Die Expression Respiratorischer Proteine Ausgewählter

Total Page:16

File Type:pdf, Size:1020Kb

Die Expression Respiratorischer Proteine Ausgewählter Die Expression respiratorischer Proteine ausgewählter Arthropodenspezies Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades des Departments Biologie der Fakultät für Mathematik, Informatik und Naturwissenschaften der Universität Hamburg vorgelegt von Beyhan Ertas aus Vechta Hamburg, August 2009 Inhaltsverzeichnis Inhaltsverzeichnis A. Einleitung ................................................................................................................. 1 1. Metalloproteine mit respiratorischer Funktion ............................................................ 1 2. Die respiratorischen Proteine der Arthropoden.......................................................... 3 2.1. Hämoglobin ..................................................................................................... 3 2.1.1. Aufbau und Struktur ................................................................................. 3 2.1.2. Charakteristika der Arthropoden-Globine ................................................. 4 2.2. Hämocyanin..................................................................................................... 6 2.2.1. Aufbau und Struktur ................................................................................. 6 2.2.2. Bedeutung und weitere Funktion(en) von Hämocyanin ............................ 9 2.2.3. Hämocyanin-Superfamilie der Arthropoden.............................................. 9 2.2.3.1. Phenoloxidasen...................................................................................11 2.2.3.2. Hexamerine.........................................................................................12 3. Hämoglobin und Hämocyanin der Crustacea............................................................14 4. Zielsetzung...............................................................................................................16 B. Material und Methoden ...........................................................................................17 1. Allgemeines..............................................................................................................17 1.1. Geräte.............................................................................................................17 1.2. Chemikalien, Kits und sonstige Materialien.....................................................18 1.3. Klone ..............................................................................................................18 1.4. Primer.............................................................................................................19 1.5. Versuchstiere..................................................................................................19 2. Verwendete Organismen und ihre Kultivierung.........................................................20 2.1. Bakterien ........................................................................................................20 2.1.1. Bakterienstämme ....................................................................................20 2.1.2. Nährmedien und Antibiotika ....................................................................20 2.1.3. Ansetzen von bakteriellen Übernachtkulturen .........................................21 2.1.4. Anlegen von bakteriellen Dauerkulturen..................................................21 2.2. Zellkultur.........................................................................................................22 2.2.1. Zelllinien..................................................................................................22 2.2.2. Nährmedien und Zusätze ........................................................................22 2.2.3. Passage von Zellkulturen ........................................................................23 2.2.4. Anlegen von Dauerkulturen.....................................................................23 2.2.5. Auftauen von Dauerkulturen....................................................................23 I Inhaltsverzeichnis 3. Molekularbiologische Methoden ...............................................................................24 3.1. Isolierung von Nukleinsäuren..........................................................................24 3.1.1. Isolierung von genomischer DNA ............................................................24 3.1.2. Isolierung von RNA .................................................................................24 3.1.2.1. Isolierung von Gesamt-RNA mit dem RNeasy Mini Kit ........................24 3.1.2.2. Isolierung von Gesamt-RNA mittels Guanidinthiocyanat-Phenol- Chloroform..........................................................................................25 3.1.2.3. Isolierung von Gesamt-RNA mit PeqGOLD TriFast TM ..........................26 3.2. Konzentrationsbestimmung von Nukleinsäuren ..............................................26 3.3. Elektrophorese von Nukleinsäuren .................................................................27 3.3.1. DNA-Gelelektrophorese ..........................................................................27 3.3.2. RNA-Gelelektrophorese ..........................................................................27 3.4. Reverse Transkription.....................................................................................28 3.5. Polymerase-Kettenreaktion.............................................................................28 3.6. RACE: Rapid amplification of cDNA-ends.......................................................29 3.7. Allgemeine Klonierungstechniken ...................................................................30 