Chapter 2 Lecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seamount Abundances and Abyssal Hill Morphology on the Eastern
GEOPHYSICALRESEARCH LETTERS, VOL. 24, NO. 15,PAGES 1955-1958, AUGUST 1, 1997 Seamountabundances and abyssalhill morphology on the eastern flank of the East Pacific Rise at 14øS IngoGrevemeyer, 12Vincent Renard, 3Claudia Jennrich, • and Wilfried Weigel I Abstract. Bathymetricdata from a Hydrosweepmultibeam hills. Abyssalhills in the PacificOcean form. primarily sonarsurvey of a 720 km longtectonic corridor on theeast througha complexcombination of volcanicconstructional flank of the southernEPR at 14ø14'S coveredabout 25,000 processesand faulting that occur at or nearthe ridgeaxis km2 of zero-ageto 8.5 m.y. old crust(magnetic anomaly [e.g., Golf, 1991; MacdonaMet al., 1996]. Stochastic 4A). In this corridorwe documenta strongcorrelation of analysisof abyssalhills have shownthat ridge flank robustalong flowline changes in abyssalhill morphologyroughness increases with decreasing spreading rate [Menard, and seamountsize distributionwith spreadingrate changes 1967;Malinverno, 199l; Goff, 199l]. Nevertheless,seafloor deducedfrom our magneticdata. Indeed, we find thatboth roughnessvalues show a largevariation along a single rmsheight of abyssalhills andabundance and height of spreadingsegment [Golf, 1991; Goffet al., 1993],suggesting seamountsincrease significantly as spreadingrate changes that spreadingrate cannotbe the solefactor governing from ~ 75 mm/yrto over 85 mm/yr(half rate). Moreover, variationsin abyssalhill morphology. we identified 46 seamountstaller than !.00 m. Previous From November 8 to December 30, 1995 the R/V Sonne studieson the southernEPR reporteda larger densityof carriedout the EXCO-cruise,a geophysicalsurvey on zero- seamounts,organized primarily in chains.Our investigation, age to about8.5 m.y. old seafloor created at the"superfast" however, revealed seamountsnot associatedwith major spreading(full rate >140 mm/yr) East Pacific Rise south of chains,leading us to theconclusion that different forms of the Garrettfracture zone [Weigelet al., 1996]. -
0 Master's Thesis the Department of Geosciences And
Master’s thesis The Department of Geosciences and Geography Physical Geography South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Nelli Metiäinen May 2019 Thesis instructors: David Whipp Janne Soininen HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA GEOTIETEIDEN JA MAANTIETEEN LAITOS MAANTIEDE PL 64 (Gustaf Hällströmin katu 2) 00014 Helsingin yliopisto 0 Tiedekunta/Osasto – Fakultet/Sektion – Faculty Laitos – Institution – Department Faculty of Science The Department of Geosciences and Geography Tekijä – Författare – Author Nelli Metiäinen Työn nimi – Arbetets titel – Title South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Oppiaine – Läroämne – Subject Physical Geography Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis May 2019 82 + appencides Tiivistelmä – Referat – Abstract The South American subduction zone is the best example of an ocean-continent convergent plate margin. It is divided into segments that display different styles of subduction, varying from normal subduction to flat-slab subduction. This difference also effects the distribution of active volcanism. Visualizations are a fast way of transferring large amounts of information to an audience, often in an interest-provoking and easily understandable form. Sharing information as visualizations on the internet and on social media plays a significant role in the transfer of information in modern society. That is why in this study the focus is on producing visualizations of the South American subduction zone and the seismic events and volcanic activities occurring there. By examining the South American subduction zone it may be possible to get new insights about subduction zone processes. -
Inferences on Potential Seamount Locations from Mid-Resolution
T. Morato and D. Pauly (eds.), Seamounts: Biodiversity and Fisheries, Page 7 INFERENCES ON POTENTIAL SEAMOUNT LOCATIONS FROM MID- RESOLUTION BATHYMETRIC DATA Adrian Kitchingman and Sherman Lai Fisheries Centre, The University of British Columbia. 