Development of Octopus Aquaculture Rearing, Handling and Systems Design for Octopus Tetricus Commercial Aquaculture FRDC Project No 2009/206

Total Page:16

File Type:pdf, Size:1020Kb

Development of Octopus Aquaculture Rearing, Handling and Systems Design for Octopus Tetricus Commercial Aquaculture FRDC Project No 2009/206 Fisheries Research Report No. 263, 2015 Development of octopus aquaculture Rearing, handling and systems design for Octopus tetricus commercial aquaculture FRDC Project No 2009/206 S. Kolkovski, R. Cammilleri, J. King, C. Cammilleri, N. Watts, M. Natale, A. Mori Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 635/15 Correct citation: Kolkovski, S., King, J., Watts, N., Natale, M.,Mori, A., Cammilleri, R., Cammilleri, C. Development of octopus aquaculture Rearing, handling and systems designs for Octopus tetricus commercial aquaculture. FRDC Project No. 2009/206. Fisheries Research Report No. 263. Department of Fisheries, Western Australia. 52pp. Researcher Contact Details FRDC Contact Details Name: Sagiv Kolkovski Address: 25 Geils Court, Deakin ACT 2600 Address: 39 Northside Drive, Hillarys 6029 WA Phone: 02 6285 0400 Phone: 08 9203 0220, 0417 940 498 Fax: 02 6285 0499 Fax: 08 9203 0199 Email: [email protected] Email: [email protected] Web: www.frdc.com.au In submitting this report, the researcher has agreed to FRDC publishing this material in its edited form. Ownership of Intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Fisheries Research and Development Corporation, Department of Fisheries Western Australia. This publication (and any information sourced from it) should be attributed to [Kolkovski, S., Department of Fisheries, Western Australia, 2015, Development of octopus aquaculture, Perth, Western Australia, February.] Creative Commons licence All material in this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, logos and the Commonwealth Coat of Arms. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/legalcode. Inquiries regarding the licence and any use of this document should be sent to: [email protected] Disclaimer The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstances. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the publisher, research provider or the FRDC. The Fisheries Research and Development Corporation plans, invests in and manages fisheries research and development throughout Australia. It is a statutory authority within the portfolio of the federal Minister for Agriculture, Fisheries and Forestry, jointly funded by the Australian Government and the fishing industry. © Fisheries Research and Development Corporation and Department of Fisheries Western Australia. July 2015. All rights reserved. ISSN: 1035 - 4549 ISBN: 978-1-921845-89-5 ii Fisheries Research Report [Western Australia] No. 263, 2015 Contents Introduction .......................................................................................................................... 1 1.0 Octopus tetricus ranching and grow out ................................................................... 2 1.1 Animal pick-up and transport ................................................................................. 2 1.2 Equipment ............................................................................................................... 2 1.3 Holding (pre-stocking) ............................................................................................ 5 1.4 Weighing and initial stocking ................................................................................ 7 1.4.1 Initial weight range ...................................................................................... 8 1.5 Initial biomass ......................................................................................................... 8 1.6 Daily feed and cleaning protocol ............................................................................ 11 1.6.1 Tank checks ................................................................................................. 11 1.6.2 Tank cleaning (morning) .............................................................................. 11 1.6.3 Morning feed (am) ....................................................................................... 11 1.6.4 Water quality parameters .............................................................................. 13 1.7 New animal arrival ................................................................................................. 13 1.7.1 Holding ......................................................................................................... 13 1.7.2 Stocking ........................................................................................................ 13 1.8 Weighing and grading ............................................................................................ 13 1.8.1. Procedure ...................................................................................................... 15 1.9 Culling for market. ................................................................................................. 15 1.10 Grow-out system ..................................................................................................... 16 1.10.1 Tank design ................................................................................................... 16 2.0 Octopus tetricus hatchery protocol ............................................................................ 23 2.1 Broodstock ............................................................................................................. 23 2.1.1 Transport & equipment ................................................................................ 23 2.1.2 Holding system ............................................................................................. 23 2.1.3 Feeding ......................................................................................................... 25 2.1.4 Mating ......................................................................................................... 25 2.1.5 Egg laying and incubation. ........................................................................... 25 2.2 Larvae culture system ............................................................................................ 27 2.2.1 Seawater filtration and sterilisation .............................................................. 27 2.2.2 Larvae tank hydrodynamics ......................................................................... 