3.7.1. TA-Klonierung .........................................................................................30 3.7.2. Klonierung mit Restriktionsendonukleasen..............................................31 3.7.2.1. Spaltung von DNA mit Restriktionsendonukleasen..............................31 3.7.2.2. Ligation ...............................................................................................31 3.7.3. Transformation von E. coli .......................................................................32 3.7.4. Identifizierung positiver Transformanten via Klon-PCR-Screening ..........32 3.7.5. Isolierung von Plasmid-DNA aus Bakterien.............................................33 3.7.6. Sequenzierung........................................................................................33 4. Sequenzauswertung/Molekulare Phylogenie ............................................................34 5. Rekombinante Expression von Proteinen.................................................................35 5.1. Expression von Proteinen in Bakterien ...........................................................35 5.1.1. Durchführung von Testexpressionen.......................................................36 5.1.2. Rekombinante Expression von löslichem Hämoglobin ............................37 5.1.3. Rekombinante Expression von löslichem Hexamerin ..............................37 5.1.4. Rekombinante Expression von löslichen Typ3-Kupferproteinen..............38 5.2. Expression von Proteinen in Insektenzellen....................................................38 5.2.1. „Bac-to-Bac Baculovirus Expression System” .........................................38 5.2.1.1. Klonierung des Expressionskonstruktes..............................................39 5.2.1.2. Herstellung von rekombinanten Bacmiden in E. coli ............................39 5.2.1.3. Präparation von Bacmid-DNA .............................................................40 5.2.1.4. Herstellung des rekombinanten Primärvirus (P1).................................41 II Inhaltsverzeichnis 5.2.1.5. Amplifikation von Baculoviren..............................................................41 5.2.1.6. Rekombinante Proteinexpression in Insektenzellen.............................42 5.2.2. „Drosophila Expression System“ .............................................................43 5.2.2.1. Klonierung des Expressionskonstruktes..............................................43 5.2.2.2. Co-Transfektion von S2-Zellen............................................................43 5.2.2.3. Selektion stabil transfizierter S2-Zellen................................................44 5.2.2.4. Rekombinante Proteinexpression in S2-Zellen ....................................45 6. Allgemeine proteinbiochemische Methoden .............................................................46 6.1. Entnahme von Hämolymphe...........................................................................46 6.2. Proteinextraktion.............................................................................................47 6.2.1. Proteinextraktion aus frisch präparierten Geweben/Tieren......................47 6.2.2. Proteinextraktion aus in RNAlater stabilisierten Tieren............................47 6.2.3. Proteinextraktion aus unterschiedlichen Zellkompartimenten ..................48 6.3. Proteinbestimmung.........................................................................................48 6.3.1. Photooptische Bestimmung von Proteinkonzentrationen.........................48 6.3.2. Bradford-Assay .......................................................................................48 6.4. Polyacrylamid-Gelelektrophorese (PAGE) ......................................................49 6.4.1. SDS-PAGE .............................................................................................49 6.4.2. Native PAGE...........................................................................................50
Recommended publications
  • Calappa Granulata (Linnaeus, 1758) (Crustacea, Decapoda, Brachyura, Calappidae) and Astiplax Aspera N
    Calappa granulata (Linnaeus, 1758) and Astiplax aspera n. gen., n. sp. from the Asti sands Fm. of S. Pietro 329 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 65, NÚM. 2, 2013, P. 329-334 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Calappa granulata (Linnaeus, 1758) (Crustacea, Decapoda, Brachyura, Calappidae) and Astiplax aspera n. gen., n. sp. (Crustacea, Decapoda, Brachyura, Goneplacidae) from the Asti sands Fm. (Late Pliocene) of S. Pietro (Asti, Piedmont, NW Italy) Alessandro Garassino1,*, Giovanni Pasini2 1 Museo di Storia Naturale, Sezione di Paleontologia, Corso Venezia 55, 20121 Milano, Italia. 2 Via Alessandro Volta 16, I-22070 Appiano Gentile (Como), Italia. * [email protected] Abstract Two crabs from the Pliocene sands of S. Pietro (Asti, Piedmont, NW Italy) have been assigned to Calappa granulata (Linnaeus, 1758) (Calappidae De Haan, 1833) and to Astiplax aspera n. gen., n. sp. (Goneplacidae MacLeay, 1838). Although C. granulata has already been reported from the Pliocene of other Italian regions, the Piedmont specimen represents one of the most complete carapaces known to date in the fossil record of this extant species. The discovery of Astiplax n. gen., with A. aspera n. sp. increases the number of species of Goneplacidae from the Pliocene of Italy, limited to Goneplax rhomboides (Linnaeus, 1758) and G. sacci Crema, 1895. Keywords: Crustacea, Decapoda, Brachyura, Late Pliocene, Italy. Resumen Dos cangrejos de las areniscas del Plioceno de S. Pietro (Asti, Piemonte, NO Italia) han sido asignados a Calappa granulata (Linnaeus, 1758) (Calappidae De Haan, 1833) y a Astiplax aspera n.
