A Dataset of Ensifera (Insecta: Orthoptera) in China

Total Page:16

File Type:pdf, Size:1020Kb

A Dataset of Ensifera (Insecta: Orthoptera) in China A dataset of Ensifera (Insecta: Orthoptera) in China China Scientific Data Wang Hanqiang1, Dai Li1, Zhu Weibing1*, Yin Haisheng1 Vol.3, No.1, 2018 1. Shanghai Entomological Museum, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, P. R. China * Email: [email protected] ARTICLE DOI: Abstract: There are over 15,000 existing Ensifera species affiliated to 15 10.11922/csdata.2017.25.zh superfamilies, much more than their allies of Caelifera. They are mainly DATA DOI: phytophagous or omnivorous, only a few species do harm to crops, and some 10.11922/sciencedb.517 are even natural enemies of pests. This dataset collects information on the SUBJECT CATEGORY: Biological sciences 537 Ensifera species in China by the year 2013, which come from 17 families and 5 superfamilies. Each entry records taxonomical, morphological, and RECEIVED: October 13, 2017 distributional data of the species and their references, as well as images showing the insects’ identifying characteristics. The dataset effectively RELEASED: November 2, 2017 supports studies on the taxonomy, biogeography, ecology and other aspects PUBLISHED: of these species. February 2, 2018 Keywords: Orthoptera; Ensifera; China; species Dataset Profile Title A dataset of Ensifera (Insecta: Orthoptera) in China Data authors Wang Hanqiang, Dai Li, Zhu Weibing, Yin Haisheng Data corresponding Zhu Weibing ([email protected]) author Time range 2009 – 2013 Geographical scope China <http://www.zoology.csdb.cn/page/showTreeMap.vpage?uri= Data service system cnOrthoptera.tableTaxa&id>; <http://www.sciencedb.cn/dataSet/handle/517> The China Animal Scientific Database project of the Chinese Sources of funding Academy of Sciences (2009 – 2011) (XXH12504-1-03) This dataset collects information on the 537 Ensifera species in China by the year 2013. Each entry records taxonomical, Dataset composition morphological, and distributional data of the species and their sources/references, as well as images showing the insects’ identifying characteristics. - 1 - 1. Introduction Derived from the Latin word “ensatus”, “Ensifera” refers to the sword-like ovipositor of the female species. Their antenna is usually longer than their body. Extant taxa of Ensifera include crickets, mole crickets, Hagloidea, raspy crickets, katydids, camel crickets and dune crickets,1–4 covering all the “singing bugs” as so- called in China. Among them, insects of Tettigoniidae and Gryllidae are closely tied to the daily life of human beings – from songs of the summer field to pets of human entertainment. The songs of katydids are documented in an ancient Chinese classic The Book of Songs, and cricket fighting which lingers to this day dates back to the Tang Dynasty. Some of these species are important natural enemies of pests.5 With the increase of public attention, a scientific cognitive system is needed in order to meet diverse demands of the public and researchers. This dataset contains taxonomic and distributional data of the species and their references, coupled with images showing the species’ identifying characteristics and behavioral information. It supports researches on the taxonomy, biogeography, ecology and other aspects of these species, as well as species identification and nurturing. 2. Data collection and processing 2.1 Data source Raw data of this dataset come from publications that meet the criterion of the International Code of Zoological Nomenclature, including monographs such as Fauna Insecta, Insects of Tianmushan National Natural Reserve, as well as journals such as Zootaxa, Zoological Systematics and Entomotaxonomia. 2.2 Data filtration and standardization All the scientific names collected here have been reviewed and verified by experts. The latest research findings were consulted in case of synonyms. Descriptions of species’ taxonomic character and distribution were all extracted from the most authoritative and detailed references. 2.3 Data input Qualified data were entered into China Animal Scientific Database via its data acquisition system, which ensured a standard and uniform data format. 