AR TICLE Fungal Networks and Orchid Distribution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.MAIN FUNGAL PARTNERS and DIFFERENT LEVELS OF
Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica Suárez, Juan Pablo; Kottke, Ingrid MAIN FUNGAL PARTNERS AND DIFFERENT LEVELS OF SPECIFICITY OF ORCHID MYCORRHIZAE IN THE TROPICAL MOUNTAIN FORESTS OF ECUADOR Lankesteriana International Journal on Orchidology, vol. 16, núm. 2, 2016 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44347813012 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 16(2): 00–00. 2016. doi: http://dx.doi.org/10.15517/lank.v15i2.00000 MAIN FUNGAL PARTNERS AND DIFFERENT LEVELS OF SPECIFICITY OF ORCHID MYCORRHIZAE IN THE TROPICAL MOUNTAIN FORESTS OF ECUADOR JUAN PABLO SUÁREZ1,3 & INGRID KOTTKE2 1 Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n C.P. 11 01 608, Loja, Ecuador* 2 Plant Evolutionary Ecology, Institute of Evolution and Ecology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany; retired 3 Corresponding author: [email protected] ABSTRACT. Orchids are a main component of the diversity of vascular plants in Ecuador with approximately 4000 species representing about 5.3% of the orchid species described worldwide. More than a third of these species are endemics. As orchids, in contrast to other plants, depend on mycorrhizal fungi already for seed germination and early seedling establishment, availability of appropriate fungi may strongly influence distribution of orchid populations. -
The Genomic Impact of Mycoheterotrophy in Orchids
fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming. -
Phylogenetic Relationships of Rhizoctonia Fungi Within the Cantharellales
fungal biology 120 (2016) 603e619 journal homepage: www.elsevier.com/locate/funbio Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales Dolores GONZALEZa,*, Marianela RODRIGUEZ-CARRESb, Teun BOEKHOUTc, Joost STALPERSc, Eiko E. KURAMAEd, Andreia K. NAKATANIe, Rytas VILGALYSf, Marc A. CUBETAb aInstituto de Ecologıa, A.C., Red de Biodiversidad y Sistematica, Carretera Antigua a Coatepec No. 351, El Haya, 91070 Xalapa, Veracruz, Mexico bDepartment of Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Campus Box 7251, Raleigh, NC 27695, USA cCBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands dDepartment of Microbial Ecology, Netherlands Institute of Ecology (NIOO/KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands eUNESP, Faculdade de Ci^encias Agronomicas,^ CP 237, 18603-970 Botucatu, SP, Brazil fDepartment of Biology, Duke University, Durham, NC 27708, USA article info abstract Article history: Phylogenetic relationships of Rhizoctonia fungi within the order Cantharellales were studied Received 2 January 2015 using sequence data from portions of the ribosomal DNA cluster regions ITS-LSU, rpb2, tef1, Received in revised form and atp6 for 50 taxa, and public sequence data from the rpb2 locus for 165 taxa. Data sets 1 January 2016 were analysed individually and combined using Maximum Parsimony, Maximum Likeli- Accepted 19 January 2016 hood, and Bayesian Phylogenetic Inference methods. All analyses supported the mono- Available online 29 January 2016 phyly of the family Ceratobasidiaceae, which comprises the genera Ceratobasidium and Corresponding Editor: Thanatephorus. Multi-locus analysis revealed 10 well-supported monophyletic groups that Joseph W. Spatafora were consistent with previous separation into anastomosis groups based on hyphal fusion criteria. -
Morphology and Molecules: the Sebacinales, a Case Study
Mycol Progress DOI 10.1007/s11557-014-0983-1 ORIGINAL ARTICLE Morphology and molecules: the Sebacinales, a case study Franz Oberwinkler & Kai Riess & Robert Bauer & Sigisfredo Garnica Received: 4 April 2014 /Accepted: 8 April 2014 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2014 Abstract Morphological and molecular discrepancies in the irregular germinating spores and inconspicuous cystidia, and biodiversity of monophyletic groups are challenging. The S. flagelliformis with flagelliform dikaryophyses from intention of this study was to find out whether the high S. epigaea s.str. Additional clades in Sebacina, based on molecular diversity in Sebacinales can be verified by micro- molecular differences, cannot be distinguished morphologi- morphological characteristics. Therefore, we carried out mo- cally at present. lecular and morphological studies on all generic type species of Sebacinales and additional representative taxa. Our results encouraged us to disentangle some phylogenetic and taxo- Introduction nomic discrepancies and to improve sebacinalean classifica- tions. This comprises generic circumscriptions and affilia- Based on longitudinally septate meiosporangia in their mature tions, as well as higher taxon groupings. At the family level, stage, sebacinoid fungi were originally grouped together with we redefined the Sebacinaceae, formerly the Sebacinales tremelloid and exidioid taxa. Sebacinales in the present cir- group A, and set it apart from the Sebacinales group B. For cumscription were reviewed in detail recently (Oberwinkler taxonomical purposes, it seems appropriate to refer et al. 2013). We refer to this publication for traditional classi- Paulisebacina, Craterocolla, Chaetospermum, fication of genera and interpretation of some species. Here, we Globulisebacina, Tremelloscypha, and Sebacina to the summarize data that accumulated within several years of Sebacinaceae and Piriformospora, and Serendipita to the intensive sampling, from morphological and molecular stud- Sebacinales group B. -
Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes
microorganisms Article Novel Antifungal Activity of Lolium-Associated Epichloë Endophytes Krishni Fernando 1,2, Priyanka Reddy 1, Inoka K. Hettiarachchige 1, German C. Spangenberg 1,2, Simone J. Rochfort 1,2 and Kathryn M. Guthridge 1,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, 3083 Victoria, Australia; [email protected] (K.F.); [email protected] (P.R.); [email protected] (I.K.H.); [email protected] (G.C.S.); [email protected] (S.J.R.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, 3083 Victoria, Australia * Correspondence: [email protected]; Tel.: +61390327062 Received: 27 May 2020; Accepted: 19 June 2020; Published: 24 June 2020 Abstract: Asexual Epichloë spp. fungal endophytes have been extensively studied for their functional secondary metabolite production. Historically, research mostly focused on understanding toxicity of endophyte-derived compounds on grazing livestock. However, endophyte-derived compounds also provide protection against invertebrate pests, disease, and other environmental stresses, which is important for ensuring yield and persistence of pastures. A preliminary screen of 30 strains using an in vitro dual culture bioassay identified 18 endophyte strains with antifungal activity. The novel strains NEA12, NEA21, and NEA23 were selected for further investigation as they are also known to produce alkaloids associated with protection against insect pests. Antifungal activity of selected endophyte strains was confirmed against three grass pathogens, Ceratobasidium sp., Dreschlera sp., and Fusarium sp., using independent isolates in an in vitro bioassay. NEA21 and NEA23 showed potent activity against Ceratobasidium sp. -
Conservation Advice Pterostylis Despectans Lowly Greenhood
THREATENED SPECIES SCIENTIFIC COMMITTEE Established under the Environment Protection and Biodiversity Conservation Act 1999 The Minister’s delegate approved this Conservation Advice on 16/12/2016 . Conservation Advice Pterostylis despectans lowly greenhood Conservation Status Pterostylis despectans (lowly greenhood) is listed as Endangered under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act). The species is eligible for listing as prior to the commencement of the EPBC Act, it was listed as Endangered under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth). Species can also be listed as threatened under state and territory legislation. For information on the listing status of this species under relevant state or territory legislation, see http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl The main factors that are the cause of the species being eligible for listing in the Endangered category are its restricted and fragmented distribution; and its declining population due to continuing threats. Description The lowly greenhood (Orchidaceae) is a herbaceous perennial geophyte that remains dormant underground as a tuber from late summer into early winter. In late winter (May to June) it develops a rosette of six to ten basal leaves and three or four stem-sheathing bract-like leaves above (DSE 2014; OEH 2014; Quarmby 2010). The rosette leaves are 10 - 20 mm long and 6 - 9 mm wide. The flower stem is produced between late October and December and the leaves shrivel up by the time the flowers mature. The flower stem is up to 80 mm tall, though often only reaching 20 - 30mm, with scaly bracts. -
Ectomycorrhizal Fungal Community Structure in a Young Orchard of Grafted and Ungrafted Hybrid Chestnut Saplings
Mycorrhiza (2021) 31:189–201 https://doi.org/10.1007/s00572-020-01015-0 ORIGINAL ARTICLE Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings Serena Santolamazza‑Carbone1,2 · Laura Iglesias‑Bernabé1 · Esteban Sinde‑Stompel3 · Pedro Pablo Gallego1,2 Received: 29 August 2020 / Accepted: 17 December 2020 / Published online: 27 January 2021 © The Author(s) 2021 Abstract Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting signifcantly infuenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a diferent ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips. -
The Emergence of Cereal Fungal Diseases and the Incidence of Leaf Spot Diseases in Finland
AGRICULTURAL AND FOOD SCIENCE AGRICULTURAL AND FOOD SCIENCE Vol. 20 (2011): 62–73. Vol. 20(2011): 62–73. The emergence of cereal fungal diseases and the incidence of leaf spot diseases in Finland Marja Jalli, Pauliina Laitinen and Satu Latvala MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland, email: [email protected] Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields.Mycosphaerella graminicola was identi- fied for the first time in Finnish spring wheat fields, being present in 6% of the studied fields.Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied. Key-words: Plant disease, leaf spot disease, emergence, cereal, barley, wheat, oat Introduction nbrock and McDonald 2009). Changes in cropping systems and in climate are likely to maintain the plant-pathogen interactions (Gregory et al. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
99C3449154cc7e241808dabec9