2259 Lower Mall, Vancouver, B.C., V6T 1Z4, Canada [email protected]; [email protected] ABSTRACT Seamounts are underwater volcanoes that did not grow tall enough to break to the sea surface and turn into islands. Once formed, seamounts tend to gradually sink under their own weight and the subsidence of the lithosphere. The ocean floor is littered with these former seamounts, here called ‘seamounds’. Seamounts occur throughout the world's oceans, but their number (which may surpass 50,000) is difficult to estimate, even roughly, because it depends on the resolution of the bathymetric map used and the specific definition of a seamount used, i.e., the limits used to distinguish between seamounts and seamounds. Here, the locations of a subset of the seamounts of the world were identified using two algorithms relying on the depth differences between adjacent cells of a digital global elevation map distributed by the U.S. National Oceanographic and Atmospheric Agency (NOAA). The overlap of both algorithms resulted in a set of about 14,000 seamounts, but a different number would have been found had we used different thresholds. Known seamount locations supplied by NOAA and SeamountsOnline (http://seamounts.sdsc.edu) were compared against the corresponding seamounts located by the study, which led to some degree of ground-truthing. The coordinates of the seamounts identified in this study are available on the CD-ROM attached to this report, and on http://www.seaaroundus.org. -
PLATE TECTONICS.Docx
GTheory of Plate Tectonics Critique and interpret major types of evidence supporting the Theory of Plate Tectonics. Plate tectonics is the most important concept in modern geology. This section will introduce you to the concept of plate tectonics, how it works, why it is important and how it is shaping the world today. WHAT YOU’LL LEARN TO DO · Describe and compare different types of plate motions, rates of motion and the driving mechanisms and forces involved with each. · Know the role of technology in Plate Tectonics. Theory of Plate Tectonics When the concept of seafloor spreading came along, scientists recognized that it was the mechanism to explain how continents could move around Earth’s surface. Like the scientists before us, we will now merge the ideas of continental drift and seafloor spreading into the theory of plate tectonics. Earth’s Tectonic Plates Seafloor and continents move around on Earth’s surface, but what is actually moving? What portion of the Earth makes up the “plates” in plate tectonics? This question was also answered because of technology developed during war times – in this case, the Cold War. The plates are made up of the lithosphere. Figure 1. Earthquakes outline the plates. During the 1950s and early 1960s, scientists set up seismograph networks to see if enemy nations were testing atomic bombs. These seismographs also recorded all of the earthquakes around the planet. The seismic records could be used to locate an earthquake’s epicentre, the point on Earth’s surface directly above the place where the earthquake occurs. Earthquake epicentres outline the plates. -
A New Geography of European Power?
A NEW GEOGRAPHY OF EUROPEAN POWER? EGMONT PAPER 42 A NEW GEOGRAPHY OF EUROPEAN POWER? James ROGERS January 2011 The Egmont Papers are published by Academia Press for Egmont – The Royal Institute for International Relations. Founded in 1947 by eminent Belgian political leaders, Egmont is an independent think-tank based in Brussels. Its interdisciplinary research is conducted in a spirit of total academic freedom. A platform of quality information, a forum for debate and analysis, a melting pot of ideas in the field of international politics, Egmont’s ambition – through its publications, seminars and recommendations – is to make a useful contribution to the decision- making process. *** President: Viscount Etienne DAVIGNON Director-General: Marc TRENTESEAU Series Editor: Prof. Dr. Sven BISCOP *** Egmont - The Royal Institute for International Relations Address Naamsestraat / Rue de Namur 69, 1000 Brussels, Belgium Phone 00-32-(0)2.223.41.14 Fax 00-32-(0)2.223.41.16 E-mail [email protected] Website: www.egmontinstitute.be © Academia Press Eekhout 2 9000 Gent Tel. 09/233 80 88 Fax 09/233 14 09 [email protected] www.academiapress.be J. Story-Scientia NV Wetenschappelijke Boekhandel Sint-Kwintensberg 87 B-9000 Gent Tel. 09/225 57 57 Fax 09/233 14 09 [email protected] www.story.be All authors write in a personal capacity. Lay-out: proxess.be ISBN 978 90 382 1714 7 D/2011/4804/19 U 1547 NUR1 754 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the permission of the publishers. -
I. Convergent Plate Boundaries (Destructive Margins) (Colliding Plates)
I. Convergent plate boundaries (destructive margins) (colliding plates) 1. Plates collide, an ocean trench forms, lithosphere is subducted into the mantle 2. Types of convergence—three general classes, created by two types of plates —denser oceanic plate subsides into mantle SUBDUCTION --oceanic trench present where this occurs -- Plate descends angle average 45o a. Oceanic-continental convergence 1. Denser oceanic slab sinks into the asthenosphere—continental plate floats 2. Pockets of magma develop and rise—due to water added to lower part of overriding crust—100-150 km depth 3. Continental volcanic arcs form a. e.g., Andes Low angle, strong coupling, strong earthquakes i. Nazca plate ii. Seaward migration of Peru-Chile trench b. e.g., Cascades c. e.g., Sierra Nevada system example of previous subduction b. Oceanic-oceanic convergence 1. Two oceanic slabs converge HDEW animation