1 KLF2 and KLF4 Control Endothelial Identity and Vascular Integrity

Total Page:16

File Type:pdf, Size:1020Kb

1 KLF2 and KLF4 Control Endothelial Identity and Vascular Integrity KLF2 and KLF4 control endothelial identity and vascular integrity Panjamaporn Sangwung 1, 2,#, Guangjin Zhou1,#, Lalitha Nayak1,3, E. Ricky Chan4, Sandeep Kumar5, Dong-Won Kang5, Rongli Zhang1, Xudong Liao1, Yuan Lu1, Keiki Sugi1, Hisashi Fujioka7, Hong Shi1, Stephanie D Lapping1, Chandra C. Ghosh8, Sarah J. Higgins8, Samir M. Parikh8, Hanjoon Jo5,6, and Mukesh K Jain1,2,9 Supplemental Figures and Tables 1 Supplemental Figure 1 A Klf2 Klf4 Nos3 Thbd 3 ** 3 ** 3 ** 3 ** NS ** * NS ** NS * NS Day 6 2 2 2 2 post-tamoxifen 1 1 1 1 expression Relative mRNA Relative mRNA 0 0 0 0 CRE -KO -KO CRE -KO -KO CRE -KO -KO CRE -KO -KO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO EC- EC- EC- EC- EC- EC- EC- EC- B Klf2 Klf4 Nos3 Thbd 3 ** 3 ** 3 ** 3 ** NS Day 5 ** ** ** ** NS NS * post-tamoxifen 2 2 2 2 1 1 1 1 expression Relative mRNA Relative mRNA 0 0 0 0 CRE -KO -KO CRE -KO -KO CRE -KO -KO CRE -KO -KO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO EC- EC- EC- EC- EC- EC- EC- EC- C Klf2 Klf4 Nos3 Thbd 3 ** 3 ** 3 ** 3 ** NS ** NS NS Day 4 ** NS NS NS 2 2 2 2 post-tamoxifen 1 1 1 1 expression Relative mRNA Relative mRNA 0 0 0 0 CRE -KO -KO CRE -KO -KO CRE -KO -KO CRE -KO -KO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO EC- EC- EC- EC- EC- EC- EC- EC- D CRE EC-DKO KLF4 TM GAPDH eNOS GAPDH Supplemental Figure 1. Expression of Klf2, Klf4, and their targets in primary cardiac microvascular EC. Relative mRNA expression levels of Klf2 (Kruppel-like family of transcription factor 2), Klf4, Nos3 (endothelial nitric oxide synthase), and Thbd (thrombomodulin) in primary cardiac microvascular EC isolated from mice at day 6 (A), day 5 (B), and day 4 (C) following tamoxifen (n=3-5 per genotype, each sample was pooled from 2 mice). (D) Representative western blot of primary cardiac microvascular EC using antibodies against KLF4, eNOS (endothelial nitric oxide synthase), TM (thrombomodulin), and GAPDH (endogenous glyceraldehyde 3-phosphate dehydrogenase). CRE: Cdh5(PAC)-Ert2cre, EC-DKO: EC-specific Klf2 and Klf4 double knockout, EC-Klf2-KO: EC-specific Klf2 knockout, EC-Klf4-KO: EC-specific Klf4 knockout. Sample in each group was pooled from 7-8 mice. *: P < 0.05, * *: P < 0.01, NS: Not significant. One-way ANOVA with Bonferroni's post hoc test. 2 Supplemental Figure 2 1.2 Baseline Day 6 post-tamoxifen 0.8 CRE 0.4 EKG (mV) 0.0 -0.4 1.2 0.8 EC-DKO 0.4 ST EKG (mV) 0.0 -0.4 -0.8 1.2 0.8 0.4 EC-Klf2-KO EKG (mV) 0.0 -0.4 -0.8 1.2 0.8 EC-Klf4-KO 0.4 EKG (mV) 0.0 -0.4 100 ms -0.8 Supplemental Figure 2. Electrocardiogram (EKG) recording. Representative EKG of CRE, EC-DKO, EC-Klf2-KO, and EC-Klf4-KO mice at baseline without tamoxifen (left) and day 6 post-tamoxifen injection (right). n=4-5 per genotype. CRE: Cdh5(PAC)-Ert2cre, EC-DKO: EC-specific Klf2 and Klf4 double knockout, EC-Klf2-KO: EC-specific Klf2 knockout, EC-Klf4-KO: EC-specific Klf4 knockout. 