International Journal of Molecular Sciences Article Combined Metabolome and Transcriptome Analyses Reveal the Effects of Mycorrhizal Fungus Ceratobasidium sp. AR2 on the Flavonoid Accumulation in Anoectochilus roxburghii during Different Growth Stages Ying Zhang, Yuanyuan Li , Xiaomei Chen, Zhixia Meng * and Shunxing Guo * Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] (Y.Z.); [email protected] (Y.L.); [email protected] (X.C.) * Correspondence: [email protected] (Z.M.); [email protected] (S.G.) Received: 18 November 2019; Accepted: 9 January 2020; Published: 15 January 2020 Abstract: Anoectochilus roxburghii is a traditional Chinese herb with high medicinal value, with main bioactive constituents which are flavonoids. It commonly associates with mycorrhizal fungi for its growth and development. Moreover, mycorrhizal fungi can induce changes in the internal metabolism of host plants. However, its role in the flavonoid accumulation in A. roxburghii at different growth stages is not well studied. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in mycorrhizal A. roxburghii (M) and non-mycorrhizal A. roxburghii (NM) growth for six months. An association analysis revealed that flavonoid biosynthetic pathway presented significant differences between the M and NM. Additionally, the structural genes related to flavonoid synthesis and different flavonoid -
Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong Ph and Plant Species Effects in Northern Europe
fmicb-11-01953 September 9, 2020 Time: 11:41 # 1 ORIGINAL RESEARCH published: 04 September 2020 doi: 10.3389/fmicb.2020.01953 Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe Leho Tedersoo1*, Sten Anslan1,2, Mohammad Bahram1,3, Rein Drenkhan4, Karin Pritsch5, Franz Buegger5, Allar Padari4, Niloufar Hagh-Doust1, Vladimir Mikryukov6, Daniyal Gohar1, Rasekh Amiri1, Indrek Hiiesalu1, Reimo Lutter4, Raul Rosenvald1, Edited by: Elisabeth Rähn4, Kalev Adamson4, Tiia Drenkhan4,7, Hardi Tullus4, Katrin Jürimaa4, Saskia Bindschedler, Ivar Sibul4, Eveli Otsing1, Sergei Põlme1, Marek Metslaid4, Kaire Loit8, Ahto Agan1, Université de Neuchâtel, Switzerland Rasmus Puusepp1, Inge Varik1, Urmas Kõljalg1,9 and Kessy Abarenkov9 Reviewed by: 1 2 Tesfaye Wubet, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, Zoological Institute, Technische Universität 3 Helmholtz Centre for Environmental Braunschweig, Brunswick, Germany, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 4 5 Research (UFZ), Germany Sweden, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia, Helmholtz 6 Christina Hazard, Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany, Chair of Ecole Centrale de Lyon, France Forest Management Planning and Wood Processing Technologies, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia, 7 Forest Health and Biodiversity, Natural Resources Institute Finland *Correspondence: (Luke), Helsinki, Finland, 8 Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia, 9 Natural History Leho Tedersoo Museum and Botanical Garden, University of Tartu, Tartu, Estonia [email protected] Specialty section: Soil microbiome has a pivotal role in ecosystem functioning, yet little is known about This article was submitted to its build-up from local to regional scales. -
Recent Developments in the Study of Orchid Mycorrhiza
Plant and Soil 244: 149–163, 2002. 149 © 2002 Kluwer Academic Publishers. Printed in the Netherlands. Recent developments in the study of orchid mycorrhiza Hanne N. Rasmussen Danish Forest & Landscape Research Institute, 11 Hoersholm Kongevej, DK 2970 Hoersholm, Denmark∗ Received 21 August 2001. Accepted in revised form 12 December 2001 Key words: basidiomycetes, mycoheterotrophy, Orchidaceae, plant-fungal relationships, specificity, symbiosis Abstract Orchids are mycoheterotrophic during their seedling stage and in many species the dependency on fungi as a carbohydrate source is prolonged into adulthood. The mycobionts in orchid mycorrhiza belong in at least 5 major taxonomic groups of basidiomycetes. Traditional records have mainly focused on saprotrophic mycobionts but the participation of both ectomycorrhizal and parasitic fungi in orchid mycorrhiza has been corroborated. There is an increasing evidence of specific relationships between orchids and fungi, though usually not on a species-to-species level. Physiological compatibility demonstrated under artificial conditions, as in vitro, may be much broader, however. Recent development of field sowing techniques has improved the possibilities of evaluating orchid- fungal relations in an ecological context. Although the general nutrient flow in orchid mycorrhiza is well known, some questions remain regarding breakdown processes of fungi within orchid tissues, especially the ptyophagic syndrome that has recently been illustrated at the ultrastructural level for the first time. Energy sources for orchid mycorrhiza in the field sociate with species of Cymbidium and Gastrodia (Fan et al., 1996; Lan et al., 1996), are acknowledged sapro- Fungi associated with orchid mycorrhiza (OM) have trophs. Lentinus edodes Berk., the shiitake mushroom, traditionally been mostly regarded as saprotrophs, that is a white-rot saprotroph, can support the devel- dead organic material thus being the energy source opment of a chlorophyll-deficient orchid, Erythrorchis for the symbiosis.