Lys49 Myotoxin from the Brazilian Lancehead Pit Viper Elicits Pain Through Regulated ATP Release

Total Page:16

File Type:pdf, Size:1020Kb

Lys49 Myotoxin from the Brazilian Lancehead Pit Viper Elicits Pain Through Regulated ATP Release Lys49 myotoxin from the Brazilian lancehead pit viper PNAS PLUS elicits pain through regulated ATP release Chuchu Zhanga, Katalin F. Medzihradszkyb, Elda E. Sánchezc,d, Allan I. Basbaume, and David Juliusa,1 aDepartment of Physiology, University of California, San Francisco, CA 94158; bDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; cNational Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363; dDepartment of Chemistry, Texas A&M University-Kingsville, Kingsville, TX 78363; and eDepartment of Anatomy, University of California, San Francisco, CA 94158 Contributed by David Julius, January 31, 2017 (sent for review September 16, 2016; reviewed by Baldomero M. Olivera and Mark J. Zylka) Pain-producing animal venoms contain evolutionarily honed tox- species within the Crotalinae subfamily (9). These toxins are ins that can be exploited to study and manipulate somatosensory devoid of phospholipase activity due to key enzymatic site mu- and nociceptive signaling pathways. From a functional screen, we tation of Asp49 to Lys49, but promote release of ATP from have identified a secreted phospholipase A2 (sPLA2)-like protein, myotubes through an as-yet uncharacterized mechanism (10–12). BomoTx, from the Brazilian lancehead pit viper (Bothrops moo- Similarly, we show that BomoTx lacks phospholipase activity and jeni). BomoTx is closely related to a group of Lys49 myotoxins that excites a cohort of sensory neurons through a mechanism in- have been shown to promote ATP release from myotubes through volving ATP release and activation of P2X2 and P2X3 purinergic an unknown mechanism. Here we show that BomoTx excites a receptors. Furthermore, we provide pharmacological and elec- cohort of sensory neurons via ATP release and consequent activa- trophysiological evidence to support a role for pannexin hemi- tion of P2X2 and/or P2X3 purinergic receptors. We provide phar- channels in mediating toxin-evoked nucleotide release. At the macological and electrophysiological evidence to support pannexin behavioral level, injection of BomoTx into the mouse hind paw hemichannels as downstream mediators of toxin-evoked ATP re- elicits nonneurogenic inflammatory pain, thermal hyperalgesia, lease. At the behavioral level, BomoTx elicits nonneurogenic inflam- and mechanical allodynia. The latter is completely dependent on matory pain, thermal hyperalgesia, and mechanical allodynia, of purinergic signaling. Together, these findings elucidate a de- which the latter is completely dependent on purinergic signaling. tailed mechanism by which a Lys49 myotoxin produces pain as- Thus, we reveal a role of regulated endogenous nucleotide release sociated with envenomations common to Latin America (13). PHYSIOLOGY in nociception and provide a detailed mechanism of a pain-inducing Lys49 myotoxin from Bothrops species, which are responsible for Results the majority of snake-related deaths and injuries in Latin America. A Snake Toxin That Targets Somatosensory Neurons. To identify novel toxins that target nociceptors, we used live-cell calcium Lys49 myotoxin | ATP release | pannexin | pain | purinergic receptor imaging to screen a library of 22 snake venoms for their ability to activate primary sensory neurons cultured from rat trigeminal enoms from spiders, snakes, cone snails, and scorpions have ganglia (TG). Because many snake venoms contain cytolytic com- Vevolved to produce a vast pharmacopoeia of toxins that ponents, such as proteases and lipases (1, 14), initial screening of modulate receptor or channel function as a means of producing these samples resulted in cell injury and widespread calcium shock, hemolysis, paralysis, and pain (1, 2). As such, venoms from influx that masked the action of any specific components. To these animals represent a rich potential source of potent and se- circumvent this problem, we first processed all crude venoms lective toxins that can be exploited to study and manipulate so- matosensory and nociceptive signaling pathways. For example, toxins Significance can directly target ion channels expressed by nociceptive sensory neurons to elicit or inhibit pain. Well-validated examples include Bites from venomous snakes can inflict substantial pain and toxins that target