Seabird Foraging in Dynamic Oceanographic Features by Lesley

Total Page:16

File Type:pdf, Size:1020Kb

Seabird Foraging in Dynamic Oceanographic Features by Lesley Seabird Foraging in Dynamic Oceanographic Features by Lesley Helen Thorne University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Dr. Andrew Read, Supervisor ___________________________ Dr. Larry Crowder ___________________________ Dr. Pat Halpin ___________________________ Dr. Bill Montevecchi ___________________________ Dr. Doug Nowacek Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2010 ABSTRACT Seabird Foraging in Dynamic Oceanographic Features by Lesley Helen Thorne University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Dr. Andrew Read, Supervisor ___________________________ Dr. Larry Crowder ___________________________ Dr. Pat Halpin ___________________________ Dr. Bill Montevecchi ___________________________ Dr. Doug Nowacek An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2010 Copyright by Lesley Helen Thorne 2010 Abstract Oceanographic features, such as fronts, eddies, and upwellings, provide important foraging areas for marine predators. These areas serve as important “hotspots” of marine life, by aggregating weakly swimming lower and mid-trophic level species which, in turn, attract foraging predators. Despite the importance of these dynamic features, we lack a comprehensive understanding of how they create foraging habitat for seabirds and other marine predators. In the first part of this dissertation, I review current knowledge of how seabirds use oceanographic features with an emphasis on developing a more mechanistic understanding of these features, and identify important considerations for future studies. I use the findings of this review to inform two field research projects in the Bay of Fundy, Canada and Onslow Bay, North Carolina. In these two projects, I examined seabird abundance and distribution in relation to oceanographic features that occur at different spatial and temporal scales. In the first project, I examined foraging habitat of red-necked phalaropes ( Phalaropus lobatus ) in relation fine-scale tidal forcing near the Brier Island ledges in the Bay of Fundy. This research demonstrated the importance of biophysical interactions in creating phalarope habitat, and characterized red-necked phalarope habitat in both space and time. In Onslow Bay, I investigated the effects of Gulf Stream fronts and eddies on the abundance and distribution of seabirds using both remotely sensed and in iv situ data. I used fisheries acoustics surveys to investigate prey distribution within Gulf Stream frontal eddies. I then developed habitat models for the six most commonly sighted species or species groups (Cory's shearwaters, Calonectris diomedea ; greater shearwaters ( Puffinus gravis ; Wilson's storm-petrel, Oceanites oceanicus ; Audubon's shearwaters, Puffinus lherminieri ; black-capped petrels, Pterodrama hasitata ; and red and red-necked phalaropes, grouped together as Phalaropus spp.) using multivariate modeling techniques. Gulf Stream frontal eddies influenced the abundance and distribution of seabirds in Onslow Bay, although frontal features were not as important in predicting seabird habitat as demonstrated in previous studies in the South Atlantic Bight. Prey availability in Gulf Stream frontal eddies was highest in eddy cold core regions, particularly in those regions close to the Gulf Stream. Taken together, the results of my dissertation: underscore the importance of conducting standardized surveys to assess dynamic environmental variables; demonstrate the use of multivariate methods to examine seabird foraging in relation to oceanographic features; emphasize the need to evaluate both prey distributions and physical regimes within oceanographic features at depth; and highlight the importance of temporal aspects of oceanographic features, such as the persistence and age of the features, when assessing the role that these features play in creating seabird foraging habitat. v Dedication For my parents, Susan and Guy. vi Contents Abstract ......................................................................................................................................... iv List of Tables ................................................................................................................................. xi List of Figures .............................................................................................................................. xii Acknowledgements .................................................................................................................... xv General introduction .................................................................................................................... 1 Background ............................................................................................................................. 1 Outline of dissertation ........................................................................................................... 4 Chapter 1: From pattern to process: a critical review of the literature linking seabirds and oceanographic features................................................................................................................. 9 Abstract .................................................................................................................................... 9 1. Introduction ....................................................................................................................... 10 2. Approach ........................................................................................................................... 15 3. Studies of seabirds and oceanographic features .......................................................... 19 3.1 Fronts.............................................................................................................................. 21 3.2 Frontal regions .............................................................................................................. 24 3.3 Rings and eddies .......................................................................................................... 28 3.4 Upwellings .................................................................................................................... 33 3.5 Ice edges, ice cover and icebergs ................................................................................ 36 3.6 Bathymetric features .................................................................................................... 40 3.7 Vertical gradients ......................................................................................................... 43 vii 3.8 Tidal features................................................................................................................. 45 3.9 Other oceanographic features ..................................................................................... 46 4. Moving from correlation toward causality and prediction ........................................ 47 4.1 Sampling methods ........................................................................................................ 48 4.2 Scale of measurements ................................................................................................. 54 4.3 Spatial scale of oceanographic features ..................................................................... 57 4.4 Temporal persistence and predictability of oceanographic features .................... 60 4.5 Analytical techniques ................................................................................................... 64 5. Conclusions ....................................................................................................................... 67 Chapter 2: A quantitative assessment of red-necked phalarope foraging habitat in the Bay of Fundy, Canada: the importance of considering biophysical dynamics at a fine scale ............................................................................................................................................... 75 Abstract .................................................................................................................................. 75 1. Introduction ....................................................................................................................... 76 2. Methods ............................................................................................................................. 80 2.1 Study area ...................................................................................................................... 80 2.2 Oceanographic sampling ............................................................................................. 81 2.3 Phalarope Surveys ........................................................................................................ 83 2.4 Analysis ......................................................................................................................... 83 3. Results ................................................................................................................................ 87 4. Discussion .........................................................................................................................
