Uil The Kobe Marine Observatory, Kobe, Japan Abstract Owing to the dominance of cold northerly winds in winter and to the thinness of the thermo­ haline convection layer in the sea due to the very low saline surface water in the northwestern half of the Okhotsk Sea, ice formation begins at its northwestern corner roughly in the middle of November. As the season advances, the ice area extends southeastwards reaching the northern tip of Sakhalin around the beginning of December, then southward along the east coast of the island. It usually reaches one of its southern tips at the end of the month and in the middle of January it reaches the northeast coast of Hokkaido, at the southernmost corner of the sea. Such southward extending of ice coverage in the western region of the sea is facilitated by the combined action of the persistent northerly wind and a notable flow of the low saline surface water in the same direction, namely the East Sakhalin Current. In other words, the current carries southward not only the ice-forming water of low salinity but also carries a large amount of icefloes with a mean thickness of 1 m.
    [Show full text]
  • Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2009 Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas Glaucia M. Fragoso College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Marine Biology Commons, and the Oceanography Commons Recommended Citation Fragoso, Glaucia M., "Hydrography and Phytoplankton Distribution in the Amundsen and Ross Seas" (2009). Dissertations, Theses, and Masters Projects. Paper 1539617887. https://dx.doi.org/doi:10.25773/v5-kwnk-k208 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Hydrography and phytoplankton distribution in the Amundsen and Ross Seas A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Science by Glaucia M. Fragoso 2009 APPROVAL SHEET This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science UAA£ a Ck laucia M. Frago Approved by the Committee, November 2009 Walker O. Smith, Ph D. Commitfbe Chairman/Advisor eborah A. BronkfPh.D Deborah K. Steinberg, Ph Kam W. Tang ■ Ph.D. DEDICATION I dedicate this work to my parents, Claudio and Vera Lucia Fragoso, and family for their encouragement, guidance and unconditional love.
    [Show full text]
  • Sea Ice Cover in Isfjorden and Hornsund, Svalbard (2000-2014) from Remote Sensing Data S
    Manuscript prepared for J. Name with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls. Date: 3 December 2015 Sea ice cover in Isfjorden and Hornsund, Svalbard (2000-2014) from remote sensing data S. Muckenhuber1, F. Nilsen2,3, A. Korosov1, and S. Sandven1 1Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47, 5006 Bergen, Norway 2University Centre in Svalbard (UNIS), P.O. Box 156, 9171 Longyearbyen, Norway 3Geophysical Institute, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway Correspondence to: S. Muckenhuber ([email protected]) Abstract. A satellite database including 16 555 satellite images and ice charts displaying the area of Isfjorden, Hornsund and the Svalbard region has been established with focus on the time period 2000–2014. 3319 manual interpretations of sea ice conditions have been conducted, resulting in two time series dividing the area of Isfjorden and Hornsund into “Fast ice” (sea ice attached to the coast- 5 line), “Drift ice” and “Open water”. The maximum fast ice coverage of Isfjorden is > 40 % in the periods 2000–2005 and 2009–2011 and stays < 30 % in 2006–2008 and 2012–2014. Fast ice cover in Hornsund reaches > 40 % in all considered years, except for 2012 and 2014, where the maximum stays < 20 %. The mean seasonal cycles of fast ice in Isfjorden and Hornsund show monthly aver- aged values of less than 1 % between July and November and maxima in March (Isfjorden, 35.7 %) 10 and April (Hornsund, 42.1 %) respectively. A significant reduction of the monthly averaged fast ice coverage is found when comparing the time periods 2000–2005 and 2006–2014.
    [Show full text]
  • A Submarine Wall Protecting the Amundsen Sea Intensifies Melting of Neighboring Ice Shelves Özgür Gürses1, Vanessa Kolatschek1, Qiang Wang1, Christian B
    The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-32 Manuscript under review for journal The Cryosphere Discussion started: 15 March 2019 c Author(s) 2019. CC BY 4.0 License. Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves Özgür Gürses1, Vanessa Kolatschek1, Qiang Wang1, Christian B. Rodehacke1, 2 1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, D-27570, Germany 5 2Danish Meteorological Institute, Copenhagen Ø, DK-2100, Denmark Correspondence to: Christian B. Rodehacke ([email protected]) Abstract Disintegration of ice shelves in the Amundsen Sea has the potential to cause sea level rise by inducing an acceleration of grounded ice streams. Moore et al (2018) proposed that using a submarine wall to block the penetration of warm water into 10 the ice shelf cavities could reduce this risk. We use a global sea ice-ocean model to show that a wall shielding the Amundsen Sea below 350 m depth successfully suppresses the inflow of warm water and reduces ice shelf melting. However, the warm water gets redirected towards neighboring ice shelves, which reduces the effectiveness of the wall. 1 Introduction One of the consequences of the warming in the Earth's climate system is sea level rise. Sea level rise will impact coastal 15 societies, and economic activities in these areas. Currently the main contributors to rising global mean sea level are a steric component driven by the thermal expansion of the warming ocean, the mass loss from the Greenland Ice Sheet, and the world-wide retreat of glaciers (Rietbroek et al., 2016).