transient receptor potential (TRP) ion channels, inflammatory tissue damage. Snake phospholipase A2 (PLA2), acid-sensing ion channels (ASICs), and Nav channels (3–8). How- “ ” and PLA2-like toxins that retain the PLA2 fold but lack enzy- ever, the toxinome is incredibly diverse, and there are many pain- matic activity, are commonly found in snake venoms. In this producing venoms for which the responsible toxins have not yet study, we identify a PLA2-like toxin (BomoTx), from the Brazilian been identified. lancehead pit viper (Bothrops moojeni), that activates a sub- In addition to targeting receptors and channels directly, population of somatosensory neurons that contribute to pain algogenic toxins could also promote the synthesis and/or release sensation. We show that BomoTx excites these neurons by of metabolites, transmitters, or second messengers that activate stimulating the release of cellular ATP through a mechanism primary afferent nociceptors. Although this could occur through involving pannexin hemichannels. Consequent activation of indiscriminate actions of venom lipases and proteases that re- purinergic receptors elicits acute pain, tissue inflammation, and lease cellular contents through tissue damage and cell death, pain hypersensitivity. Thus, we have elucidated the mechanism more specific mechanisms may also exist. Their identification of action for a toxin from Bothrops snakes, which inflict a could reveal important new pathways by which exogenous or majority of bites in Latin America. endogenous pain-producing agents mediate their effects. To identify novel pain-producing toxins, we have exploited Author contributions: C.Z., A.I.B., and D.J. designed research; C.Z. and K.F.M. performed cultured sensory neurons as a facile in vitro platform for un- research; C.Z. and E.E.S. contributed new reagents/analytic tools; C.Z., K.F.M., A.I.B., and D.J. analyzed data; and C.Z. and D.J. wrote the paper. biased screening of crude venoms, optimizing conditions to re- Reviewers: B.M.O., University of Utah, Salt Lake City; and M.J.Z., University of North duce nonspecific cell damage so as to reveal toxins having Carolina. specific cellular effects. With this approach, we have identified a The authors declare no conflict of interest. toxin (BomoTx) from the Brazilian lancehead pit viper (Bothrops Data deposition: The sequence reported in this paper has been deposited in the GenBank moojeni) found mainly in Brazil. BomoTx belongs to a group of database (accession no. KX856005). secreted phospholipase A2 (sPLA2)-like proteins that have the 1To whom correspondence should be addressed. Email: [email protected]. conserved PLA2 fold but lack enzymatic activity, and is most This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. closely related to so-called Lys49 myotoxins found in snake 1073/pnas.1615484114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1615484114 PNAS Early Edition | 1of9 Downloaded by guest on October 2, 2021 through a 50-kDa molecular mass cutoff filter to enrich for peptides inwardly rectifying current (Fig. 2A). Consistent with our pharma- and small proteins. Indeed, this eliminated background activities cological profiling by calcium imaging, extracellular ATP could in more than half of the crude venoms examined. Among these, invariably elicit currents in these neurons (Fig. 2B). Moreover, filtrates from B. moojeni (Brazilian lancehead) (Fig. 1A) robustly Ro51, a specific blocker of P2X3 and P2X2/3 ionotropic subtypes activated a subpopulation of TG neurons (Fig. 1B). Fractionation of (15), reduced toxin-evoked responses by 72.2 ± 5.3% (Fig. 2B). this crude venom by reversed-phase (C18) chromatography yielded a Does BomoTx elicit its response by activating P2X receptors single active peak (Fig. S1A) that recapitulated activity observed directly, or by promoting release of ATP? To address this with the crude venom. question, we first asked whether the toxin elicits membrane To determine the toxin’s identity, we analyzed purified toxin by currents in transfected HEK293 cells expressing P2X2 and/or MALDI-TOF mass spectrometry, revealing a single polypeptide P2X3 receptors. No responses were observed (Fig. 2C), nor did with a molecular mass of 13,835 Da (Fig. S1C). The sample was the toxin shift dose–response curves for ATP (Fig. S2A), in- then trypsin-digested and analyzed by liquid chromatography-tan- dicating that BomoTx is not a direct purinergic receptor agonist dem mass