Motion at Plate Boundaries a. one descends beneath the other b. the older, colder one 2. Often forms volcanoes on the ocean floor 3. Volcanic island arcs forms as volcanoes emerge from the sea 200-300 km from subduction trench TimeLife page 117 Philippine Arc a. e.g., Aleutian islands b. e.g., Mariana islands c. e.g., Tonga islands all three are young volcanic arcs, 20 km thick crust Japan more complex and thicker crust 20-35 km thick c. Continental-continental convergence— all oceaninc crust is destroyed at convergence, and continental crust remains 1. continental crust does not subside—too buoyant 2. two continents collide—become ‘sutured’ together 3. Can produce new mountain ranges such as the Himalayas II. Transform fault boundaries 1. -
Plate Tectonics Says That Earth’S Plates Move Because of Convection Currents in the Mantle
Bellringer Which ocean is getting smaller and which ocean is getting bigger due to subduction and sea floor spreading? Plate Tectonic Theory Notes How Plates Move • Earth’s crust is broken into many jagged pieces. The surface is like the shell of a hard-boiled egg that has been rolled. The pieces of Earth’s crust are called plates. Plates carry continents, oceans floors, or both. How Plates Move • The theory of plate tectonics says that Earth’s plates move because of convection currents in the mantle. Currents in the mantle carry plates on Earth’s surface, like currents in water carry boats on a river, or Cheerios in milk. How Plates Move • Plates can meet in three different ways. Plates may pull apart, push together, or slide past each other. Wherever plates meet, you usually get volcanoes, mountain ranges, or ocean trenches. Plate Boundaries • A plate boundary is where two plates meet. Faults form along plate boundaries. A fault is a break in Earth’s crust where blocks of rock have slipped past each other. Plate Boundaries • Where two plates move apart, the boundary is called a divergent boundary. • A divergent boundary between two oceanic plates will result in a mid-ocean ridge AND rift valley. (SEE: Sea-Floor Spreading) • A divergent boundary between two continental plates will result in only a rift valley. This is currently happening at the Great Rift Valley in east Africa. Eventually, the Indian Ocean will pour into the lowered valley and a new ocean will form. Plate Boundaries • Where two plates push together, the boundary is called a convergent boundary. -
Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War
University of Pennsylvania ScholarlyCommons Undergraduate Humanities Forum 2012-2013: Penn Humanities Forum Undergraduate Peripheries Research Fellows 4-2013 Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War William S. Kearney University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/uhf_2013 Part of the Geophysics and Seismology Commons, and the Tectonics and Structure Commons Kearney, William S., "Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War" (2013). Undergraduate Humanities Forum 2012-2013: Peripheries. 8. https://repository.upenn.edu/uhf_2013/8 This paper was part of the 2012-2013 Penn Humanities Forum on Peripheries. Find out more at http://www.phf.upenn.edu/annual-topics/peripheries. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/uhf_2013/8 For more information, please contact [email protected]. Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War Abstract Canadian geophysicist John Tuzo Wilson's transform fault concept was instrumental in unifying the various strands of evidence that together make up plate tectonic theory. Outside of his scientific esearr ch, Wilson was a tireless science administrator and promoter of international scientific cooperation. To that end, he travelled to China twice, once in 1958 as part of the International Geophysical Year and once again in 1971. Coming from a rare non-communist westerner in China both before and after the Cultural Revolution, Wilson's travels constitute valuable temporal and spatial cross-sections of China as that nation struggled to define itself in elationr to its past, to the Soviet Union which inspired its politics, and to the West through Wilson's new science of plate tectonics. -
Modeling Seafloor Spreading Adapted from a Lesson Developed by San Lorenzo USD Teachers: Julie Ramirez, Veenu Soni, Marilyn Stewart, and Lawrence Yano (2012)
