Lead-Zinc 2000

Total Page:16

File Type:pdf, Size:1020Kb

Lead-Zinc 2000 Lead-ZincLead-Zinc 20002000 SymposiumSymposium && The The FourthFourth InternationalInternational SymposiumSymposium onon RecyclingRecycling ofof MetalsMetals andand EngineeredEngineered MaterialsMaterials Sunday-October 22 Monday-October 23 Tuesday-October 24 Wednesday-October 25 PM AM PM AM PM AM PM Mezz- Registration Registration Registration Registration anine 12:00NOON-6:00PM 7:00AM-5:00PM 7:00AM-5:00PM 7:00AM-10:00AM ○○○○○○○○ ○○○○○○○○ Foyer ○○○○○○○○ Slide Preview Slide Preview Slide Preview Chartiers 7:00AM-5:00PM 7:00AM-5:00PM 7:00AM-5:00PM ○○○○○○○○ ○○○○○○○○ ○○○○○○○○ Authors Coffee Authors Coffee Authors Coffee Rivers 7:30AM-8:30AM 7:30AM-8:30AM 7:30AM-8:30AM Welcoming Recycling Recycling Recycling Recycling Recycling Recycling Reception Consumer Aluminum Precious Electronics/ Refractory Magnesium LeBateau 6:00PM-8:00PM Battery By-Product Metals Plating Recycling Recycling Recycling Recovery Recycling By-Products Recycling Kings Welcoming Recycling Recycling Recycling Recycling Recycling Recycling Gardens Reception Aluminum Aluminum Scrap Automotive EAF Dust EAF Dust EAF Dust 6:00PM-8:00PM Recycling - Recycling - I Materials Processing - I Processing - II Processing - III Introduction Scrap Recycling Preparation and Processing Recycling Kings Secondary Terrace Zinc Recycling Recycling Recycling Recycling Recycling Recycling General Secondary Secondary Secondary Secondary Spent Brigade Recycling Copper, Copper, Lead - I Lead - II Catalyst Nickel, Nickel, Recycling and and Cobalt - I Cobalt - II Recycling Recycling Recycling Recycling Recycling Ballroom Plenary Session Aluminum Scrap Aluminum Aluminum Scrap Aluminum Scrap 1 Recycling - II Dross Recycling - III Recycling - IV Melting Processing Quality Process Technology Considerations Analysis in Recycling Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Plenary Session Session 2 - Session 4 - Session 6 - Session 8 - Session 10 - Ballroom Global Factors Modern Lead Modern Lead Imperial New New 3 Affecting Smelting Smelting Smelting Developments Electrowinning Lead and Zinc Technologies I Technologies II Technologies in Technologies for Lead and Zinc Lead and Zinc Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Lead-Zinc Plenary Session Session 3 - Session 5 - Session 7 - Session 9 - Session 11 - Ballroom Global Factors Zinc Zinc Zinc New Zinc Environmental 4 Affecting Operations I Operations II Electrowinning Processing Aspects of Lead Lead and Zinc Technologies and Zinc Production Table of Contents Lead Zinc 2000 Plenary Session - Global Factors Affecting Lead and Zinc .............................................................. 1 Session 2 - Modern Lead Smelting Technologies I......................................................................... 1 Session 3 - Zinc Operations I.................................................................................................... 2 Session 4 - Modern Lead Smelting Technologies II ........................................................................ 3 Session 5 - Zinc Operations II ................................................................................................... 4 Session 6 - Imperial Smelting Technologies .................................................................................. 5 Session 7 - Zinc Electrowinning .................................................................................................6 Session 8 - New Developments in Lead and Zinc .......................................................................... 7 Session 9 - New Zinc Processing Technologies ............................................................................. 8 Session 10 - New Electrowinning Technologies for Lead and Zinc .................................................... 9 Session 11 - Environmental Aspects of Lead and Zinc Production ................................................. 10 Fourth International Symposium on Recycling of Metals and Engineered Materials Plenary Session ..................................................................................................................... 