    [Show full text]
  • Journaloffthreattenedtaxa
    OPEN ACCESS The Journal of Threatened Taxa fs dedfcated to bufldfng evfdence for conservafon globally by publfshfng peer-revfewed arfcles onlfne every month at a reasonably rapfd rate at www.threatenedtaxa.org . All arfcles publfshed fn JoTT are regfstered under Creafve Commons Atrfbufon 4.0 Internafonal Lfcense unless otherwfse menfoned. JoTT allows unrestrfcted use of arfcles fn any medfum, reproducfon, and dfstrfbufon by provfdfng adequate credft to the authors and the source of publfcafon. Journal of Threatened Taxa Bufldfng evfdence for conservafon globally www.threatenedtaxa.org ISSN 0974-7907 (Onlfne) | ISSN 0974-7893 (Prfnt) Note Ffrst record of the Two-strfped Box Crab Calappa bflfneata Ng, Laf & Aungtonya, 2002 (Brachyura: Calappfdae) from St. Martfn’s Island, Bangladesh Muntasfr Akash & Mostafa A.R. Hossafn 26 January 2017 | Vol. 9| No. 1 | Pp. 9771–9773 10.11609/jot. 2943 .9.1. 9771-9773 For Focus, Scope, Afms, Polfcfes and Gufdelfnes vfsft htp://threatenedtaxa.org/About_JoTT.asp For Arfcle Submfssfon Gufdelfnes vfsft htp://threatenedtaxa.org/Submfssfon_Gufdelfnes.asp For Polfcfes agafnst Scfenffc Mfsconduct vfsft htp://threatenedtaxa.org/JoTT_Polfcy_agafnst_Scfenffc_Mfsconduct.asp For reprfnts contact <[email protected]> Publfsher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 January 2017 | 9(1): 9771–9773 Note Ffrst record of the Two-strfped Box Crab Pacffc, Indfan Ocean and fn the Calappa bflfneata Ng, Laf & Aungtonya, Eastern Medfterranean (Sakaf 1976; 2002 (Brachyura: Calappfdae) from Daf & Yang 1991; Chen & Xu 1991; St. Martfn’s Island, Bangladesh Chen 1993; Galfl 1997; Holthufs ISSN 0974-7907 (Onlfne) 2001; Ng et al. 2002). The Indfan ISSN 0974-7893 (Prfnt) Muntasfr Akash 1 & Mostafa A.R.