Recommended publications
  • The Status of Natural Resources on the High-Seas
    The status of natural resources on the high-seas Part 1: An environmental perspective Part 2: Legal and political considerations An independent study conducted by: The Southampton Oceanography Centre & Dr. A. Charlotte de Fontaubert The status of natural resources on the high-seas i The status of natural resources on the high-seas Published May 2001 by WWF-World Wide Fund for Nature (Formerly World Wildlife Fund) Gland, Switzerland. Any reproduction in full or in part of this publication must mention the title and credit the above mentioned publisher as the copyright owner. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of WWF or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of WWF or IUCN. Published by: WWF International, Gland, Switzerland IUCN, Gland, Switzerland and Cambridge, UK. Copyright: © text 2001 WWF © 2000 International Union for Conservation of Nature and Natural Resources © All photographs copyright Southampton Oceanography Centre Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: WWF/IUCN (2001). The status of natural resources on the high-seas. WWF/IUCN, Gland, Switzerland. Baker, C.M., Bett, B.J., Billett, D.S.M and Rogers, A.D.
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring. Chao-chieh Chen Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Chen, Chao-chieh, "Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring." (1996). LSU Historical Dissertations and Theses. 6323. https://digitalcommons.lsu.edu/gradschool_disstheses/6323 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Publications Supported by NOAA's Office of Ocean Exploration And
    1 Publications Supported by NOAA’s Office of Ocean Exploration and Research Compiled by Chris Belter, NOAA Central Library Accurate as of 17 April 2012 Journal Articles (n=454) Ahyong ST. 2008. Deepwater crabs from seamounts and chemosynthetic habitats off eastern New Zealand (Crustacea : Decapoda : Brachyura). Zootaxa(1708):1-72. Aig D, Haywood K. 2008. Through the Sea Snow: The Central Role of Videography in the Deep Gulf Wrecks Mission. International Journal of Historical Archaeology 12(2):133-145. doi:10.1007/s10761-008-0049-7 Andrews AH, Stone RP, Lundstrom CC, DeVogelaere AP. 2009. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined Pb-210 dating. Marine Ecology-Progress Series 397:173-185. doi:10.3354/meps08193 Angel MV. 2010. Towards a full inventory of planktonic Ostracoda (Crustacea) for the subtropical Northwestern Atlantic Ocean. Deep-Sea Research Part Ii-Topical Studies in Oceanography 57(24-26):2173-2188. doi:10.1016/j.dsr2.2010.09.020 Arellano SM, Young CM. 2009. Spawning, Development, and the Duration of Larval Life in a Deep-Sea Cold-Seep Mussel. Biological Bulletin 216(2):149-162. Auster PJ. 2007. Linking deep-water corals and fish populations. Bulletin of Marine Science 81:93-99. Auster PJ, Gjerde K, Heupel E, Watling L, Grehan A, Rogers AD. 2011. Definition and detection of vulnerable marine ecosystems on the high seas: problems with the "move-on" rule. ICES Journal of Marine Science 68(2):254-264. doi:10.1093/icesjms/fsq074 Auster PJ, Watling L. 2010. Beaked whale foraging areas inferred by gouges in the seafloor.