spectrometry (LC/MS/MS). Homology considerations [to or modulator. Hence, the toxin likely promotes release of ATP National Center for Biotechnology Information (NCBI) accession to activate transient responses in specific sensory neurons that nos. 17865560 and 17368325 and UniProt accession no. Q9PVE3] express purinergic receptors. and manual de novo sequencing provided a tentative full-sequence If ATP-evoked activation of P2X receptors accounts for determination, which was then used to clone the full-length (122- BomoTx sensitivity in transiently responding neurons, ectopic amino acid) cDNA from the Brazilian lancehead venom gland. expression of these channels in sensory neurons should increase Indeed, the amino acid sequence translated from the toxin’sORF the
Recommended publications
  • 1 TRP About Online
    a TR P to Spain International Workshop on Transient Receptor Potential Channels 12th – 14th September 2012 Valencia, Spain www.trp2012.com SCHEDULE and ABSTRACTS BOOK September 2012 Dear participants, Travelling to faraway places in search of spiritual or cultural enlightenment is a millennium old human activity. In their travels, pilgrims brought with them news, foods, music and traditions from distant lands. This friendly exchange led to the cultural enrichment of visitors and the economic flourishing of places, now iconic, such as Rome, Santiago, Jerusalem, Mecca, Varanasi or Angkor Thom. The dissemination of science and technology also benefited greatly from these travels to remote locations. The new pilgrims of the Transient Receptor Potential (TRP) community are also very fond of travelling. In the past years they have gathered at various locations around the globe: Breckenridge (USA), Eilat (Israel), Stockholm (Sweden) and Leuven (Belgium) come to mind. These meetings, each different and exciting, have been very important for the dissemination of TRP research. We are happy to welcome you in Valencia (Spain) for TRP2012. The response to our call has been extraordinary, surpassing all our expectations. The speakers, the modern bards, readily attended our request to communicate their new results. At last count we were already more than 170 participants, many of them students, and most presenting their recent work in the form of posters or short oral presentations. At least 25 countries are sending TRP ambassadors to Valencia, making this a truly international meeting. We like to thank the staff of the Cátedra Santiago Grisolía, Fundación Ciudad de las Artes y las Ciencias for their dedication and excellence in handling the administrative details of the workshop.
    [Show full text]
  • Advancing Basic Pain Research
    The Rita Allen Foundation AWARD IN PAIN SCHOLARS: ADVANCING BASIC PAIN RESEARCH AWARD IN PAIN SCHOLARS: ADVANCING BASIC PAIN RESEARCH 1 COVER: Tuan Trang, a 2014 Rita Allen Foundation Scholar, has investigated mechanisms of opioid tolerance and withdrawal. Trang and his research group have found that immune cells in the central nervous system, known as microglia, play a key role in the development of morphine tolerance in an animal model. This image, a compilation of spinal microglia forming a cross section of the lumbar spinal cord, appeared on the cover of the October 18, 2017, issue of The Journal of Neuroscience in conjunction with the research article “Site-Specific Regulation of P2X7 Receptor Function in Microglia Gates Morphine Analgesic Tolerance.” (Image by Heather Leduc-Pessah, Trang Laboratory) A NETWORK OF HOPE Created in 2009 to expand the reach of the Rita Allen Foundation Scholars program, the Award in Pain has now supported 29 pioneering early-career Pain Scholars. Each year, as we welcome our newest class of Scholars, we reflect on the accomplishments of this growing community of researchers and the profound questions that drive them forward to new discoveries. These scientists are leading efforts to understand the complex neurobiological mechanisms that underlie pain—including mapping the neural circuits of chronic pain, defining the Elizabeth G. Christopherson roles of immune signals, and examining the connections President and between pain and itch. Their findings point to approaches for Chief Executive Officer combating opioid tolerance and withdrawal, interventions Rita Allen Foundation to interrupt the transition from acute to chronic pain after injury, and targets for completely novel pain therapies with the potential to improve safety and specificity.