Teacher Instruction Sheet Modeling Seafloor Spreading Adapted from a lesson developed by San Lorenzo USD Teachers: Julie Ramirez, Veenu Soni, Marilyn Stewart, and Lawrence Yano (2012) Teacher Background The process of seafloor spreading created the seafloor of the oceans. For example, in the Atlantic Ocean, North America and South America moved away from Europe and Africa and the resulting crack was filled by mantle material, which cooled and formed new lithosphere. The process continues today. Molten mantle materials continually rise to fill the cracks formed as the plates move slowly apart from each other. This process creates an underwater mountain chain, known as a mid-ocean ridge, along the zone of newly forming seafloor. Molten rock erupts along a mid-ocean ridge, then cools and freezes to become solid rock. The direction of the magnetic field of the Earth at the time the rock cools is "frozen" in place. This happens because magnetic minerals in the molten rock are free to rotate so that they are aligned with the Earth's magnetic field. After the molten rock cools to a solid rock, these minerals can no longer rotate freely. At irregular intervals, averaging about 200-thousand years, the Earth's magnetic field reverses. The end of a compass needle that today points to the north will instead point to the south after the next reversal. The oceanic plates act as a giant tape recorder, preserving in their magnetic minerals the orientation of the magnetic field present at the time of their creation. Geologists call the current orientation "normal" and the opposite orientation "reversed." USGS Teacher Instruction Sheet In the figure above, two plates are moving apart. -
Dynamic Subsidence of Eastern Australia During the Cretaceous
Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data. -
Earth/Environmental (2014) Released Final Exam
Released Items Fall 2014 NC Final Exam Earth/Environmental Science RELEASED Public Schools of North Carolina Student Booklet State Board of Education Department of Public Instruction Raleigh, North Carolina 27699-6314 Copyrightã 2014 by the North Carolina Department of Public Instruction. All rights reserved. E ARTH/ENVIRONMENTAL S CIENCE — R ELEASED I TEMS 1 Cracks in rocks widen as water in them freezes and thaws. How does this affect the surface of the Earth? A It reduces the rates of soil formation. B It changes the chemical composition of the rocks. C It exposes rocks to increased rates of erosion and weathering. D It limits the exposure of rocks to acid precipitation. 2 How can urbanization affect a local area? A It can increase the number of invasive species in an area. B It can decrease the risk of water pollution in an area. C It can increase the risk of flooding in an area. D It can decrease the need for natural resources in an area. 3 Which is a farming technique that could improve the soil and the environment? A using fueled machines that will turn the soil continuously B creating undisturbed layers of mulch in the soil C placing inorganic chemical fertilizers in the soil D irrigating the RELEASEDsoil with salty water 1 Go to the next page. E ARTH/ENVIRONMENTAL S CIENCE — R ELEASED I TEMS 4 Subsurface ocean currents continually circulate from the warm waters near the equator to the colder waters in other parts of the world. What is the main cause of these currents? A differences in the topography along the ocean floor B differences -
Importance of Seamount-Like Features for Conserving Mediterranean Marine Habitats and Threatened Species
Nº. 1105 IMPORTANCE OF SEAMOUNT-LIKE FEATURES FOR CONSERVING MEDITERRANEAN MARINE HABITATS AND THREATENED SPECIES Ricardo Aguilar, Xavier Pastor, Silvia García & Pilar Marín Oceana. Leganitos, 47 - 28013 Madrid. Spain - *[email protected] INTRODUCTION HABITAT LOCATION MAIN SPECIES 16 of the more than 200 seamount‑like peaks in the Mediterranean1 have been observed using ROV. Coral reefs 4, 5, 6, 7 Lophelia pertusa, Madrepora oculata Desmophyllum dianthus, Stenocyathus vermiformis, The findings, which include carnivorous sponges, elasmobranches, coral gardens, sponge aggregations, Cold water corals All sites Caryophyllia spp. Pourtalosmilia anthophyllites, Javania caileti, coralligenous beds, as well as species new to science like the giant foraminifera Spiculosiphon oceana, Anomocora fecunda, Dendrophyllia spp. Paramuricea spp., Eunicella spp., Viminella flagellum, or new to the Mediterranean, like the scleractinian Anomocora fecunda, underscore the importance of 1, 2, 3, 4, 5, Callogorgia verticillata, Acanthogorgia spp., Placogorgia these geological features as hotspots and shelters/refuges species and habitats that are threatened, in Gorgonian/coral gardens: 6, 7, 8, 9, 11, coronata, Swiftia pallida, Muriceides lepida, Villogorgia regression, or rare in other Mediterranean areas. 12, 13, 14 bebrycoides, Bebryce mollis, Nicella granifera 1, 4, 5, 6, 7, Leiopathes glaberrima, Antipathes dichotoma, Antipathella METHODOLOGY Black corals Since 2006, Oceana has carried out six expeditions in the Mediterranean performing 129 ROV’s dives 9, 11, 15, 16 subpinnata, Parantipathes larix Isidella elongata, Pennatula spp., Pteroeides griseum, 2, 3, 4, 7, 8, over 16 seamounts, between ‑37 and ‑638 meters deep. Soft bottoms’ octocorals Virgularia mirabilis, Veretillun cynomorium, Kophobelemnon 9, 11, 14, 16 RESULTS stelliferum, Funiculina quadrangularis 2 3, 4, 5, 6, 7, Asconema setubalense, Phakellia spp., Axinella spp.