15 Aluminum By-Product Recovery ............................................................................................... 17 Aluminum Dross Processing ..................................................................................................... 26 Aluminum Recycling - Introduction ........................................................................................... 15 Aluminum Scrap Recycling - I Scrap Preparation and Processing ................................................... 18 Aluminum Scrap Recycling - II Melting Technology ...................................................................... 23 Aluminum Scrap Recycling - III Quality Considerations in Recycling ............................................... 30 Aluminum Scrap Recycling - IV Process Analysis ......................................................................... 33 Automotive Materials Recycling ............................................................................................... 22 Consumer Battery Recycling .................................................................................................... 16 EAF Dust Processing - I.......................................................................................................... 27 EAF Dust Processing - II ......................................................................................................... 31 EAF Dust Processing - III .......................................................................................................34 Electronics/Plating By-Products Recycling ................................................................................. 28 General Recycling .................................................................................................................. 16 Magnesium Recycling ............................................................................................................. 35 Precious Metals Recycling .......................................................................................................24 Refractory Recycling .............................................................................................................. 32 Secondary Copper, Nickel, and Cobalt - I.................................................................................. 19 Secondary Copper, Nickel, and Cobalt - II ................................................................................. 25 Secondary Lead - I................................................................................................................ 29 Secondary Lead - II ............................................................................................................... 32 Secondary Zinc ..................................................................................................................... 21 Spent Catalyst Recycling ........................................................................................................36 x Lead-Zinc 2000 Symposium Technical Program Zinc Applications: A World of Performance: E. Gervais1; 1Interna- tional Zinc Association, Avenue de Tervueren, 168/Box 4, B-1150 Brus- Session 1 – Global Factors Affecting Lead sels, Belgium and Zinc Modern life in inconceivable without zinc. Zinc provides the most cost-effective and environmentally efficient method of protecting steel from corrosion. Zinc is also used to power electric vehicles and comput- Monday AM 9:00 AM – 12:00 Noon ers, to make brass, automotive equipment, household appliances, fit- October 23, 2000 Location: Ballroom 3 & 4 tings, tools and toys, and to support the building and construction industries. It is also used in pharmaceuticals and cosmetics, in rubber, in Session Co-chairs: C. Y. Choi, Korea Zinc Company Ltd., 142 Nonhyon-Dong, fertilisers and in animal feeds. The links between properties, applica- Gangnam-ku, Seoul, Korea; D. Magoon, Cominco Limited, Trail, British tions and performance, as well as zinc demand and market dynamics, Columbia, Canada V1R 4L8 will be reviewed along with market development opportunities and suc- cesses. The presentation will also include a progress report on the five- 9:00 AM Opening Comments year plan of the