    [Show full text]
  • Genetic Variation As a Tool for Identifying Novel Transducers of Itch
    Genetic variation as a tool for identifying novel transducers of itch By Takeshi Morita A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Diana M. Bautista, Co-Chair Professor Rachel B. Brem, Co-Chair Professor John Ngai Professor Kristin Scott Professor Michael W. Nachman Summer 2016 Abstract Genetic variation as a tool for identifying novel transducers of itch by Takeshi Morita Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Diana M. Bautista, Co-Chair Professor Rachel B. Brem, Co-Chair The mammalian somatosensory system mediates itch, the irritating sensation that elicits a desire to scratch. Millions of people worldwide suffer from chronic itch that fails to respond to current drugs and therapies. Even though recent studies have begun to elucidate the basic characteristics of the itch circuitry, we have little understanding about the molecules and signaling mechanisms that underlie detection and transduction of itch sensation, especially during chronic itch conditions. We have taken a genomic approach by harnessing natural variation in itch-evoked scratching behaviors in mice to identify novel molecular players that are involved in itch signal transduction at the level of primary sensory neurons. From our analysis, we identified numerous candidate itch genes, and further identified a serotonin receptor, HTR7 as a key transducer that is required for both development and maintenance of chronic itch. We further investigated the genetic basis of variation in itch, and identified a set of genes and regulatory pathways that may be involved in controlling itch behaviors.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The Effects of Neurosteroids, such as Pregnenolone Sulfate and its receptor, TrpM3 in the Retina. Permalink https://escholarship.org/uc/item/04d8607f Author Webster, Corey Michael Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The Effects of Neurosteroids, such as Pregnenolone Sulfate, and its receptor, TrpM3 in the Retina. By Corey Webster A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Marla Feller, Chair Professor Diana Bautista Professor Daniella Kaufer Professor Stephan Lammel Fall 2019 The Effects of Neurosteroids, such as Pregnenolone Sulfate, and its receptor, TrpM3 in the Retina. Copyright 2019 by Corey Webster Abstract The Effects of Neurosteroids, such as Pregnenolone Sulfate, and its receptor, TrpM3 in the Retina. by Corey M. Webster Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Marla Feller, Chair Pregnenolone sulfate (PregS) is the precursor to all steroid hormones and is produced in neurons in an activity dependent manner. Studies have shown that PregS production is upregulated during certain critical periods of development, such as in the first year of life in humans, during adolescence, and during pregnancy. Conversely, PregS is decreased during aging, as well as in several neurodevelopmental and neurodegenerative conditions. There are several known targets of PregS, such as a positive allosteric modulator NMDA receptors, sigma1 receptor, and as a negative allosteric modulator of GABA-A receptors.
    [Show full text]
  • The Role of Sphingosine 1-Phosphate and See the Same Effect Really Suggests That It’S an Active Process
    Dr. Diana Bautista is an Associate Professor of Cell and Developmental Biology and Affiliate of the Division PAIN of Neurobiology in the Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute at the University of California, Berkeley. Professor Bautista’s research focuses on using molecular, cellular, and physiological VERSUS approaches to investigate how humans perceive and distinguish between pain and itch. In this interview, we discuss her findings on the importance of the sphingosine ITCH: THE 1-phosphate (S1P) signaling pathway in mechanosensation. : Before we talk about how the body perceives the world, BSJhow have you perceived the world throughout your life? Did you see yourself studying somatosensation early on in your academic career? What about your path to Berkeley has surprised ROLE OF you? : I started out as a fine arts major. I took a number of DByears to figure out that I was more interested in studying S1P science as an academic pursuit and potentially as a career. As an undergraduate, when I was working in the lab, I became more interested in science and experiments. I worked in a lab that was studying basic mechanisms of phototransduction, vision, and Interview with how light gets converted into an electrical signal. I just really Professor Diana liked neuroscience and the idea that you can take something that everybody can relate to and experience and try to understand it at Bautista a molecular and cellular level—like how we perceive light. To me, that was really exciting, that something so fundamental could be looked at. As an undergraduate, in real time, I was able to shine light on a photoreceptor and record the electrical signal.