28 2.2.3 Larvae system description ............................................................................ 29 2.3 Artemia hatching and enrichment system .............................................................. 30 2.4 Artemia grow-out system. ...................................................................................... 31 2.4.1 Grow-out tanks ............................................................................................ 31 2.5 Larvae tank components ........................................................................................ 32 2.5.1 Outlet filters .................................................................................................. 32 2.5.2 Standpipe ...................................................................................................... 33 2.6 Double tank system ............................................................................................... 34 Fisheries Research Report [Western Australia] No. 263, 2015 iii 2.7 Automated feeding system .................................................................................... 37 2.8 Lighting .................................................................................................................. 38 2.9 Daily protocol ........................................................................................................ 39 2.9.1 Stocking and stocking density ...................................................................... 39 2.9.2 Hatching Artemia ......................................................................................... 39 2.9.3 Post hatching harvest .................................................................................... 40 2.9.4 Harvesting .................................................................................................... 41 2.9.5 Artemia pre–enrichment stocking ................................................................ 41 2.10 Artemia enrichment ................................................................................................ 42 2.11 Feeding.................................................................................................................... 44 2.12 Plankton collection ................................................................................................. 45 2.13 Transfers ...............................................................................................................
Recommended publications
  • Oyster Aquaculture Production Systems
    UNIVERSITY OF MARYLAND EXTENSION //////////// extension.umd.edu ///////////////////////////////////////////////////////////////////////////////////////////////////////////// EM- 7 | November 2019 //////////// Oyster Aquaculture Production Systems Growers have cultured oysters for thousands of years and used Many Factors will Influence the System You many methods to raise them. The methods are based on the Choose to Raise Oysters technology, materials, species, environmental conditions, labor and other parameters available in the area where oysters are Before making a choice, investigate as many different systems raised. as you can, keeping in mind the location of your farm, Some growers will let you visit their operation or you may be “You don’ t make money familiar with local farms already in production. Oyster farmers raising oysters; you make are often comfortable showing methods and equipment they money by selling them. ” use because they know that expanding production benefits the entire industry. As a longtime grower once said, “What makes While there are many methods used to raise oysters, not all are my company profitable doesn’t show up in photos – it’s the profitable for Maryland growers. Profitable operation is the most management of the business that makes it successful.” important part of a successful aquaculture business. As a grower, you should make decisions based on sound business practices. Information, advice and training are available through Your target markets will also determine the best methods of University of Maryland Extension specialists. Workshops and oyster production. Oysters produced specifically for the seminars are held throughout the year on such topics as half-shell or raw bar trade are often cultchless. They are production systems, business management and seafood produced by setting larvae on small shell pieces rather than technology to provide the training necessary for industry growth multiple animals on a single shell as is done for bottom leases.
    [Show full text]
  • You Are What You Eat: a Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus Vulgaris Paralarvae and Their Zooplankton Prey
    ORIGINAL RESEARCH published: 31 May 2017 doi: 10.3389/fphys.2017.00362 You Are What You Eat: A Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus vulgaris Paralarvae and Their Zooplankton Prey Álvaro Roura 1, 2*, Stephen R. Doyle 1, 3, Manuel Nande 4, 5 and Jan M. Strugnell 1, 6 1 Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, Australia, 2 Ecología y Biodiversidad Marina, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain, 3 Parasite Genomic Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom, 4 Grupo de Acuicultura Marina, Instituto Español de Oceanografía, Vigo, Spain, 5 Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, Vigo, Spain, 6 Marine Biology and Aquaculture, James Cook University, Townsville, QLD, Australia The common octopus (Octopus vulgaris) is an attractive species for aquaculture, however, several challenges inhibit sustainable commercial production. Little is known Edited by: about the early paralarval stages in the wild, including diet and intestinal microbiota, Giovanna Ponte, CephRes and SZN, Italy which likely play a significant role in development and vitality of this important life stage. Reviewed by: High throughput sequencing was used to characterize the gastrointestinal microbiome Muthugounder S. Shivakumar, of wild O. vulgaris paralarvae collected from two different upwelling regions off the coast Periyar University, India Andrea Tarallo, of North West Spain (n = 41) and Morocco (n = 35). These were compared to that Stazione Zoologica Anton Dohrn, Italy of paralarvae reared with Artemia for up to 25 days in captivity (n = 29). In addition, *Correspondence: the gastrointestinal microbiome of zooplankton prey (crabs, copepod and krill) was Álvaro Roura also analyzed to determine if the microbial communities present in wild paralarvae are [email protected] derived from their diet.