3 Supplemental Figure 3 A Cardiac function ** ** p=0.06484 NS NS NS NS NS NS 60 80 ** 40 ** 40 60 30 40 FS (%) EF (%) 20 20 CO (ml/min) 20 10 0 0 0 CRE -KO -KO CRE -KO -KO CRE -KO -KO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC-DKO EC- EC- EC- EC- EC- EC- B C Chamber size ** NS * ** NS NS NS 5 5 NS 5 NS 4 4 4 3 3 3 2 2 2 LVIDs (mm) LVIDs LVIDd (mm) LVIDd LV/BW (mg/g) LV/BW 1 1 1 0 0 0 -KO -KO CRE CRE -KO -KO -KO -KO Klf2 Klf4 CRE EC-DKO Klf2 Klf4 EC-DKO Klf2 Klf4 EC- EC- EC-DKO EC- EC- EC- EC- Supplemental Figure 3. Echocardiographic analysis at day 6 after tamoxifen administration. (A) Fractional shortening (FS), ejection fraction (EF), and cardiac output (CO) in CRE (n=3), EC-Klf2-KO (4), EC-Klf4-KO (n=4), and EC-DKO mice (n=5). (B) Left ventricle (LV)-to-body weight (BW) ratio. (C) LV internal dimension at end diastole (LVIDd), and at end systole (LVIDs). CRE: Cdh5(PAC)-Ert2cre, EC-DKO: EC-specific Klf2 and Klf4 double knockout, EC-Klf2-KO: EC-specific Klf2 knockout, EC-Klf4-KO: EC-specific Klf4 knockout. Data are presented as mean ± SEM. *: P < 0.05, * *: P < 0.01. NS: Not significant. One-way ANOVA with Bonferroni's post hoc test. 4 Supplemental Figure 4 EC-Klf2-KO EC-Klf4-KO Brain Lung Heart Skin Supplemental Figure 4. Gross post-mortem examination in EC-Klf2-KO and EC-Klf4-KO mice. Representative gross anatomy pictures of brain, lungs, heart, and subcutaneous tissues from EC-Klf2-KO (EC-specific Klf2 knockout) and EC-Klf4-KO (EC-specific Klf4 knockout) mice at day 6 post-tamoxifen (n=3-4 per genotype). 5 Supplemental Figure 5 A CRE EC-DKO B Day 4 post-tamoxifen Lung Kidney Heart 0.5 **0.5 0.5 NS Eosin 0.4 0.4 0.4 (Lung) 0.3 0.3 0.3 0.2 0.2 0.2 Permeability 0.1 0.1 0.1 (corrected E620) 0.0 0.0 0.0 CRE EC-DKO CRE EC-DKO CRE EC-DKO EM C Day 5 post-tamoxifen (Lung) Lung Kidney Heart 0.5 0.5 0.5 0.4 **0.4 * 0.4 NS 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 Permeability Evans (corrected E620) 0.0 0.0 0.0 blue CRE EC-DKO CRE EC-DKO CRE EC-DKO (Lung) D Day 6 post-tamoxifen Lung Kidney Heart 0.5 0.5 0.5 * * * 0.4 0.4 0.4 0.3 0.3 0.3 Evans 0.2 0.2 0.2 blue (Kidney) 0.1 0.1 0.1 Permeability 0.0 0.0 0.0 (corrected E620) CRE EC-DKO CRE EC-DKO CRE EC-DKO Supplemental Figure 5. Endothelial-specific deletion of Klf2 and Klf4 results in vascular leak. (A, top) Representative pictures of lung Eosin staining show erythrocyte leakage (white arrow) in extravascular tissues at day 6 post-tamoxifen. (n=3-4 per genotype). Scale bar is 200 μm. (A, middle) Representative electron microscopic (EM) images of lung indicate discontinuity of endothelial monolayer at day 6 post-tamoxifen (n=3-4 per genotype). Scale bar is 2 μm. Endothelial cells (EC): red arrowhead, extravascular erythrocytes: white arrow, leucocytes: blue arrow. (A, bottom) Representative pictures of Evans blue vascular permeability assay for the lungs and kidneys at day 6 post-tamoxifen (n=7-8 per genotype). (B-D) Quantification of extravasated Evans Blue dye in the lungs, kidneys, and heart at day 4 (B, n=6-8 per genotype), day 5 (C, n=6-9 per genotype), and day 6 (D, n=7-8 per genotype) post-tamoxifen. CRE: Cdh5(PAC)-Ert2cre, EC-DKO: EC-specific Klf2 and Klf4 double knockout. Data are presented as mean ± SEM. *: P < 0.05, * *: P < 0.01, NS: Not significant. 2-tailed Student’s t test. 6 Supplemental Figure 6 NS ***CRE EC-DKO 5 4 3 2 Relative mRNA expression Relative mRNA 1 0 F3 Serpine1 F2rl3 Supplemental Figure 6. Expression of F3, Serpine1, and F2rl3 mRNA in primary cardiac microvascular EC at day 6 post-tamoxifen. n=3-4 per genotype, each sample was pooled from 2 mice. F3: tissue factor, Serpine1: serine (or cysteine) peptidase inhibitor, clade E, member 1, F2rl3: coagulation factor II receptor-like 3, CRE: Cdh5(PAC)-Ert2cre, EC-DKO: EC-specific Klf2 and Klf4 double knockout. *: P < 0.05, * *: P < 0.01, NS: Not significant. 2-tailed Student’s t test. 7 Supplemental Figure 7 EC-DKO EC-DKO EC-DKO EM (Brain) Supplemental Figure 7. Representative electron microscopic (EM) images of brain indicate degeneration of EC and extravascular erythrocytes in the EC-DKO mice at day 6 post-tamoxifen. Scale bar is 2 μm. Endothelial cells (EC): red arrowhead, extravascular erythrocytes: white arrow, leucocytes: blue arrow, vessel lumen: black arrowhead (n=3-4 per genotype). EC-DKO: EC-specific Klf2 and Klf4 double knockout. 8 Supplemental Table 1. Differentially expressed genes (q<0.05) in cardiac microvascular EC obtained from EC-DKO in comparison to CRE mice at day 6 post-tamoxifen. Ensembl_ID Gene Description EC-DKOvsCRE.log2FC EC-DKOvsCRE.RawP EC-DKOvsCRE.FDR ENSMUSG00000099397 Gm7809 predicted gene 7809 6.520828668 2.75E‐181 7.75E-177 ENSMUSG00000051855 Mest mesoderm specific transcript 3.334038311 2.80E‐113 3.94E-109 ENSMUSG00000031886 Ces2e carboxylesterase 2E -3.950756039 2.80E‐91 2.62E-87 ENSMUSG00000024743 Syt7 synaptotagmin VII -3.222926334 1.53E‐87 1.08E-83 ENSMUSG00000028766 Alpl alkaline phosphatase, liver/bone/kidney -3.05284643 1.51E‐80 8.51E-77 ENSMUSG00000037010 Apln apelin 2.944609555 2.96E‐74 1.39E-70 ENSMUSG00000031628 Casp3 caspase 3 2.776995883 1.45E‐68 5.82E-65 ENSMUSG00000028364 Tnc tenascin C 5.209422965 6.36E‐63 2.24E-59 ENSMUSG00000024501 Dpysl3 dihydropyrimidinase-like 3 2.381613989 7.96E‐62 2.49E-58 ENSMUSG00000020151 Ptprr protein tyrosine phosphatase, receptor type, R -3.666146488 7.70E‐61 2.17E-57 ENSMUSG00000053835 H2-T24 histocompatibility 2, T region locus 24 -2.626013971 1.35E‐60 3.45E-57 ENSMUSG00000046186 Cd109 CD109 antigen 2.489258617 2.24E‐60 5.24E-57 ENSMUSG00000094655 Gm25360 predicted gene, 25360 2.418946823 5.78E‐55 1.25E-51 