    [Show full text]
  • FROM MICRO Rnas to STAR-NOSED MOLES: the RESEARCH of the NEW MCB FACULTY
    Transcript MCB FALL 2008 • VOL. 11, NO. 2 Newsletter for Members and Alumni of the Department of Molecular & Cell Biology at the University of California, Berkeley FROM MICRO RNAs TO STAR-NOSED MOLES: THE RESEARCH OF THE NEW MCB FACULTY Bautista completed her postdoc in ATOUCHINGTALE David Julius’s lab at UCSF, where the first temperature-sensitive pain receptor, trpv1, was identified as the target for capsaicin, the If you have never experience the odd sensa- burning, hot molecule from chili peppers. tions of Szechuan peppercorns, go try them This receptor is one of many pain and touch now. Crunch a few of the reddish pods in receptors that allow sematosensory neurons your teeth and let them rest in your mouth. detect environmental stimuli such as tem- You’ll feel your tongue go numb, and, a few perature, pressure, and chemical irritation. seconds later, you’ll taste something Capsaicin from chili peppers is able to peppery and lemony. Soon you’ll sense both bind sites on trvp1 that would normally be cool and hot temperatures and feel an triggered by an endogenous molecule. unusual tingling, buzzing sensation. What This ability to hijack the system protects the gives Szechuan peppercorns such strange plants: most mammals will find the heat- Assistant Professor Diana Bautista effects? New MCB Assistant Professor inducing sensation of capsaicin unpleasant Diana Bautista is figuring it out. and quickly learn to avoid eating peppers. Despite their central importance to our quality of life, we don’t know much about the molecular mechanisms of touch and pain. How are pain thresholds set? At what point does a light touch begin to hurt? And why do these thresholds sometimes not reset? How do we learn special touch sensitivity, such as reading Braille? The answers could lead to an under- standing of—and treatments for—such condi- tions as chronic pain or pain insensitivity.
    [Show full text]
  • TRPA1 in Inflammation Acta Universitatis Tamperensis 2173
    LAURI MOILANEN TRPA1 in Inflammation TRPA1 LAURI MOILANEN Acta Universitatis Tamperensis 2173 LAURI MOILANEN TRPA1 in Inflammation AUT 2173 AUT LAURI MOILANEN TRPA1 in Inflammation ACADEMIC DISSERTATION To be presented, with the permission of the Board of the School of Medicine of the University of Tampere, for public discussion in the small auditorium of building B, School of Medicine, Medisiinarinkatu 3, Tampere, on 10 June 2016, at 12 o’clock. UNIVERSITY OF TAMPERE LAURI MOILANEN TRPA1 in Inflammation Acta Universitatis Tamperensis 2173 Tampere University Press Tampere 2016 ACADEMIC DISSERTATION University of Tampere, School of Medicine Tampere University Hospital National Doctoral Programme of Musculoskeletal Disorders and Biomaterials (TBDP) Finland Supervised by Reviewed by Docent Riina Nieminen Docent Paula Rytilä University of Tampere University of Helsinki Finland Finland Professor Lauri Lehtimäki Professor Ulf Simonsen University of Tampere Aarhus University Finland Denmark Professor Eeva Moilanen University of Tampere Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2016 Tampere University Press and the author Cover design by Mikko Reinikka Distributor: [email protected] https://verkkokauppa.juvenes.fi Acta Universitatis Tamperensis 2173 Acta Electronica Universitatis Tamperensis 1672 ISBN 978-952-03-0131-6 (print) ISBN 978-952-03-0132-3 (pdf) ISSN-L 1455-1616 ISSN 1456-954X
    [Show full text]
  • The Role of the Ion Channel, TRPA1, in Itch Transduction in the Mammalian Peripheral Nervous System
    The role of the ion channel, TRPA1, in itch transduction in the mammalian peripheral nervous system. By Sarah R. Wilson A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Diana M. Bautista, Chair Professor John Ngai Professor Daniel E. Feldman Professor Karsten Gronert Spring 2015 Abstract by Sarah R Wilson Doctor of Philosophy Molecular and Cell Biology University of California, Berkeley Professor Diana Bautista, Chair Itch is defined as an unpleasant sensation that evokes a desire to scratch. In contrast to acute itch that is transient, chronic itch is a persistent, debilitating condition for which there are few treatment options. Chronic itch accompanies a number of skin diseases and systemic conditions, as well as a variety of neurological disorders. However, little is known about