    [Show full text]
  • The Role of Habitat Variability and Interactions Around Nesting Cavities in Shaping Urban Bird Communities
    The role of habitat variability and interactions around nesting cavities in shaping urban bird communities Andrew Munro Rogers BSc, MSc Photo: A. Rogers A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Biological Sciences Andrew Rogers PhD Thesis Thesis Abstract Inter-specific interactions around resources, such as nesting sites, are an important factor by which invasive species impact native communities. As resource availability varies across different environments, competition for resources and invasive species impacts around those resources change. In urban environments, changes in habitat structure and the addition of introduced species has led to significant changes in species composition and abundance, but the extent to which such changes have altered competition over resources is not well understood. Australia’s cities are relatively recent, many of them located in coastal and biodiversity-rich areas, where conservation efforts have the opportunity to benefit many species. Australia hosts a very large diversity of cavity-nesting species, across multiple families of birds and mammals. Of particular interest are cavity-breeding species that have been significantly impacted by the loss of available nesting resources in large, old, hollow- bearing trees. Cavity-breeding species have also been impacted by the addition of cavity- breeding invasive species, increasing the competition for the remaining nesting sites. The results of this additional competition have not been quantified in most cavity breeding communities in Australia. Our understanding of the importance of inter-specific interactions in shaping the outcomes of urbanization and invasion remains very limited across Australian communities. This has led to significant gaps in the understanding of the drivers of inter- specific interactions and how such interactions shape resource use in highly modified environments.
    [Show full text]
  • Open File Report 87-12: Bibliography and Index of Mineral Resources Of
    WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES • Raymond Lasmanis, Sta·te Geologist BIBLIOGRAPHY AND INDEX OF MINERAL RESOURCES OF THE U.S. EXCLUSIVE ECONOMIC ZONE WEST OF THE WASHINGTON STATE COASTLINE Compiled by • VIRGINIA J. TAKEN WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES OPEN FILE REPORT 87-12 1987 This report has not been edited or reviewed for conformity with Division of Geology and Earth Resources standards and nomenclature. •• WASHINGTON STATE DEPARTMENT OF Natural Resources Brian Boyle · Comrrumoner of Public Lands • Art Stearns - Superv1sor • • • • CONTENTS Page Introduction • i i Acknowledgments. i i i Bibliography 1 Subject Index 51 • • i • • • • BIBLIOGRAPHY AND INDEX OF MINERAL RESOURCES OF THE U.S. EXCLUSIVE ECONOMIC ZONE WEST OF THE WASHINGTON STATE COASTLINE Compiled by VIRGINIA J. TAKEN INTRODUCTION This work includes all known reports on the geology and geophysics of the mineral resources of the U.S. Exclusive Economic Zone (EEZ) west of the Washington State coastline. It includes abstracts, journal articles, monographs, maps, theses, conference papers, open-file reports and every other type of published data on this subject. A few other promising references were found, but extensive searching turned up nothing, so these references were not • included. The materials were drawn from many geologic libraries, including the Washington Division of Geology and Earth Resources (DGER} library in Olympia, Washington; the University of Washington libraries in Seattle and Friday Harbor, Washington; the U.S. National Oceanographic and Atmospheric Administration library in Seattle, Washington; the U.S. Geological Survey library in Menlo Park, California; and the U.S. Minerals Management collection in Long Beach, California.