3. Description of data sample The dataset contains information of the 537 Ensifera species distributed across China by the year 2013. Specific information includes taxonomic information (taxon, scientific names in Latin and Chinese), morphological description, distribution, data references, holotype information (origin and preservation site of the holotype) and - 2 - images showing species’ identifying characteristics. The data of Acosmetura carinata are given in Table 1 and Figure 1. Table 1 Sample data of the species Acosmetura carinata Field name Field type Species data Class text Insecta Order text Orthoptera Family text Meconematidae Genus text Acosmetura Species text carinata Female small, stout. Head short and broad……♀ body11.0 mm, Morphology text pronotum 4.5 mm, tegmina 1.0mm, hind femora 9.0 mm, ovipositor 6.5 mm. Distribution text Sichuan Province, China Liu Xianwei, Zhou Min & Bi Wenxuan. 2008. Four New Species of Reference text the Genus Acosmetura from China (Orthoptera, Tettigonioidea, Meconematidae). Acta Zootaxonomica Sinica, 33(4): 761–767. Origin of the text Mount Emei, Sichuan Province holotype Preservation text Shanghai Entomological Museum, Chinese Academy of Sciences site of the holotype Image jpg See Fig. 1 a. Pronotum (dorsal view) b. Subgenital plate (ventral view) Figure 1 Feature of Acosmetura carinata6 4. Quality control and evaluation Shanghai Entomological Museum (formally Shanghai Institute of Entomology), which has a long history in the taxonomic studies of Orthoptera, played a very important role in Ensifera research, Its experienced experts, abundant research materials and rich specimen collection guaranteed the accuracy and integrality of this dataset. All the data of this dataset are from formal publications. Each data entry is - 3 - accompanied by references, whereby users can inquire the source of the data. All the scientific names recorded meet the criterion of the International Code of Zoological Nomenclature, and their accuracy has been validated by specialists against the latest research findings, as well as the Orthoptera Species File Online (http://orthoptera.speciesfile.org/HomePage/Orthoptera/HomePage.aspx). Species’ scientific name in Chinese is from either its original namer or authoritative publications such as Fauna Insecta, while descriptions and images are from original or authoritative publications. 5. Value and significance Though online open databases always cover a wide range of species, they are often less comprehensive, accurate or updated when it comes to a specific taxon. Integrating the research achievements of our institute with previous findings, this dataset provides comprehensive, accurate and updated information about the species of Ensifera in China. It provides professional and effective statistical support for research institutions, enterprises and the public alike, and is conducive to standardization of species name and conservation of biodiversity. References 1. Chang KSF. Index of Chinese Tettigoniidae. Notes d'Entomologie Chinoise, Musée Heude 2 (1935): 25 – 77. 2. Eades DC, Otte D, Cigliano MM et al. Orthoptera Species File. Version 5.0/5.0. Available: <http://Orthoptera.SpeciesFile.org>. 3. Gorochov AV. System and evolution of the suborder Ensifera (Orthoptera). Part II. Russian Academy of Sciences. Proceedings of the Zoological Institute 260 (1995): 1 – 207. 4. Kevan DKM. The higher classification of the Orthopteroid insects: A general view. 5. Memoirs of the Lyman Entomological Museum and Research Laboratory 4 (1977): 1 – 31. 6. Liu XW, Zhou M & Bi WX. Four New Species of the Genus Acosmetura from China (Orthoptera, Tettigonioidea, Meconematidae). Acta Zootaxonomica Sinica 33 (2008): 761 – 767. Data citation 1. Wang H, Dai L, Zhu W et al. A dataset of Ensifera (Insecta: Orthoptera) in China. Science Data Bank. DOI: 10.11922/sciencedb.517 - 4 - Authors and contributions Wang Hanqiang, PhD, Engineer; research area: Orthoptera taxonomy. Contribution: data collection and entry. Dai Li, BSc, Experimentingist. Contribution: data collection and entry. Zhu Weibing, PhD, Associate Professor; research area: Diptera and Hemiptera taxonomy. Contribution: data arrangement and review. Yin Haisheng, BSc, Professor-level Senior Engineer; research area: insect taxonomy, R&D of anti-termite agents. Contribution: project leading. ------------------------------------------------------------------------------------------------- How to cite this article: Wang H, Dai L, Zhu W et al. A dataset of Ensifera (Insecta: Orthoptera) in China. China Scientific Data 3 (2018), DOI: 10.11922/csdata.2017.25.zh - 5 - .