the molecules and cell types that mediate acute or chronic itch in primary sensory neurons and skin. We have established an essential role for the ion channel, TRPA1, in multiple forms of both acute and chronic itch. We have shown that TRPA1 is required for neuronal activation and itch behaviors in mice downstream of acute exogenous and endogenous itch compounds. Similarly, TRPA1 is required for itch behavior and itch-evoked expressional changes in both sensory neurons and skin in a mouse model of dry skin. We have also identified a novel itch-causing compound: Thymic Stromal Lymphopoietin (TSLP). Numerous studies suggest that the epithelially-derived cytokine TSLP acts as a master switch that triggers both the initiation and maintenance of the chronic itch disease atopic dermatitis.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The role of the ion channel, TRPA1, in itch transduction in the mammalian peripheral nervous system. Permalink https://escholarship.org/uc/item/174754z9 Author Wilson, Sarah Ruth Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The role of the ion channel, TRPA1, in itch transduction in the mammalian peripheral nervous system. By Sarah R. Wilson A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Diana M. Bautista, Chair Professor John Ngai Professor Daniel E. Feldman Professor Karsten Gronert Spring 2015 Abstract by Sarah R Wilson Doctor of Philosophy Molecular and Cell Biology University of California, Berkeley Professor Diana Bautista, Chair Itch is defined as an unpleasant sensation that evokes a desire to scratch. In contrast to acute itch that is transient, chronic itch is a persistent, debilitating condition for which there are few treatment options. Chronic itch accompanies a number of skin diseases and systemic conditions, as well as a variety of neurological disorders. However, little is known about the molecules and cell types that mediate acute or chronic itch in primary sensory neurons and skin. We have established an essential role for the ion channel, TRPA1, in multiple forms of both acute and chronic itch. We have shown that TRPA1 is required for neuronal activation and itch behaviors in mice downstream of acute exogenous and endogenous itch compounds.
    [Show full text]
  • 7Th World Congress on Itch (WCI) 2013 September 21–23, 2013 at the Seaport Hotel and World Trade Center, Boston, Massachusetts, USA
    Acta Derm Venereol 2013; 93: 599–640 7th World Congress on Itch (WCI) 2013 September 21–23, 2013 at the Seaport Hotel and World Trade Center, Boston, Massachusetts, USA Organizer: IFSI President: Ethan A. Lerner, Massachusetts General Hospital and Harvard Jacek C. Szepietowski, Wroclaw Medical University, Medical School, Boston, MA, USA Poland Organization Committee: IFSI Board Members: Ethan A. Lerner Jeffrey D. Bernhard, University of Massachusetts Medical School, Earl Carstens Worcester, USA Alan Fleischer Earl Carstens, University of California, Davis, USA Sarah Ross Toshiya Ebata, National Defense Medical College, Japan Jacek C. Szepietowski Hermann Handwerker, University of Erlangen-Nürnberg, Elke Weisshaar Erlangen, Germany Gil Yosipovitch Ethan A. Lerner, Massachusetts General Hospital, Boston, MA, USA Contact Address: Thomas Mettang, Deutsche Klinik für Diagnostik, Wiesbaden, Germany Agri Meetings Sonja Ständer, University of Münster, Germany Telephone: 978-304-0935 Kenji Takamori, Juntendo University, Urayasu, Japan [email protected] Elke Weisshaar, Department of Clinical Social Medicine, http://www.itchboston.org/ Occupational and Environmental Dermatology, University of Heidelberg, Germany Gil Yosipovitch, Temple School of Medicine, Philadelphia, USA CONTENTS IN THIS ABSTRACT BOOK Program 600 List of Posters 602 Abstracts Invited Lectures 604 Free Communications 612 Poster Presentations 623 Index 640 © 2013 Acta Dermato-Venereologica. ISSN 0001-5555 Acta Derm Venereol 93 doi: 10.2340/00015555-1701 600 7th World Congress on Itch (WCI) – September 21–23, 2013, Boston, USA SATURDAY, SEPTEMBER 21, 2013 14:10–14:20 Ciguatoxin-induced release of neuropeptides in 14:00–16:30 IFSI Board Meeting a sensory neuron-keratinocyte coculture model, Raphaele Le Garrec, Brest (FC02) 15:00–17:00 Congress Registration 14:20–14:30 Enigmatic aspects of 5'-GNTI-induced compulsive 17:00–17:15 Greeting and Introduction scratching in mice, Alan Cowan, Philadelphia Ethan Lerner, Boston and Jacek C.