ENSMUSG00000074272 Ceacam1 carcinoembryonic antigen-related cell adhesion molecule 1 -2.384575452 2.51E‐54 5.04E-51 ENSMUSG00000006014 Prg4 proteoglycan 4 (megakaryocyte stimulating factor, articular superficial zone protein) -3.007843345 3.61E‐53 6.77E-50 ENSMUSG00000026582 Sele selectin, endothelial cell 2.217786815 3.05E‐52 5.36E-49 ENSMUSG00000021822 Plau plasminogen activator, urokinase 2.243213549 5.79E‐49 9.58E-46 ENSMUSG00000001473 Tubb6 tubulin, beta 6 class V 3.218962042 1.16E‐48 1.81E-45 ENSMUSG00000041552 Ptchd1 patched domain containing 1 4.126628073 7.48E‐48 1.05E-44 ENSMUSG00000005124 Wisp1 WNT1 inducible signaling pathway protein 1 3.563401963 7.25E‐48 1.05E-44 ENSMUSG00000031465 Angpt2 angiopoietin 2 2.149078948 7.67E‐46 1.03E-42 ENSMUSG00000053062 Jam2 junction adhesion molecule 2 -2.085030593 1.05E‐45 1.35E-42 ENSMUSG00000020053 Igf1 insulin-like growth factor 1 2.760058282 3.09E‐43 3.64E-40 ENSMUSG00000024713 Pcsk5 proprotein convertase subtilisin/kexin type 5 -2.189606108 3.11E‐43 3.64E-40 ENSMUSG00000018593 Sparc secreted acidic
Recommended publications
  • ASSESSING DIAGNOSTIC and THERAPEUTIC TARGETS in OBESITY- ASSOCIATED LIVER DISEASES Noemí Cabré Casares
    ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY- ASSOCIATED LIVER DISEASES Noemí Cabré Casares ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • C12) United States Patent (IO) Patent No.: US 10,774,349 B2 San Et Al
    I1111111111111111 1111111111 111111111111111 IIIII IIIII IIIII IIIIII IIII IIII IIII US010774349B2 c12) United States Patent (IO) Patent No.: US 10,774,349 B2 San et al. (45) Date of Patent: Sep.15,2020 (54) ALPHA OMEGA BIFUNCTIONAL FATTY 9/1029 (2013.01); C12N 9/13 (2013.01); ACIDS C12N 9/16 (2013.01); C12N 9/88 (2013.01); C12N 9/93 (2013.01) (71) Applicant: William Marsh Rice University, (58) Field of Classification Search Houston, TX (US) None See application file for complete search history. (72) Inventors: Ka-Yiu San, Houston, TX (US); Dan Wang, Houston, TX (US) (56) References Cited (73) Assignee: William Marsh Rice University, U.S. PATENT DOCUMENTS Houston, TX (US) 9,994,881 B2 * 6/2018 Gonzalez . Cl2N 9/0006 2016/0090576 Al 3/2016 Garg et al. ( *) Notice: Subject to any disclaimer, the term ofthis patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 152 days. WO W02000075343 12/2000 (21) Appl. No.: 15/572,099 WO W02016179572 11/2016 (22) PCT Filed: May 7, 2016 OTHER PUBLICATIONS (86) PCT No.: PCT/US2016/031386 Choi, K. H., R. J. Heath, and C. 0. Rock. 2000. 13-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in § 371 (c)(l), branched-chain fatty acid biosynthesis. J. Bacteriol. 182:365-370. (2) Date: Nov. 6, 2017 He, X., and K. A. Reynolds. 2002. Purification, characterization, and identification of novel inhibitors of the beta-ketoacyl-acyl (87) PCT Pub. No.: WO2016/179572 carrier protein synthase III (FabH) from Staphylococcus aureus.