    [Show full text]
  • Calappa Japonica Ortmann, 1892, a New Record for Western Australia (Decapoda, Brachyura, Oxystomata)
    CALAPPA JAPONICA ORTMANN, 1892, A NEW RECORD FOR WESTERN AUSTRALIA (DECAPODA, BRACHYURA, OXYSTOMATA) BY DIANA S. JONES Department of Crustacea, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia RÉSUMÉ Le crabe oxystome Calappa japonica Ortmann, 1892, est signalé pour la première fois d'Australie occidentale. Ce n'est que le troisième spécimen signalé d'Australie, les deux précédents l'ayant été du sud-est du Queensland (Campbell, 1971). Le premier pléopode mâle et d'autres caractères diagnostiques sont brèvement décrits et figurés. INTRODUCTION The family Calappidae is represented by two genera in Western Australia, namely Calappa and Matuta. Six species of Calappa have been recorded from the waters of Western Australia - C. calappa (L., 1758), C. depressa Miers, 1886, C. hepatica (L., 1758), C. lophos (Herbst, 1785), C. philargius (L., 1758) and C. terraereginae Ward, 1936 (Tyndale-Biscoe & George, 1962). Recently the Western Australian Museum obtained a specimen which, on examination, proved to be Calappa japonica, a species not previously recorded from Western Australia, thus bringing the total number of known Calappa species to seven. Only two other specimens of C. japonica are known from museum collections in Australia. Both specimens were taken off Cape Moreton, southern Queensland, and are housed in the Queensland Museum. Campbell (1971: 28, 31) noted these two specimens as the first records of C. japonica in Australia. Although the shapes of various parts of the first male pleopod of the Oxystomata are known to provide conclusive means of species determination (Tyndale-Biscoe & George, 1962), few workers have described or figured these appendages. Since the first male pleopod of C.
    [Show full text]
  • Marine Invertebrate Diversity in Aristotle's Zoology
    Contributions to Zoology, 76 (2) 103-120 (2007) Marine invertebrate diversity in Aristotle’s zoology Eleni Voultsiadou1, Dimitris Vafi dis2 1 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR - 54124 Thessaloniki, Greece, [email protected]; 2 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, Uni- versity of Thessaly, 38446 Nea Ionia, Magnesia, Greece, dvafi [email protected] Key words: Animals in antiquity, Greece, Aegean Sea Abstract Introduction The aim of this paper is to bring to light Aristotle’s knowledge Aristotle was the one who created the idea of a general of marine invertebrate diversity as this has been recorded in his scientifi c investigation of living things. Moreover he works 25 centuries ago, and set it against current knowledge. The created the science of biology and the philosophy of analysis of information derived from a thorough study of his biology, while his animal studies profoundly infl uenced zoological writings revealed 866 records related to animals cur- rently classifi ed as marine invertebrates. These records corre- the origins of modern biology (Lennox, 2001a). His sponded to 94 different animal names or descriptive phrases which biological writings, constituting over 25% of the surviv- were assigned to 85 current marine invertebrate taxa, mostly ing Aristotelian corpus, have happily been the subject (58%) at the species level. A detailed, annotated catalogue of all of an increasing amount of attention lately, since both marine anhaima (a = without, haima = blood) appearing in Ar- philosophers and biologists believe that they might help istotle’s zoological works was constructed and several older in the understanding of other important issues of his confusions were clarifi ed.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Paul P. Tinerella