    [Show full text]
  • Appendix H: Birds Specialist Report
    Report No: P WMA 19/G10/00/2413/3 Department of Water Affairs Directorate: Options Analysis PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS REPORT No.1 – VOLUME 3 Berg Estuary Environmental Water Requirements APPENDIX No.H Specialist Report - Birds June 2012 STUDY REPORT LIST DWA REPORT VOLUME REPORT TITLE REPORT VOLUME TITLE No No. No. Riverine Environmental Water Requirements Appendix 1: EWR data for the Breede River Appendix 2: EWR data for the Palmiet River PWMA19 Vol 1 G10/00/2413/1 Appendix 3: EWR data for the Berg River Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers Appendix 5: Habitat Integrity Report – Breede River Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary Appendix A: Summary of data available for the RDM investigations PWMA19 Vol 2 undertaken during 2007 and 2008 G10/00/2413/2 Appendix B: Summary of baseline data requirements and the long- ECOLOGICAL term monitoring programme WATER 1 REQUIREMENT Appendix C: Abiotic Specialist Report ASSESSMENTS Berg Estuary Environmental Water Requirements Appendix A: Available information and data Appendix B: Measurement of streamflows in the Lower Berg downstream of Misverstand Dam Appendix C: Specialist Report – Physical dynamics and water quality PWMA19 Appendix D: Specialist Report – Modelling Vol 3 G10/00/2413/3 Appendix E: Specialist Report – Microalgae Appendix F: Specialist Report – Invertebrates
    [Show full text]
  • Modern and Ancient Hiatuses in the Pelagic Caps of Pacific Guyots and Seamounts and Internal Tides GEOSPHERE; V
    Research Paper GEOSPHERE Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides GEOSPHERE; v. 11, no. 5 Neil C. Mitchell1, Harper L. Simmons2, and Caroline H. Lear3 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK doi:10.1130/GES00999.1 2School of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, 905 N. Koyukuk Drive, 129 O’Neill Building, Fairbanks, Alaska 99775, USA 3School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK 10 figures CORRESPONDENCE: neil .mitchell@ manchester ABSTRACT landmasses were different. Furthermore, the maximum current is commonly .ac .uk more important locally than the mean current for resuspension and transport Incidences of nondeposition or erosion at the modern seabed and hiatuses of particles and thus for influencing the sedimentary record. The amplitudes CITATION: Mitchell, N.C., Simmons, H.L., and Lear, C.H., 2015, Modern and ancient hiatuses in the within the pelagic caps of guyots and seamounts are evaluated along with of current oscillations should therefore be of interest to paleoceanography, al- pelagic caps of Pacific guyots and seamounts and paleotemperature and physiographic information to speculate on the charac- though they are not well known for the geological past. internal tides: Geosphere, v. 11, no. 5, p. 1590–1606, ter of late Cenozoic internal tidal waves in the upper Pacific Ocean. Drill-core Hiatuses in pelagic sediments of the deep abyssal ocean floor have been doi:10.1130/GES00999.1. and seismic reflection data are used to classify sediment at the drill sites as interpreted from sediment cores (Barron and Keller, 1982; Keller and Barron, having been accumulating or eroding or not being deposited in the recent 1983; Moore et al., 1978).
    [Show full text]
  • Bark-Foragers May Use Artificially Created Holes in Trees As a Foraging Cue Ruby L
    Arizona Birds - Journal of Arizona Field Ornithologists Volume 2020 BARK-FORAGERS MAY USE ARTIFICIALLY CREATED HOLES IN TREES AS A FORAGING CUE RUBY L. HAMMOND, YAZHMIN A. DOZAL, AND TAD C. THEIMER, DEPARTMENT OF BIOLOGICAL SCIENCES, NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, AZ, 86011, [email protected] ABSTRACT: Little is known about cues used by insectivorous bark-foraging birds to locate prey. Because vision is thought to be the primary sensory system used by many avifauna to perceive the environment, we conducted an experiment to assess if insectivorous bark-foragers in northern Arizona forests used holes in trees as foraging cues. We set up 20 experimental stations, each consisting of a pair of equally sized ponderosa pines (Pinus ponderosa) that had no previous holes created by foraging woodpeckers or emergent boring-beetles. For each pair of trees, we drilled holes into one of the trees (treatment tree) and did not drill holes into the other (control tree). We monitored trees using trail cameras and reviewed photographs to determine: 1) at each station, was the first landing by each bark-foraging species on a treatment or control tree; and 2) how much time did bark-foragers spend on treatment vs. control trees? The experiment supported our hypothesis that bark-foragers used holes in trees as foraging cues. Twelve of 16 first-landing events were on treatment trees (χ21 = 4.0, p < 0.05), and 28 of 43 total photographs of bark- foragers were on treatment trees (χ21 = 3.9, p < 0.05). This experimental assessment of a visual foraging cue used by bark-foraging birds in the wild suggested that this guild may use holes created by woodpeckers or boring-beetles and larvae as a foraging cue.