International Zinc Association to increase the global market for zinc, over and above the natural growth, by 500,000 tonnes/ 9:05 AM year by 2002. Market Fundamentals and the Evolution of Lead and Zinc Sup- plies: C. Hassall1; H. Roberts1; 1CHR Metals Limited, Hamble House, 11:20 AM Meadrow, Godalming, United Kingdom GU7 3HJ Lead and Zinc: A Study of Toxicological Contrasts and Shared The opening years of the new millennium will be characterised by the Regulatory Concerns: C. J. Boreiko1; 1International Lead Zinc Re- closure of many lead and zinc mines because of reserve depletion. How- search Organization, Inc., P.O. Box 12036, Research Triangle Park, North ever, weak commodity prices through the second half of the 1990s have Carolina, U.S.A. 27709 slowed project evaluation and have made it difficult to raise finances for Traditional patterns of lead and zinc utilization are being evaluated in the development of new mines required to replace lost output and to accordance with new paradigms that seek to ensure the long-term com- meet increasing demand for metal in the future. Growth of lead and zinc patibility of global industrial activity with precepts of sustainable de- demand will be determined by the pace of global economic activity, velopment
Recommended publications
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • Calcination) 2
    Thermal Treatment of Catalysts Modern Methods in Heterogeneous Catalysis Research Friederike C. Jentoft, October 31, 2003 Outline 1. Terminology (calcination) 2. Sample vs. oven set temperature 3. Self-generated atmosphere & self-steaming of zeolites 4. Combustion 5. Glow phenomenon & zirconia catalysts 6. Crystallization 7. Loss of surface area 8. Effect of additives 9. Solid-solid wetting 10.Reductive treatments & SMSI Steps of Catalyst Preparation v IUPAC defines 3 steps of catalyst preparation 1. Preparation of primary solid, associating all the useful compounds 2. Processing of that primary solid to obtain the catalyst precursor for example by heat treatment 3. Activation of the precursor to give the active catalyst (reduction to metal, formation of sulfides, deammoniation of zeolites) Heat Treatment of Intermediate Solids or Precursors v drying v thermal decomposition of salts (nitrates, ammonium salts) v calcination v product is a "reasonably inert solid" which can be stored easily Annealing v in a general meaning: a heating of a material over a long time span; strain and cracks in a crystalline solid can be removed Origin of the Term "Calcination" v latin "calx" = playstone limestone, (greek chálix) v burning of calcium carbonate (limestone) to calcium oxide (quicklime) -1 CaCO3 → CaO + CO2 ΔH(900°C)=3010 kJ mol v used to construct Giza pyramids (ca. 2800 A.C.), burning of limestone ("Kalkbrennen") mentioned by Cato 184 A.C. v performed in kilns (ovens) at 900°C v addition of air to sustain combustion + cool product Examples for
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Corrosion of Refractories in Lead Smelting Reactors
    CORROSION OF REFRACTORIES IN LEAD SMELTING REACTORS By LINGXUAN WEI B.Sc, Wuhan University of Science & Technology, China 1986 M.Sc, University of Science & Technology Beijing, China 1997 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF METALS AND MATERIALS ENGINEERING We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH .UMB1A DECEMBER 2000 ©Lingxuan Wei, ZO0O UBC Special Collections - Thesis Authorisation Form http://www.library.ubc.ca/spcoll/thesauth.html In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. v 3 The University of British Columbia Vancouver, Canada Date lof 1 3/19/01 2:36 PM ABSTRACT Corrosion of refractories by slag is a complex phenomenon which, depending on the particular system, involves many processes, such as chemical wear (corrosion) and physical or mechanical wear (erosion), which may act synergistically. No single model can explain all cases of corrosion nor can it explain all corrosion mechanisms of a particular refractory in different environments, but the knowledge of the microstructure combined with the chemistry of the systems are necessary to understand the corrosion mechanism of a refractory material.