    [Show full text]
  • Constitutive Activation of RAS/MAPK Pathway Cooperates with Trisomy 21 and Is Therapeutically Exploitable in Down Syndrome B-Cell Leukemia
    Author Manuscript Published OnlineFirst on March 27, 2020; DOI: 10.1158/1078-0432.CCR-19-3519 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Constitutive activation of RAS/MAPK pathway cooperates with trisomy 21 and is therapeutically exploitable in Down syndrome B-cell Leukemia Anouchka P. Laurent1,2, Aurélie Siret1, Cathy Ignacimouttou1, Kunjal Panchal3, M’Boyba K. Diop4, Silvia Jenny5, Yi-Chien Tsai5, Damien Ross-Weil1, Zakia Aid1, Naïs Prade6, Stéphanie Lagarde6, Damien Plassard7, Gaelle Pierron8, Estelle Daudigeos-Dubus4, Yann Lecluse4, Nathalie Droin1, Beat Bornhauser5, Laurence C. Cheung3,9, John D. Crispino10, Muriel Gaudry1, Olivier A. Bernard1, Elizabeth Macintyre11, Carole Barin Bonnigal12, Rishi S. Kotecha3,9,13, Birgit Geoerger4, Paola Ballerini14, Jean-Pierre Bourquin5, Eric Delabesse6, Thomas Mercher1,15 and Sébastien Malinge1,3 1INSERM U1170, Gustave Roussy Institute, Université Paris Saclay, Villejuif, France 2Université Paris Diderot, Paris, France 3Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia 4Gustave Roussy Institute Cancer Campus, Department of Pediatric and Adolescent Oncology, INSERM U1015, Equipe Labellisée Ligue Nationale contre le Cancer, Université Paris-Saclay, Villejuif, France 5Department of Pediatric Oncology, Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland 6Centre of Research on Cancer of Toulouse (CRCT), CHU Toulouse, Université Toulouse III, Toulouse, France 7IGBMC, Plateforme GenomEast, UMR7104 CNRS, Ilkirch, France 8Service de Génétique, Institut Curie, Paris, France 9School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia 10Division of Hematology/Oncology, Northwestern University, Chicago, USA 11Hematology, Université de Paris, Institut Necker-Enfants Malades and Assistance Publique – Hopitaux de Paris, Paris, France 12Centre Hospitalier Universitaire de Tours, Tours, France 1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Structural Characterization of Polysaccharides from Cordyceps Militaris and Their Hypolipidemic Effects Cite This: RSC Adv.,2018,8,41012 in High Fat Diet Fed Mice†
    RSC Advances View Article Online PAPER View Journal | View Issue Structural characterization of polysaccharides from Cordyceps militaris and their hypolipidemic effects Cite this: RSC Adv.,2018,8,41012 in high fat diet fed mice† Zhen-feng Huang, ‡ Ming-long Zhang,‡ Song Zhang,* Ya-hui Wang and Xue-wen Jiang Cordyceps militaris is a crude dietary therapeutic mushroom with high nutritional and medicinal values. Mushroom-derived polysaccharides have been found to possess antihyperglycemic and antihyperlipidemic activities. This study aimed to partially clarify the structural characterization and comparatively evaluate hypolipidemic potentials of intracellular- (IPCM) and extracellular polysaccharides of C. militaris (EPCM) in high fat diet fed mice. Results indicated that IPCM-2 is a-pyran polysaccharide with an average molecular weight of 32.5 kDa, was mainly composed of mannose, glucose and galactose with mass percentages of 51.94%, 10.54%, and 37.25%, respectively. EPCM-2 is an a-pyran Creative Commons Attribution 3.0 Unported Licence. polysaccharide with an average molecular weight of 20 kDa that is mainly composed of mannose, glucose and galactose with mass percentages of 44.51%, 18.33%, and 35.38%, respectively. In in vivo study, EPCM-1 treatment (100 mg kgÀ1 dÀ1) showed potential effects on improving serum lipid profiles of hyperlipidemic mice, reflected by decreasing serum total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C) levels by 20.05%, 45.45% and 52.63%, respectively, while IPCM-1 treatment