Recommended publications
  • Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed
    Scholars Academic Journal of Biosciences Abbreviated Key Title: Sch Acad J Biosci ISSN 2347-9515 (Print) | ISSN 2321-6883 (Online) Zoology Journal homepage: https://saspublishers.com/sajb/ Species Abundance, Occurrence and Diversity of Cricket Fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh Shah HA Mahdi*, Meherun Nesa, Manzur-E-Mubashsira Ferdous, Mursalin Ahmed Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh DOI: 10.36347/sajb.2020.v08i09.003 | Received: 06.09.2020 | Accepted: 14.09.2020 | Published: 25.09.2020 *Corresponding author: Shah H. A. Mahdi Abstract Original Research Article The present study was done to assess the species abundance, monthly occurrence and diversity of cricket fauna (Orthoptera: Ensifera) in Rajshahi City, Bangladesh. A total number of 283 individuals of cricket fauna were collected and they were identified into three families, six genera and seven species. The collected specimens belonged to three families such as Gryllidae (166), Tettigoniidae (59) and Gryllotalpidae (58). The seven species and their relative abundance were viz. Gryllus texensis (36.40%), Gryllus campestris (18.37%), Lepidogryllus comparatus (3.89%), Neoconocephalus palustris (9.89%), Scudderia furcata (4.95%), Montezumina modesta (6.01%) and Gryllotalpa gryllotalpa (20.49%). Among them, highest population with dominance was Gryllus texensis (103) and lowest population was Lepidogryllus comparatus (11). Among the collected species, the status of Gryllus texensis, Gryllus campestris and Gryllotalpa gryllotalpa were very common (VC); Neoconocephalus palustris and Montezumina modesta were fairly common (FC) and Lepidogryllus comparatus and Scudderia furcata were considered as rare (R). Base on monthly occurrence 2 species of cricket were found throughout 12 months, 2 were 9-11 months, 2 were 6-8 months and 1 was 3-5 months.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, Nom. Cons
    Fl. China 11: 193–202. 2008. 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, nom. cons. 算盘子属 suan pan zi shu Li Bingtao (李秉滔 Li Ping-tao); Michael G. Gilbert Agyneia Linnaeus; Bradleia Banks ex Gaertner [“Bradleja”]. Trees or shrubs, monoecious, rarely dioecious; indumentum of simple hairs, often absent. Leaves alternate, distichous, or spiral; stipules thick, mostly persistent; petiole short; leaf blade simple, margin entire, venation pinnate. Flowers axillary or supra-axillary, fascicled or in short cymes or umbels, proximal axils with male flowers, distal axils usually with female flowers, usually distinctly pedicellate. Male flowers: pedicels slender or almost absent; sepals 5 or 6, imbricate; petals absent; disk absent; stamens 3–8, connate into an oblong or ellipsoid column, shorter than sepals; anthers 2-locular, extrorse, linear, longitudinally dehiscent, connectives prolonged into an erect acumen; pistillode absent. Female flowers: pedicels stout and short or subsessile; sepals as in male, but slightly thicker; ovary globose, 3–15-locular; ovules 2 per locule; styles connate into a short, thick, cylindric column, apex lobed or toothed, rarely free. Fruit a capsule, globose or depressed globose, ± prominently longitudinally grooved, sunken at apex, dehiscent into 3–15 2-valved cocci when mature, rarely unlobed; exocarp leathery or papery; endocarp crustaceous; styles usually persistent. Seeds not strophiolate, hemispheric or laterally compressed; endosperm fleshy; cotyledon flattened. About 200 species: chiefly in tropical Asia, the Pacific islands, and Malaysia, a few in tropical America and Africa; 28 species (seven endemic, one introduced) in China. Glochidion is noteworthy for its pollination mechanism, which involves a symbiotic relationship with moths of the genus Epicephala closely paralleling that found in Yucca (Kato et al., Proc.
    [Show full text]
  • (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII.
    [Show full text]
  • Assessment and Conservation of Threatened Bird Species at Laojunshan, Sichuan, China
    CLP Report Assessment and conservation of threatened bird species at Laojunshan, Sichuan, China Submitted by Jie Wang Institute of Zoology, Chinese Academy of Sciences, Beijing, P.R.China E-mail:[email protected] To Conservation Leadership Programme, UK Contents 1. Summary 2. Study area 3. Avian fauna and conservation status of threatened bird species 4. Habitat analysis 5. Ecological assessment and community education 6. Outputs 7. Main references 8. Acknowledgements 1. Summary Laojunshan Nature Reserve is located at Yibin city, Sichuan province, south China. It belongs to eastern part of Liangshan mountains and is among the twenty-five hotspots of global biodiversity conservation. The local virgin alpine subtropical deciduous forests are abundant, which are actually rare at the same latitudes and harbor a tremendous diversity of plant and animal species. It is listed as a Global 200 ecoregion (WWF), an Important Bird Area (No. CN205), and an Endemic Bird Area (No. D14) (Stattersfield, et al . 1998). However, as a nature reserve newly built in 1999, it is only county-level and has no financial support from the central government. Especially, it is quite lack of scientific research, for example, the avifauna still remains unexplored except for some observations from bird watchers. Furthermore, the local community is extremely poor and facing modern development pressures, unmanaged human activities might seriously disturb the local ecosystem. We conducted our project from April to June 2007, funded by Conservation Leadership Programme. Two fieldwork strategies were used: “En bloc-Assessment” to produce an avifauna census and ecological assessments; "Special Survey" to assess the conservation status of some threatened endemic bird species.