    [Show full text]
  • Table of Contents
    Table of Contents Preface ........................................... xi Chapter 1. Physical Extraction Operations .................... 1 1.1. Solid-solid and solid-fluid separation operations .............. 1 1.1.1. Flotation ................................... 1 1.1.2. Settling under gravity ........................... 3 1.1.3. Centrifugation ................................ 3 1.1.4. Filtration ................................... 4 1.2. Separation operations of the components of a fluid phase ........ 5 1.2.1. Condensation ................................ 5 1.2.2. Vacuum distillation ............................. 5 1.2.3. Liquation ................................... 6 1.2.4. Distillation .................................. 8 1.2.5. Extractive distillation ........................... 11 1.3. Bibliography ................................... 12 Chapter 2. Hydrometallurgical Operations .................... 15 2.1. Leaching and precipitation operations .................... 15 2.1.1. Leaching and precipitation reactors ................... 15 2.1.2. Continuous stirred tank reactor (CSTR) ................ 18 2.1.3. Models of leaching and precipitation operations ........... 20 2.1.4. Particle-size distribution (PSD) functions ............... 21 2.2. Reactor models based on particle residence time distribution functions ........................................ 24 2.2.1. Performance equations for a single CSTR ............... 24 2.2.2. Performance equations for multistage CSTRs ............. 28 2.3. Reactor models based on the population balance
    [Show full text]
  • Hg on Periodic Table
    Hg On Periodic Table Cameron never westernize any stairs carnalize externally, is Thomas unlovely and muddled enough? gloomingPeridermal backstage, Aubert regales: uncontrolled he globe-trots and coequal. his costrels contentiously and impassively. Martie buck her How is left over the california, on hg could melt quickly by electronic strain gauge sensors have very fine flakes of Mercury than the chemical element with symbol Hg and atomic no 0 Mercury was a transition metal A transition metal is feast of the elements found between Groups. Mercury news a naturally occurring element found an air, corps and soil. This website under most abundant elements into minamata bay, or out that immediately contained in a product can cause damage, as a highly poisonous. Starship like the plane? Mercury compound thimerosal is used to our wonder leave you. It has been shown significantly more about a periodic table is liquid form alloys, switches like from countries are kidneys damage a periodic table live in terms are there is. Mercury chemical symbol Hg is an liquid metallic element that historically was used in many medicines but has now restricted due for legitimate concerns about. Cinnabar was rubbed together with policy in paper clay dish. Glad you liked this one, Jordan! Some forms of tame are particularly potent poisons. Why take some elements on the Periodic Table represented by letters that have only clear connection to their names? Mif signatures in antiseptics, facts about being replaced by where did you think about chemical sedimentation may also. Doesn't the periodic table define it Not got is overcome an element.
    [Show full text]
  • Calcium-Looping Performance of Steel and Blast Furnace Slags for Thermochemical Energy Storage in Concentrated Solar Power Plants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla Calcium-Looping performance of steel and blast furnace slags for Thermochemical Energy Storage in Concentrated Solar Power plants Jose Manuel Valverde a*, Juan Miranda-Pizarroa,c, Antonio Perejónb,c, Pedro E. Sánchez-Jiménezc, Luis A. Pérez-Maquedac aFacultad de Fisica, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain. bDepartamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, C. Prof. García González 1, Sevilla 41071, Spain. cInstituto de Ciencia de Materiales de Sevilla (C.S.I.C. - Universidad de Sevilla). C. Américo Vespucio 49, Sevilla 41092, Spain. Abstract The Calcium Looping (CaL) process, based on the carbonation/calcination of CaO, has been proposed as a feasible technology for Thermochemical Energy Storage (TCES) in Concentrated Solar Power (CSP) plants. The CaL process usually employs limestone as CaO precursor for its very low cost, non-toxicity, abundance and wide geographical distribution. However, the multicycle activity of limestone derived CaO under relevant CaL conditions for TCES in CSP plants can be severely limited by pore plugging. In this work, the alternative use of calcium-rich steel and blast furnace slags after treatment with acetic acid is investigated. A main observation is that the calcination temperature to regenerate the CaO is significantly reduced as compared to limestone. Furthermore, the multicycle activity of some of the slags tested at relevant CaL conditions for TCES remains high and stable if the treated samples are subjected to filtration. This process serves to remove silica grains, which helps decrease the porosity of the CaO resulting from calcination thus mitigating pore plugging.