    [Show full text]
  • Ion Channel Photoswitch Reveals Crosstalk Between Intact and Injured Nociceptive Neurons After Nerve Injury
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Ion Channel Photoswitch Reveals Crosstalk between Intact and Injured Nociceptive Neurons after Nerve Injury Permalink https://escholarship.org/uc/item/6z9836n0 Author Herold, Christian Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Ion Channel Photoswitch Reveals Crosstalk between Intact and Injured Nociceptive Neurons after Nerve Injury by Christian Herold A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biophysics in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Dr. Richard H. Kramer, Chair Professor Dr. Ehud Y. Isacoff Professor Dr. Daniel E. Feldman Professor Dr. Diana M. Bautista Fall 2015 Copyright © by Christian Herold 2015 Abstract Ion Channel Photoswitch Reveals Crosstalk between Intact and Injured Nociceptive Neurons after Nerve Injury by Christian Herold Doctor in Physiology in Biophysics University of California, Berkeley Professor Richard H. Kramer, Chair The development of novel techniques utilizing the advantages of light has created an optical revolution for neuroscience research. Controlling and probing neuronal function with light has provided unprecedented insights by being able to manipulate many neurons simultaneously in intact circuits and living organisms. In my dissertation research, I used novel optical methods to probe the cellular permeability of sensory neuron populations. Primary nociceptive afferents detect, modulate and integrate many pain-related stimuli. Sensory information is transmitted from the periphery through the dorsal root ganglia along labeled lines coding for sensory modalities and receptive fields. Recently, our understanding of sensory processing has been expanded by the discovery of neuronal interactions both on the level of peripheral nerve endings and in the spinal cord.
    [Show full text]
  • Ion Channel Photoswitch Reveals Crosstalk Between Intact and Injured Nociceptive Neurons After Nerve Injury
    Ion Channel Photoswitch Reveals Crosstalk between Intact and Injured Nociceptive Neurons after Nerve Injury by Christian Herold A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biophysics in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor Dr. Richard H. Kramer, Chair Professor Dr. Ehud Y. Isacoff Professor Dr. Daniel E. Feldman Professor Dr. Diana M. Bautista Fall 2015 Copyright © by Christian Herold 2015 Abstract Ion Channel Photoswitch Reveals Crosstalk between Intact and Injured Nociceptive Neurons after Nerve Injury by Christian Herold Doctor in Physiology in Biophysics University of California, Berkeley Professor Richard H. Kramer, Chair The development of novel techniques utilizing the advantages of light has created an optical revolution for neuroscience research. Controlling and probing neuronal function with light has provided unprecedented insights by being able to manipulate many neurons simultaneously in intact circuits and living organisms. In my dissertation research, I used novel optical methods to probe the cellular permeability of sensory neuron populations. Primary nociceptive afferents detect, modulate and integrate many pain-related stimuli. Sensory information is transmitted from the periphery through the dorsal root ganglia along labeled lines coding for sensory modalities and receptive fields. Recently, our understanding of sensory processing has been expanded by the discovery of neuronal interactions both on the level of peripheral nerve endings and in the spinal cord. Here I report a crosstalk between injured and intact neuronal population after peripheral nerve injury. This communication is revealed at the somata of sensory neurons distant from the site of injury and correlates with permeability changes of both injured and intact nociceptor populations after injury.
    [Show full text]