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Characterization of Pulmonary Arteriovenous Malformations in ACVRL1 Versus ENG Mutation Carriers in Hereditary Hemorrhagic Telangiectasia
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Characterization of pulmonary arteriovenous malformations in ACVRL1 versus ENG mutation carriers in hereditary hemorrhagic telangiectasia Weiyi Mu, ScM1, Zachary A. Cordner, MD, PhD2, Kevin Yuqi Wang, MD3, Kate Reed, MPH, ScM4, Gina Robinson, RN5, Sally Mitchell, MD5 and Doris Lin, MD, PhD5 Purpose: Pulmonary arteriovenous malformations (pAVMs) are mutation carriers to have pAVMs (P o 0.001) or multiple lesions major contributors to morbidity and mortality in hereditary (P = 0.03), and to undergo procedural intervention (P = 0.02). hemorrhagic telangiectasia (HHT). Mutations in ENG and ACVRL1 Additionally, pAVMs in ENG carriers were more likely to exhibit underlie the vast majority of clinically diagnosed cases. The aims of bilateral lung involvement and growth over time, although this did this study were to characterize and compare the clinical and not reach statistical significance. The HHT severity score was morphologic features of pAVMs between these two genotype significantly higher in ENG than in ACVRL1 (P = 0.02). groups. Conclusion: The propensity and multiplicity of ENG-associated Methods: Sixty-six patients with HHT and affected family pAVMs may contribute to the higher disease severity in this members were included. Genotype, phenotypic data, and imaging genotype, as reflected by the HHT severity score and the frequency were obtained from medical records. Morphologic features of of interventional procedures. pAVMs were analyzed using computed tomography angiography. Genet Med HHT symptoms, pAVM imaging characteristics, frequency of advance online publication 19 October 2017 procedural intervention, and HHT severity scores were compared Key Words: ACVRL1; ENG; genotype-phenotype correlation; between ENG and ACVRL1 genotype groups.
    [Show full text]
  • An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Netwo
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis Sriram Devanathan Washington University School of Medicine in St. Louis Timothy Whitehead Washington University School of Medicine in St. Louis George G. Schweitzer Washington University School of Medicine in St. Louis Nicole Fettig Washington University School of Medicine in St. Louis Attila Kovacs Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Devanathan, Sriram; Whitehead, Timothy; Schweitzer, George G.; Fettig, Nicole; Kovacs, Attila; Korach, Kenneth S.; Finck, Brian N.; and Shoghi, Kooresh I., ,"An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: Functional, metabolic, and differential network analysis." PLoS One.9,7. e101900. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3326 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Sriram Devanathan, Timothy Whitehead, George G. Schweitzer, Nicole Fettig, Attila Kovacs, Kenneth S. Korach, Brian N. Finck, and Kooresh I. Shoghi This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3326 An Animal Model with a Cardiomyocyte-Specific Deletion of Estrogen Receptor Alpha: Functional, Metabolic, and Differential Network Analysis Sriram Devanathan1, Timothy Whitehead1, George G. Schweitzer2, Nicole Fettig1, Attila Kovacs3, Kenneth S.