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Auditory and Vibratory Sense of Crickets Application Note
    Technical Paper Auditory and Vibratory Sense of Crickets Polytec Technical Papers A Aerospace B Audio & Acoustics C Automotive Development D Data Storage G General Vibrometry M Microstructure Testing P Production Testing S Scientific & Medical T Structural Testing U Ultrasonics The Origin of Sound-Processing Elements in Ensifera Using Laser Vibrometry In the life of insects, vibrational signals mediate important information that is used in various contexts, from pair formation to detection of predators or finding prey. Therefore, insects are equipped with both extremely sensitive receptor organs in the legs for detection of substrate vibrations and the underlying neural network enabling recog- nition and localization of the signallers in a complex environment. Without the use of special equipment to detect those signals, the intriguing world of insect vibrations would remain hidden to humans, which mostly communicate by sight and sound. Introduction Insects in the group called Ensifera produce sounds for com- munication. These insects, which include crickets and bush crickets, have evolved ears in their legs from the pre-existing vibratory organs. In our study, we investigated whether their auditory and vibratory sense may share a common origin at the level of the central nervous system. Therefore, we studied the network of vibration-sensitive interneurons in a primitive, deaf cave cricket (Fig. 1) and compared our results with well known results for auditory neurons of hearing Ensifera. Fig. 1: The cave-dwelling cricket Troglophilus neglectus (Ensifera, Rhaphidophoridae) has organs specialized for detection of substrate vibrations located below the “knee” joint of all legs. Advancing Measurements by Light www.polytec.com Experimental Set-up In our experiments, the first thoracic segment of the nerve chord in the cave cricket was penetrated by intracellular record- ing electrodes, while the insect’s front legs were vibrated by sinusoidal pulses delivered by two mini shakers.
    [Show full text]
  • Soft Anatomy of the Early Cambrian Arthropod Isoxys Curvirostratus from the Chengjiang Biota of South China with a Discussion on the Origination of Great Appendages
    Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages DONG−JING FU, XING−LIANG ZHANG, and DE−GAN SHU Fu, D.−J., Zhang, X.−L., and Shu, D.−G. 2011. Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages. Acta Palaeontologica Polonica 56 (4): 843–852. An updated reconstruction of the body plan, functional morphology and lifestyle of the arthropod Isoxys curvirostratus is proposed, based on new fossil specimens with preserved soft anatomy found in several localities of the Lower Cambrian Chengjiang Lagerstätte. The animal was 2–4 cm long and mostly encased in a single carapace which is folded dorsally without an articulated hinge. The attachment of the body to the exoskeleton was probably cephalic and apparently lacked any well−developed adductor muscle system. Large stalked eyes with the eye sphere consisting of two layers (as corneal and rhabdomeric structures) protrude beyond the anterior margin of the carapace. This feature, together with a pair of frontal appendages with five podomeres that each bear a stout spiny outgrowth, suggests it was raptorial. The following 14 pairs of limbs are biramous and uniform in shape. The slim endopod is composed of more than 7 podomeres without terminal claw and the paddle shaped exopod is fringed with at least 17 imbricated gill lamellae along its posterior margin. The design of exopod in association with the inner vascular (respiratory) surface of the carapace indicates I.