    University of Illinois Institute of Natural Resource Sustainability William Shilts, Executive Director ILLINOIS NATURAL HISTORY SURVEY Brian D. Anderson, Director 1816 South Oak Street Champaign, IL 61820 217-333-6830 INVENTORY OF AQUATIC TRUE BUGS (INSECTA: HETEROPTERA: NEPOMORPHA, GERROMORPHA, LEPTOPODOMORPHA) OF THE GREAT SMOKY MOUNTAINS NATIONAL PARK, NORTH CAROLINA AND TENNESSEE, USA Paul P. Tinerella Prepared for: DISCOVER LIFE IN AMERICA, INC. Grant / Project Number: DLIA2008-15 INHS Technical Report 2009 (22) Date of issue: 14 August 2009 COVER PAGE FOR FINAL REPORT TO DISCOVER LIFE IN AMERICA, INC. (Submit electronically with text of Final Report to [email protected]) PROPOSAL # DLIA2008-15 STARTING date: 1 April 2008 ENDING date: 1 March 2009 PRINCIPAL INVESTIGATOR (PI): Dr. Paul P. Tinerella PI DEPARTMENT: Illinois Natural History Survey PI ORGANIZATION: University of Illinois POSTAL ADDRESS: 1816 S Oak Street Champaign, IL 61820 PI ELECTRONIC MAIL: [email protected] PI TELEPHONE: 217-244-2149 PI FAX: 217-333-4949 TITLE of Project: INVENTORY OF AQUATIC TRUE BUGS (INSECTA: HETEROPTERA: NEPOMORPHA, GERROMORPHA, LEPTOPODOMORPHA) OF THE GREAT SMOKY MOUNTAINS NATIONAL PARK, NORTH CAROLINA AND TENNESSEE, USA GRANT AMOUNT: $4946.00 SUMMARY of Activities and Results (200 words; Lay Language): Research was conducted to document water bug (Insecta: Heteroptera: Nepomorpha, Gerromorpha, Leptopodomorpha) diversity of the Great Smoky Mountains National Park (GSMNP). Prior to this research, no water bug survey existed for GSMNP, with 13 total species historically recorded from the Park. One collecting trip of seven days (2-8 August 2008) was conducted in GSMNP, wherein 42 localities (lentic and lotic habitats) were sampled throughout the Park.
    [Show full text]
  • Phuket Marine Biological Center Special Publication 23(2): 341–360 (2002)
    341 Phuket Marine Biological Center Special Publication 23(2): 341–360 (2002) THE BOX AND MOON CRABS OF THAILAND, WITH DESCRIPTION OF A NEW SPECIES OF CALAPPA (CRUSTACEA: BRACHYURA: CALAPPIDAE, MATUTIDAE) Peter K. L. Ng1, Joelle C. Y. Lai1 and Charatsee Aungtonya2 1Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 11920, Republic of Singapore 2Phuket Marine Biological Center, P.O. Box 60, Phuket 83000, Thailand ABSTRACT Eleven species of box crabs (Calappidae: Calappa bicornis, C. calappa, C. capellonis, C. clypeata, C. gallus, C. hepatica, C. lophos, C. philargius, C. bilineata sp. nov., C. undulata, Mursia africana) and five species of moon crabs (Matutidae: Ashtoret lunaris, A. miersii, Izanami curtispina, Matuta planipes, Matuta victor) are recorded from Thailand. Of these, one (Calappa bilineata) is a new species allied to C. philargius, while six are new records for Thailand (Calappa capellonis, C. bicornis, C. undulata, Mursia africana, Ashtoret miersii, Izanami curtispina). Six species are known only from the Andaman Sea, western Thailand. The record of Mursia africana is interesting as it was previously only known from East Africa. Keys are provided for all 16 species now known from Thailand. INTRODUCTION taxa as separate families (e.g. Stevcic, 1983), but most carcinologists adopt a more conservative The box and moon crabs of the families approach in regarding them as only distinct Calappidae and Matutidae (sensu Stevcic, 1983; subfamilies (e.g. Ng, 1998). A recent analysis of Bellwood, 1996) respectively, are well represented the intrafamilial relationships (Bellwood, 1996) in Thailand, with Naiyanetr (1998) listing nine supports the idea that they should be considered species, viz.