    [Show full text]
  • Frost Considerations in Highway Pavement Design: West-Central United States
    Frost Considerations in Highway Pavement Design: West-Central United States F. C. FREDRICKSON, Assistant Materials and Research Engineer, Minnesota Depart­ ment of Highways •ASSESSING the harmful effects of frost action on highways and adjusting highway de­ sign to eliminate the harmful effects is a major effort in frost areas. The problems are roughness resulting from freezing, weakening of road structures on thawing, and the deterioration of materials and structures resulting from freeze-thaw. The number of problems, their seriousness, and the nature of corrective action depend on the se­ verity of the frost action which is r elated to geographi c location. The area considered in this report includes Arkansas, Oklahoma, Missouri, Kansas, Nebraska, Iowa, South Dakota, North Dakota and Minnesota. GENERAL INFORMATION This area involves regions of diverse climate and topography, ranging from the forest and lake region of northern Minnesota through the vast plains and lowlands to the Ozarks in Missouri and Arkansas. It can generally be subdivided into three phys­ iographic provinces: the Great Plains, Central Lowlands, and the Ozark Plateau re­ gion (Fig. 1). The Great Plains region is part of the high Piedmont area located at the foot of the Rockies. Elevations gradually rise from 1, 000 ft in the east to 5, 000 ft in the west. Grazing and winter wheat farming reflect the moisture deficiency of the area. Elevations in the Central Lowlands are fairly uniform ranging from 500 to approxi­ mately 1, 500 ft. This province, trending north-south through the area, forms the basis for the rich agricultural economy of the Cotton Belt, Corn Belt, and the Spring Wheat regions in the Dakotas.
    [Show full text]
  • I!Ij 1)11 U.S
    u... I C) C) co 1 USGS 0.. science for a changing world co :::2: Prepared in cooperation with the Scott Polar Research Institute, University of Cambridge, United Kingdom Coastal-change and glaciological map of the (I) ::E Bakutis Coast area, Antarctica: 1972-2002 ;::+' ::::r ::J c:r OJ ::J By Charles Swithinbank, RichardS. Williams, Jr. , Jane G. Ferrigno, OJ"" ::J 0.. Kevin M. Foley, and Christine E. Rosanova a :;:,­..... CD ~ (I) I ("') a Geologic Investigations Series Map I- 2600- F (2d ed.) OJ ~ OJ '!; :;:,­ OJ ::J <0 co OJ ::J a_ <0 OJ n c; · a <0 n OJ 3 OJ "'C S, ..... :;:,­ CD a:r OJ ""a. (I) ("') a OJ .....(I) OJ <n OJ n OJ co .....,...... ~ C) .....,0 ~ b 0 C) b C) C) T....., Landsat Multispectral Scanner (MSS) image of Ma rtin and Bea r Peninsulas and Dotson Ice Shelf, Bakutis Coast, CT> C) An tarctica. Path 6, Row 11 3, acquired 30 December 1972. ? "T1 'N 0.. co 0.. 2003 ISBN 0-607-94827-2 U.S. Department of the Interior 0 Printed on rec ycl ed paper U.S. Geological Survey 9 11~ !1~~~,11~1!1! I!IJ 1)11 U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-2600-F (2d ed.) U.S. GEOLOGICAL SURVEY COASTAL-CHANGE AND GLACIOLOGICAL MAP OF THE BAKUTIS COAST AREA, ANTARCTICA: 1972-2002 . By Charles Swithinbank, 1 RichardS. Williams, Jr.,2 Jane G. Ferrigno,3 Kevin M. Foley, 3 and Christine E. Rosanova4 INTRODUCTION areas Landsat 7 Enhanced Thematic Mapper Plus (ETM+)), RADARSAT images, and other data where available, to compare Background changes over a 20- to 25- or 30-year time interval (or longer Changes in the area and volume of polar ice sheets are intri­ where data were available, as in the Antarctic Peninsula).
    [Show full text]
  • Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events Dennis A
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 8-2008 Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events Dennis A. Darby Old Dominion University, [email protected] Paula Zimmerman Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Glaciology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Repository Citation Darby, Dennis A. and Zimmerman, Paula, "Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events" (2008). OEAS Faculty Publications. 18. https://digitalcommons.odu.edu/oeas_fac_pubs/18 Original Publication Citation Darby, D. A., & Zimmerman, P. (2008). Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Research, 27(2), 114-127. doi: 10.1111/j.1751-8369.2008.00057.x This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events Dennis A. Darby & Paula Zimmerman Dept. of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA Keywords Abstract Arctic Ocean; ice-rafting events; glacial collapses; sea ice; Fe grain provenance.
    [Show full text]