    [Show full text]
  • Supporting Online Material
    1 2 3 4 5 6 7 Supplementary Information for 8 9 Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic 10 retinopathy 11 12 *Samuel A. Mills, *Andrew I. Jobling, *Michael A. Dixon, Bang V. Bui, Kirstan A. Vessey, Joanna A. Phipps, 13 Ursula Greferath, Gene Venables, Vickie H.Y. Wong, Connie H.Y. Wong, Zheng He, Flora Hui, James C. 14 Young, Josh Tonc, Elena Ivanova, Botir T. Sagdullaev, Erica L. Fletcher 15 * Joint first authors 16 17 Corresponding author: 18 Prof. Erica L. Fletcher. Department of Anatomy & Neuroscience. The University of Melbourne, Grattan St, 19 Parkville 3010, Victoria, Australia. 20 Email: [email protected] ; Tel: +61-3-8344-3218; Fax: +61-3-9347-5219 21 22 This PDF file includes: 23 24 Supplementary text 25 Figures S1 to S10 26 Tables S1 to S7 27 Legends for Movies S1 to S2 28 SI References 29 30 Other supplementary materials for this manuscript include the following: 31 32 Movies S1 to S2 33 34 35 36 1 1 Supplementary Information Text 2 Materials and Methods 3 Microglial process movement on retinal vessels 4 Dark agouti rats were anaesthetized, injected intraperitoneally with rhodamine B (Sigma-Aldrich) to label blood 5 vessels and retinal explants established as described in the main text. Retinal microglia were labelled with Iba-1 6 and imaging performed on an inverted confocal microscope (Leica SP5). Baseline images were taken for 10 7 minutes, followed by the addition of PBS (10 minutes) and then either fractalkine or fractalkine + candesartan 8 (10 minutes) using concentrations outlined in the main text.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Related Malignant Phenotypes in the Nf1-Deficient MPNST
    Published OnlineFirst February 19, 2013; DOI: 10.1158/1541-7786.MCR-12-0593 Molecular Cancer Genomics Research RAS/MEK–Independent Gene Expression Reveals BMP2- Related Malignant Phenotypes in the Nf1-Deficient MPNST Daochun Sun1, Ramsi Haddad2,3, Janice M. Kraniak2, Steven D. Horne1, and Michael A. Tainsky1,2 Abstract Malignant peripheral nerve sheath tumor (MPNST) is a type of soft tissue sarcoma that occurs in carriers of germline mutations in Nf1 gene as well as sporadically. Neurofibromin, encoded by the Nf1 gene, functions as a GTPase-activating protein (GAP) whose mutation leads to activation of wt-RAS and mitogen-activated protein kinase (MAPK) signaling in neurofibromatosis type I (NF1) patients' tumors. However, therapeutic targeting of RAS and MAPK have had limited success in this disease. In this study, we modulated NRAS, mitogen-activated protein/extracellular signal–regulated kinase (MEK)1/2, and neurofibromin levels in MPNST cells and determined gene expression changes to evaluate the regulation of signaling pathways in MPNST cells. Gene expression changes due to neurofibromin modulation but independent of NRAS and MEK1/2 regulation in MPNST cells indicated bone morphogenetic protein 2 (Bmp2) signaling as a key pathway. The BMP2-SMAD1/5/8 pathway was activated in NF1-associated MPNST cells and inhibition of BMP2 signaling by LDN-193189 or short hairpin RNA (shRNA) to BMP2 decreased the motility and invasion of NF1-associated MPNST cells. The pathway-specific gene changes provide a greater understanding of the complex role of neurofibromin in MPNST pathology and novel targets for drug discovery. Mol Cancer Res; 11(6); 616–27.
    [Show full text]