    [Show full text]
  • Calcination of Calcium Sulphoaluminate Cement Using Pyrite-Rich Cyanide Tailings
    crystals Article Calcination of Calcium Sulphoaluminate Cement Using Pyrite-Rich Cyanide Tailings Kaiwei Dong 1, Feng Xie 1,*, Wei Wang 1,*, Yongfeng Chang 1, Chunlin Chen 2 and Xiaowei Gu 3 1 School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang 110004, China; [email protected] (K.D.); [email protected] (Y.C.) 2 CSIRO Minerals Resources, Clayton, VIC 3168, Australia; [email protected] 3 Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, 3-11 Wenhua Road, Shenyang 110004, China; [email protected] * Correspondence: [email protected] (F.X.); [email protected] (W.W.); Tel.: +86-24-8367-2298 (F.X. & W.W.) Received: 23 September 2020; Accepted: 23 October 2020; Published: 26 October 2020 Abstract: Pyrite-rich cyanide tailings (CTs) are industrial hazardous solid wastes arising from the gold mining industry. Every year, hundreds of millions of tons of cyanide tailings are produced and discharged to tailings dams. It is of great significance to dispose of cyanide tailings harmlessly and resourcefully. The feasibility of calcination of calcium sulphoaluminate (CSA) cement clinker using pyrite-rich cyanide tailings as Fe2O3 and SO3 sources was investigated for this paper. The behavior of pyrite during the calcination of cyanide tailings under various calcination conditions and the properties of calcium sulphoaluminate cement clinker were examined. The results show that it is feasible to produce calcium sulphoaluminate cement clinker using pyrite-rich cyanide tailings. The optimal conditions for the calcination of calcium sulphoaluminate cement using pyrite-rich cyanide tailings are confirmed.
    [Show full text]
  • Understanding Texts with the Help of Experimentation: the Example of Cupellation in Arabic Scientific Literature Sébastien Moureau, Nicolas Thomas
    Understanding Texts with the Help of Experimentation: The Example of Cupellation in Arabic Scientific Literature Sébastien Moureau, Nicolas Thomas To cite this version: Sébastien Moureau, Nicolas Thomas. Understanding Texts with the Help of Experimentation: The Example of Cupellation in Arabic Scientific Literature. Ambix, Maney Publishing, 2016, 63 (2), pp.98 - 117. 10.1080/00026980.2016.1216691. hal-01766840 HAL Id: hal-01766840 https://hal-inrap.archives-ouvertes.fr/hal-01766840 Submitted on 14 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ambix ISSN: 0002-6980 (Print) 1745-8234 (Online) Journal homepage: http://www.tandfonline.com/loi/yamb20 Understanding Texts with the Help of Experimentation: The Example of Cupellation in Arabic Scientific Literature Sébastien Moureau & Nicolas Thomas To cite this article: Sébastien Moureau & Nicolas Thomas (2016) Understanding Texts with the Help of Experimentation: The Example of Cupellation in Arabic Scientific Literature, Ambix, 63:2, 98-117, DOI: 10.1080/00026980.2016.1216691 To link to this article: http://dx.doi.org/10.1080/00026980.2016.1216691 Published online: 29 Sep 2016. Submit your article to this journal Article views: 16 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=yamb20 Download by: [Nicolas THOMAS] Date: 13 October 2016, At: 05:51 ambix, Vol.