    [Show full text]
  • Bowie Seamount
    SGaan Kinghlas- Bowie Seamount 2019 MARINE PROTECTED AREA MANAGEMENT PLAN GIN SIIGEE TL’A DAMAAN KINGGANGS GIN K’AALAAGANGS HAIDA NATION 4: CONSERVATION SIGNIFICANCE AND HUMAN USE A © Council of the Haida Nation and Her Majesty the Queen in Right of Canada, represented by the Minister of Fisheries and Oceans Canada, 2019 1. SGaan Kinghlas–Bowie Seamount Gin siigee tl’a damaan kinggangs gin k’aalaagangs Marine Protected Area Management Plan 2019 PDF: DFO/2018-2024 Fs23-619/2019E-PDF 978-0-660-29296-0 Paper: DFO/2018-2024 Fs23-619/2019E 978-0-660-29297-7 2. Mont sous-marin SGaan Kinghlas-Bowie Gin siigee tl’a damaan kinggangs gin k’aalaagangs plan de gestion de la zone de protection marine 2019 PDF: MPO/2018-2014 Fs23-619/2019F-PDF 978-0-660-29298-4 Paper : MPO/2018-2014 Fs23-619/2019F 978-0-660-29299-1 HAIDA NATION ii SGAAN KINGHLAS-BOWIE SEAMOUNT Foreword Dear Reader, On behalf of the Council of the Haida Nation and the Government of Canada, we are pleased to present the SGaan Kinghlas-Bowie Seamount Gin Siigee Tl’a Damaan Kinggangs Gin K’aalaagangs Marine Protected Area Management Plan. Today, as we bring our two management systems together, we are building on our relationship, based on common values, to conserve and protect this culturally and ecologically unique area. According to gin k’iiygangaas (canon of Haida oral histories), the seamount is home to SGaan Kinghlas, one of the sGaanuwee (supernatural beings) that inhabit our world. The Haida have experienced an intimate interconnection with these beings ever since Nang Kilslaas (He Whose Voice Was Obeyed) brought people into existence.
    [Show full text]
  • MORPHOLOGICAL and ECOLOGICAL EVOLUTION in OLD and NEW WORLD FLYCATCHERS a Dissertation Presented to the Faculty of the College O
    MORPHOLOGICAL AND ECOLOGICAL EVOLUTION IN OLD AND NEW WORLD FLYCATCHERS A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Clay E. Corbin August 2002 This dissertation entitled MORPHOLOGICAL AND ECOLOGICAL EVOLUTION IN OLD AND NEW WORLD FLYCATCHERS BY CLAY E. CORBIN has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Donald B. Miles Associate Professor, Department of Biological Sciences Leslie A. Flemming Dean, College of Arts and Sciences CORBIN, C. E. Ph.D. August 2002. Biological Sciences. Morphological and Ecological Evolution in Old and New World Flycatchers (215pp.) Director of Dissertation: Donald B. Miles In both the Old and New Worlds, independent clades of sit-and-wait insectivorous birds have evolved. These independent radiations provide an excellent opportunity to test for convergent relationships between morphology and ecology at different ecological and phylogenetic levels. First, I test whether there is a significant adaptive relationship between ecology and morphology in North American and Southern African flycatcher communities. Second, using morphological traits and observations on foraging behavior, I test whether ecomorphological relationships are dependent upon locality. Third, using multivariate discrimination and cluster analysis on a morphological data set of five flycatcher clades, I address whether there is broad scale ecomorphological convergence among flycatcher clades and if morphology predicts a course measure of habitat preference. Finally, I test whether there is a common morphological axis of diversification and whether relative age of origin corresponds to the morphological variation exhibited by elaenia and tody-tyrant lineages.
    [Show full text]
  • Sources Used in Compilation of the Geologic Map of North America
    GSA Data Repository #2005019 Sources Used in Compilation of the Geologic Map of North America This document lists the sources used in the compilation of the Decade of North American Geology Geologic map of North America. Sources used by Reed and Wheeler in the compilation of the on-land geology are listed together and are arranged by political entities or geographic regions, generally from north to south and from west to east. In Canada references are listed by type (general references, regional references, and provincial maps). In the conterminous United States references are listed by regions (Eastern States, Central States, Rocky Mountain states, and Great Basin and Pacific Coast states) and then by groups of states within each region. Sources used by Tucholke in compilation of the seafloor geology are listed separately , and are arranged by map quarter, beginning in the southerastern quarter and proceeding counterclockwise to the southwestern quarter. In each quarter the published sources and the sunpublished sources are listed separately. References that apply to more than one quarter are duplicated in the lists for all of the quarters to which they apply. ON-LAND GEOLOGY General References Fullerton, D. J., Bush, C. A., and Pennell, J. N., Map of surficial deposits and materials in the eastern and central United States: U. S. Geological Survey Geologic Investigations Map I-2789, scale 1:2,500,000 Global volcanism program, Smithsonian Institution, 1998, List of Holocene volcanoes; available at www.volcano.si.edu. King, P.B. and Edmonston, G.J., 1972, Generallized tectonic map of North America: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-688, scale 1:5,000,000.
    [Show full text]