    [Show full text]
  • The Tachinid Times February 2014, Issue 27 INSTRUCTIONS to AUTHORS Chief Editor James E
    Table of Contents Articles Studying tachinids at the top of the world. Notes on the tachinids of Northeast Greenland 4 by T. Roslin, J.E. O’Hara, G. Várkonyi and H.K. Wirta 11 Progress towards a molecular phylogeny of Tachinidae, year two by I.S. Winkler, J.O. Stireman III, J.K. Moulton, J.E. O’Hara, P. Cerretti and J.D. Blaschke On the biology of Loewia foeda (Meigen) (Diptera: Tachinidae) 15 by H. Haraldseide and H.-P. Tschorsnig 20 Chasing tachinids ‘Down Under’. Expeditions of the Phylogeny of World Tachinidae Project. Part II. Eastern Australia by J.E. O’Hara, P. Cerretti, J.O. Stireman III and I.S. Winkler A new range extension for Erythromelana distincta Inclan (Tachinidae) 32 by D.J. Inclan New tachinid records for the United States and Canada 34 by J.E. O’Hara 41 Announcement 42 Tachinid Bibliography 47 Mailing List Issue 27, 2014 The Tachinid Times February 2014, Issue 27 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O'HARA This newsletter accepts submissions on all aspects of tach- inid biology and systematics. It is intentionally maintained as a InDesign Editor OMBOR MITRA non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful editing and some are (informally) reviewed if the content is thought ISSN 1925-3435 (Print) to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • ZOOLOGICAL SCIENCE 7: 477-484 (1990) © 1990 Zoological Society of Japan
    ZOOLOGICAL SCIENCE 7: 477-484 (1990) © 1990 Zoological Society of Japan Crabs of the Genus Calappa from the Ryukyu Islands, with Description of a New Species Masatsune Takeda and Norikazu Shikatani 1 Department of Zoology, National Science Museum, Shinjuku, Tokyo 169, and 1 Department of Marine Sciences, University of the Ryukyus, Nishihara, Okinawa 903-01, Japan ABSTRACT— Nine species of the genus Calappa (Crustacea, Decapoda, Calappidae) are recorded from the Ryukyu Islands based on the collections of the University of the Ryukyus. One of them is described as a new species under the name of C. quadrimaculata, being readily distinguished from the closest congener, C. lophos (Herbst), by having no striped markings on the carapace and chelipeds, and also by the different proportion and armature of the carapace. The new species is also known from Taiwan. of Calappa without doubt referable to the new INTRODUCTION species at the fish market together with C. lophos The crabs of the genus Calappa (Family Calap- (Herbst) and C. philargius (Linnaeus), both of pidae) living in shallow-water of the Indo-Pacific which are very common. and Atlantic Oceans are called the box crabs due The Calappa species attract not only some to having the thin clypeiform expansion at each biologists, but also certain collectors and aqualists, posterolateral side of the carapace, and well due to the big size and the beautiful coloration known by their peculiar habit of breaking the shell with spots and bands in addition to the peculiar by the right chela to eat its soft part or hermit crab shape and ecology.
    [Show full text]
  • Respiratory Adaptations of Secondarily Aquatic Organisms
    Conclusion Freshwater environments contain a diverse array of terrestrial organisms which have adapted to life underwater. In making the transition from an environment with high oxygen availability to one where oxygen availability is low, many of these terrestrial invaders continue to rely on the atmosphere as their respiratory medium, using adaptations as varied as the organisms themselves. This thesis is broadly concerned with the mechanisms evolved by two dissimilar groups of organisms, insects and plants, to solve their common problem of obtaining oxygen while underwater. The insect’s air-filled tracheal system is surprisingly well suited to functioning in the aquatic environment. Gas exchange in this system is diffusive: oxygen from the atmosphere diffuses into the tracheal system through spiracles, while carbon dioxide diffuses out. Insects need only cover their spiracles with an air bubble to breathe underwater. But the properties of an air bubble (i.e., the solubility of its gases and buoyancy) confer benefits besides acting as a simple oxygen reserve. Comparison of two aquatic bugs, backswimmers Anisops deanei and water boatmen Agraptocorixa eurynome, demonstrates the diverse ways in which aquatic insects use air bubbles while submerged. Backswimmers use a small bubble of air as a self-contained buoyancy and respiratory apparatus. Hairs fringing the abdominal air-store form a dense barrier over the surface of the bubble, greatly reducing the area available for diffusion. In concert with large haemoglobin cells, this allows the backswimmer to stabilise the oxygen partial pressure and buoyancy of its air-store. In contrast, the air bubble carried by water boatmen has a high degree of contact with the surrounding water, covering the entire ventral surface of the insect’s flattened body.
    [Show full text]