    [Show full text]
  • Mercury and Mercury Compounds
    United States Office of Air Quality EPA-454/R-97-012 Environmental Protection Planning And Standards Agency Research Triangle Park, NC 27711 December 1997 AIR EPA LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF MERCURY AND MERCURY COMPOUNDS L & E EPA-454/R-97-012 Locating And Estimating Air Emissions From Sources of Mercury and Mercury Compounds Office of Air Quality Planning and Standards Office of Air and Radiation U.S. Environmental Protection Agency Research Triangle Park, NC 27711 December 1997 This report has been reviewed by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, and has been approved for publication. Mention of trade names and commercial products does not constitute endorsement or recommendation for use. EPA-454/R-97-012 TABLE OF CONTENTS Section Page EXECUTIVE SUMMARY ................................................ xi 1.0 PURPOSE OF DOCUMENT .............................................. 1-1 2.0 OVERVIEW OF DOCUMENT CONTENTS ................................. 2-1 3.0 BACKGROUND ........................................................ 3-1 3.1 NATURE OF THE POLLUTANT ..................................... 3-1 3.2 OVERVIEW OF PRODUCTION, USE, AND EMISSIONS ................. 3-1 3.2.1 Production .................................................. 3-1 3.2.2 End-Use .................................................... 3-3 3.2.3 Emissions ................................................... 3-6 4.0 EMISSIONS FROM MERCURY PRODUCTION ............................. 4-1 4.1 PRIMARY MERCURY
    [Show full text]
  • Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route
    metals Review Nickel Laterite Smelting Processes and Some Examples of Recent Possible Modifications to the Conventional Route Ender Keskinkilic Department of Metallurgical and Materials Engineering, Atilim University, 06830 Ankara, Turkey; [email protected]; Tel.: +90-533-302-9510 Received: 16 July 2019; Accepted: 1 September 2019; Published: 3 September 2019 Abstract: The treatment of laterites has been a research hotspot in extractive metallurgy over the past decades. Industrially, the pyrometallurgical treatment of laterites is mostly accomplished with a well-established method, namely, the rotary kiln–electric arc furnace (RKEF) process, which includes three main operations—calcination, prereduction, and smelting—followed by further refining for the removal of impurities from the raw ferro-nickel. As indicated in many studies of the RKEF process, the major downside of this method is its high energy consumption. Efforts have been made to lower this consumption. Furthermore, several new processes have been proposed. Among these, low-grade ferro-nickel production is regarded as the most widely and industrially used process after traditional RKEF operation. Although not widespread, other alternative processes of industrial scale have been generated since the start of the millennium. Recently, certain innovative processes have been tested either in the laboratory or at pilot-scale. In this paper, a literature review related to the smelting of laterites is made, and an emphasis on new processes and some examples of new developments in the RKEF process are presented. Keywords: laterite; smelting; RKEF process; low-grade ferro-nickel 1. Introduction According to a review published by Diaz et al., oxide-type nickel ores accounted for 64% of land-based nickel ores, but more than 60% of nickel production was based on the matte smelting of sulfide ores in 1988 [1].
    [Show full text]
  • Flotation-Calcination-Magnetic Separation Hybrid Process for Concentration of Rare Earth Minerals Contained in a Carbonatite Ore
    Journal of Minerals and Materials Characterization and Engineering, 2021, 9, 271-289 https://www.scirp.org/journal/jmmce ISSN Online: 2327-4085 ISSN Print: 2327-4077 Flotation-Calcination-Magnetic Separation Hybrid Process for Concentration of Rare Earth Minerals Contained in a Carbonatite Ore Tesfaye Negeri Natural Resources Canada, CanmetMINING, Ottawa, Canada How to cite this paper: Negeri, T. (2021) Abstract Flotation-Calcination-Magnetic Separation Hybrid Process for Concentration of Rare A hybrid process consisting of flotation and magnetic separation has been Earth Minerals Contained in a Carbonatite developed to concentrate multi-phase rare earth minerals associated with a Ore. Journal of Minerals and Materials Cha- carbonatite ore that contains a significant amount of niobium. The deposit is racterization and Engineering, 9, 271-289. https://doi.org/10.4236/jmmce.2021.93019 known to contain at least 15 different rare earth minerals identified as silico- carbonatite, magnesiocarbonatite, ferrocarbonatites, calciocarbonatite, REE/Nb Received: December 30, 2020 ferrocarbonatite, phosphates and niobates. Although no collector exists to Accepted: May 24, 2021 Published: May 27, 2021 float all the different rare earth minerals, the hydroxamic acid-based collec- tors have shown adequate efficiency in floating most of these minerals. 92% Copyright © 2021 by author(s) and recovery of total rare earth oxide (TREO) and niobium in 45% mass was Scientific Research Publishing Inc. possible at d of <65 microns grind size. It was also possible to reduce the This work is licensed under the Creative 80 Commons Attribution International mass pull to 28%, but TREO and Nb’s recovery dropped to 85%. Calcination License (CC BY 4.0).
    [Show full text]