    [Show full text]
  • Spawning and Rearing Bivalve Molluscs—Spawning1 R
    FA174 Teach Aquaculture Curriculum: Spawning and Rearing Bivalve Molluscs—Spawning1 R. Leroy Creswell, Cortney L. Ohs, Craig S. Kasper, Elisa J. Livengood, Amber L. Garr, Brian E. Myers, Carlos V. Martinez, and Frank A. Chapman2 This is Activity 12 in a series of 25 in the Teach Aquaculture Grade Level Curriculum.The introduction to this series is available at 9–12 http://edis.ifas.ufl.edu/FA177. Abstract Subject Area Biology, Aquaculture In this activity students will learn methods for spawning bivalve molluscs like clams or oysters using temperature manipulation. Students will use an ocular micrometer to Time measure the diameter of bivalve eggs and the length of Preparation: Spawning—indeterminant; daily exchange 10 bivalve larvae. The following lesson plan will have students minutes monitor the density of larvae in their culture system and Activity: Spawning—indeterminant; daily exchange 20 understand production protocols used in bivalve hatcheries. minutes Clean-up: 10 minutes Objectives Students will be able to: Student Performance Standards (Sunshine State Standards) 1. Describe the reproductive biology and spawning of bivalve molluscs. 06.03 Illustrate correct terminologies for animal species and conditions (e.g., sex, age, etc.) within those species 2. Apply techniques used for spawning molluscs. (LA.910.1.6.1, 2, 3, 4, 5; SC.912.L.14. 19, 31, 33). 3. Describe the conditions used in hatcheries for commer- cial production of bivalve molluscs. 1. This document is FA174, one of a series of the School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, UF/IFAS Extension. Original publication date May 2010.
    [Show full text]
  • Recent Trends in Marine Phycotoxins from Australian Coastal Waters
    Review Recent Trends in Marine Phycotoxins from Australian Coastal Waters Penelope Ajani 1,*, D. Tim Harwood 2 and Shauna A. Murray 1 1 Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW 2007, Australia; [email protected] 2 Cawthron Institute, The Wood, Nelson 7010, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +61‐02‐9514‐7325 Academic Editor: Lucio G. Costa Received: 6 December 2016; Accepted: 29 January 2017; Published: 9 February 2017 Abstract: Phycotoxins, which are produced by harmful microalgae and bioaccumulate in the marine food web, are of growing concern for Australia. These harmful algae pose a threat to ecosystem and human health, as well as constraining the progress of aquaculture, one of the fastest growing food sectors in the world. With better monitoring, advanced analytical skills and an increase in microalgal expertise, many phycotoxins have been identified in Australian coastal waters in recent years. The most concerning of these toxins are ciguatoxin, paralytic shellfish toxins, okadaic acid and domoic acid, with palytoxin and karlotoxin increasing in significance. The potential for tetrodotoxin, maitotoxin and palytoxin to contaminate seafood is also of concern, warranting future investigation. The largest and most significant toxic bloom in Tasmania in 2012 resulted in an estimated total economic loss of ~AUD$23M, indicating that there is an imperative to improve toxin and organism detection methods, clarify the toxin profiles of species of phytoplankton and carry out both intra‐ and inter‐species toxicity comparisons. Future work also includes the application of rapid, real‐time molecular assays for the detection of harmful species and toxin genes.