    [Show full text]
  • Review of the Genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae)
    A peer-reviewed open-access journal ZooKeys 482:Review 143–155 of the(2015) genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae) 143 doi: 10.3897/zookeys.482.8713 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Review of the genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae) Miao-Miao Li1,2, Xian-Wei Liu2, Kai Li1 1 School of Life Science, East China Normal University, Shanghai 200241, China 2 Shanghai Entomology Museum, Chinese Academy of Sciences, Shanghai 200032, China Corresponding authors: Kai Li ([email protected]); Xian-Wei Liu ([email protected]) Academic editor: David Eades | Received 8 October 2014 | Accepted 28 January 2015 | Published 16 February 2015 http://zoobank.org/01D7EF6F-8540-43CE-A290-49265FCAE605 Citation: Li M-M, Liu X-W, Li K (2015) Review of the genus Apotrechus in China (Orthoptera, Gryllacrididae, Gryllacridinae). ZooKeys 482: 143–155. doi: 10.3897/zookeys.482.8713 Abstract In the present paper, the genus Apotrechus Brunner-Wattenwyl, 1888 is revised. Two new species from China are described and illustrated: Apotrechus quadratus sp. n. and Apotrechus truncatolobus sp. n.. A new key and the distributional data are given. Keywords Gryllacrididae, Gryllacridinae, Apotrechus, new species, China Introduction The genus Apotrechus was proposed by Brunner-Wattenwyl (1888), with the type spe- cies Apotrechus unicolor Brunner-Wattenwyl, 1888. This genus resembles the genus Eremus Brunner-Wattenwyl, 1888, but differs from the latter in: smooth frons, spine- less hind tibia and absence of male styli. Liu and Yin (2002) first studiedApotrechus in China, described one new species A. nigrigeniculatus. Liu and Bi (2008) gave a key of Apotrechus from China containing three species, and two new species A.
    [Show full text]
  • SYNAPOMORPHIES ORTHOPTERA, Sensu Stricto Grasshoppers
    The Orthopteridan Orders Orthoptera Phasmatodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera POLYORTHOPTERA Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera Blattodea Perhaps similar Isoptera development of the gonoplac over 2nd DICTYOPTERA valvulae Mantodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera • Second valvula reduced, with developmentBlattodea of gonoplac as functional ovipositor • Enlarged precostal field in forewingIsoptera DICTYOPTERA Mantodea ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas What is a “Weta”? A giant cricket! New Zealand Maori name of wetapunga that was given to the giant weta. Wetapunga translates roughly to "God of ugly things.” Wetas and king crickets occur principally in New Zealand and Australia. Can reach 90 mm (3.5 in) and 70 grams (2.5 oz). Orthoptera Ensifera Stenopelmatoidea Anostostomatidae ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • Lateral flange of pronotum largely covering pleuron, which • Hind leg modified for jumping correspondingly becomes by straightening of femoral/tibial desclerotized joint (cryptopleuron) • Femur enlarged to • Hind tibia with 2 dorsal accommodate large tibia rows of teeth extensor muscle ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • First thoracic spiracle horizontally divided • Wings inclined over abdomen at rest • Wing pads of late nymphal
    [Show full text]
  • Colonization of a Newly Cleaned Cave by a Camel Cricket: Asian Invasive Or Native?
    Lavoie et al. Colonization of a newly cleaned cave by a camel cricket: Asian invasive or native? Kathleen Lavoie1,2, Julia Bordi1,3, Nacy Elwess1,4, Douglas Soroka5, & Michael Burgess1,6 1 Biology Department, State University of New York Plattsburgh, 101 Broad St., Plattsburgh, NY 12901 USA 2 [email protected] (corresponding author) 3 [email protected] 4 [email protected] 5 Greater Allentown Grotto, PA [email protected] 6 [email protected] Key Words: camel crickets, Orthoptera, Rhaphidophoridae, invasive species, recovery of biota, Diestrammena, Diestramima, Crystal Cave, Pennslyvania. Crystal Cave in Kutztown, Pennsylvania, was discovered in 1871 while quarrying for limestone (Stone 1953). Crystal Cave is developed in a belt of Ordovician-age limestone and has an abundance of formations. The cave is about 110 m in extent with an upper level, and access is restricted by a blockhouse (Stone 1953). Crystal Cave is the oldest continually-operating commercial cave in the state, opening for a Grand Illumination in 1872 (Crystal Cave History 2010). It currently hosts about 75,000 visitors a year (K. Campbell, personal communication). Early visitors were guided using candles, oil, and kerosene lanterns, and for a grand lighting, kerosene was spilled onto flowstone and set ablaze to illuminate some of the larger rooms (Snyder 2000). By 1919, the cave was lit with battery-powered lights, and in 1929, 5000 feet of wiring with 225 light bulbs was installed. In 1974 new concealed wiring was installed with indirect sealed-beam spotlights (Snyder 2000). Crystal Cave has been heavily impacted by humans, and it showed. Soroka and Lavoie (2017) reported on work to clean up the cave to return it to more natural conditions by removal of soot and grime using power washing and scrubbing.
    [Show full text]