    [Show full text]
  • Aquaculture and Marine Protected Areas: Exploring Potential Opportunities and Synergies
    Aquaculture and Marine Protected Areas: Exploring Potential Opportunities and Synergies To meet the Convention on Biological Diversity’s Aichi Target 11 on marine biodiversity protection, Aichi Target 6 on sustainable fisheries by 2020, as well as the Sustainable Development Goal (SDG) 2 on food security and SDG 14 on oceans, by 2030, there is an urgent need to reconcile nature conservation and sustainable development. It is also widely recognised that aquaculture significantly contributes to sustainable development in coastal communities and plays a vital role in ensuring food security, poverty alleviation, and economic resilience. In the framework of integrated management, the time has therefore come to identify the potential opportunities and synergies that can enable aquaculture and conservation to work together more effectively. CONTENT Understanding the various types of aquaculture and their potentialities ……………………………………… 3 The types of MPAs and matrix of interactions showing aquaculture & sustainability principles …… 7 Understanding aquaculture and MPA interactions …… 8 Towards MPAs and aquaculture compatibility and sustainability ……………………………………………10 Background In order to feed the world's growing human population, attention will need to increasingly focus on where the protein needs of the world will be supplied from. While capture fisheries have now reached a plateau of production, marine aquaculture of fish, shellfish and algae has been steadily increasing over the past decades and has become a valid option to make up the protein shortfall. However, one of the major constraints for the aquaculture production sector is the availability of, and access to space. In many coastal areas, competition with other marine activities is already high, mainly because the bulk of marine aquaculture is located close to the shore.
    [Show full text]
  • Life History, Mating Behavior, and Multiple Paternity in Octopus
    LIFE HISTORY, MATING BEHAVIOR, AND MULTIPLE PATERNITY IN OCTOPUS OLIVERI (BERRY, 1914) (CEPHALOPODA: OCTOPODIDAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI´I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY DECEMBER 2014 By Heather Anne Ylitalo-Ward Dissertation Committee: Les Watling, Chairperson Rob Toonen James Wood Tom Oliver Jeff Drazen Chuck Birkeland Keywords: Cephalopod, Octopus, Sexual Selection, Multiple Paternity, Mating DEDICATION To my family, I would not have been able to do this without your unending support and love. Thank you for always believing in me. ii ACKNOWLEDGMENTS I would like to thank all of the people who helped me collect the specimens for this study, braving the rocks and the waves in the middle of the night: Leigh Ann Boswell, Shannon Evers, and Steffiny Nelson, you were the hard core tako hunters. I am eternally grateful that you sacrificed your evenings to the octopus gods. Also, thank you to David Harrington (best bucket boy), Bert Tanigutchi, Melanie Hutchinson, Christine Ambrosino, Mark Royer, Chelsea Szydlowski, Ily Iglesias, Katherine Livins, James Wood, Seth Ylitalo-Ward, Jessica Watts, and Steven Zubler. This dissertation would not have happened without the support of my wonderful advisor, Dr. Les Watling. Even though I know he wanted me to study a different kind of “octo” (octocoral), I am so thankful he let me follow my foolish passion for cephalopod sexual selection. Also, he provided me with the opportunity to ride in a submersible, which was one of the most magical moments of my graduate career.
    [Show full text]
  • Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena Lunulata (Mollusca: Octopodidae)
    Husbandry Manual for BLUE-RINGED OCTOPUS Hapalochlaena lunulata (Mollusca: Octopodidae) Date By From Version 2005 Leanne Hayter Ultimo TAFE v 1 T A B L E O F C O N T E N T S 1 PREFACE ................................................................................................................................ 5 2 INTRODUCTION ...................................................................................................................... 6 2.1 CLASSIFICATION .............................................................................................................................. 8 2.2 GENERAL FEATURES ....................................................................................................................... 8 2.3 HISTORY IN CAPTIVITY ..................................................................................................................... 9 2.4 EDUCATION ..................................................................................................................................... 9 2.5 CONSERVATION & RESEARCH ........................................................................................................ 10 3 TAXONOMY ............................................................................................................................12 3.1 NOMENCLATURE ........................................................................................................................... 12 3.2 OTHER SPECIES ...........................................................................................................................
    [Show full text]
  • Giant Pacific Octopus (Enteroctopus Dofleini) Care Manual
    Giant Pacific Octopus Insert Photo within this space (Enteroctopus dofleini) Care Manual CREATED BY AZA Aquatic Invertebrate Taxonomic Advisory Group IN ASSOCIATION WITH AZA Animal Welfare Committee Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Giant Pacific Octopus (Enteroctopus dofleini) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Aquatic Invertebrate Taxon Advisory Group (AITAG) (2014). Giant Pacific Octopus (Enteroctopus dofleini) Care Manual. Association of Zoos and Aquariums, Silver Spring, MD. Original Completion Date: September 2014 Dedication: This work is dedicated to the memory of Roland C. Anderson, who passed away suddenly before its completion. No one person is more responsible for advancing and elevating the state of husbandry of this species, and we hope his lifelong body of work will inspire the next generation of aquarists towards the same ideals. Authors and Significant Contributors: Barrett L. Christie, The Dallas Zoo and Children’s Aquarium at Fair Park, AITAG Steering Committee Alan Peters, Smithsonian Institution, National Zoological Park, AITAG Steering Committee Gregory J. Barord, City University of New York, AITAG Advisor Mark J. Rehling, Cleveland Metroparks Zoo Roland C. Anderson, PhD Reviewers: Mike Brittsan, Columbus Zoo and Aquarium Paula Carlson, Dallas World Aquarium Marie Collins, Sea Life Aquarium Carlsbad David DeNardo, New York Aquarium Joshua Frey Sr., Downtown Aquarium Houston Jay Hemdal, Toledo
    [Show full text]
  • Experimental Harvesting of Juvenile Common Octopus Octopus Vulgaris, for Commercial Ongrowing in the Azores
    Experimental harvesting of juvenile common octopus Octopus vulgaris, for commercial ongrowing in the Azores CHRISTOPHER K. PHAM & EDUARDO ISIDRO Pham, C.K. & E. Isidro 2010. Experimental harvesting of juvenile common octopus Octopus vulgaris, for commercial ongrowing in the Azores. Arquipelago. Life and Marine Sciences 27: 41-47. Octopus aquaculture is currently restricted to ongrowing of sub-adult to commercial size because culture of paralarvae remains a bottleneck. In most countries, commercial ongrowing rely upon existing pot fisheries for octopuses for obtaining their specimens. In the Azores, such fishery does not exist and effective methods of harvest are required if farming is to be implemented. In this study, we investigated the potential of obtaining sub- adult octopuses on the coast of Faial Island, Azores. Two sets of traps (n=30) consisting of 3 PVC tubes within cement blocks were set-up on two different substrates; soft sediment (Pedro Miguel) and rocky-sand (Pasteleiro) at depth varying between 10 and 30 metres. From June to August 2006, 11 hauls per site were performed. A total of 191 octopuses (from 1.1 to 989 g; average = 135.3 g) were captured. Catches in the soft sediment site were significantly higher than in the other location (CPUE: mean ± SD: 0.33 ± 0.17 vs. 0.15 ± 0.17 octopus trap-1 hour-1*100). The catch was initially dominated by octopus of 300-400 g but as fishing continued, this size classes disappeared and was replaced by smaller individuals. As a result, half of the catch at both sites (51.8%) was composed of specimens with a weight equal or inferior to 50 grams.
    [Show full text]
  • * Denotes Student Presenter P Denotes Non First‐Author Presenter
    MONDAY March 30th 2020 STUDENT BREAKFAST (STUDENTS ONLY) 6:30-8:00 AM Hall of Fame PLENARY: Roger Mann – Managing fisheries in the mid-Atlantic in the coming decades – reflections on a period as a fisheries management council member 8:00-8:50 AM International A, B, C ROOM International A International B International C Carroll SESSION ONE HEALTH EPIGENOMES AND SHELLFISH RESTORATION AND SHELLFISH GENETICS AND GENOMICS MUSSELS TITLE MICROBIOMES: FROM SOIL TO PEOPLE CONSERVATION Louis Plough & Jon Puritz Paul Rawson WORKSHOP Peter Kingsley-Smith & Dave Bushek Acacia Alcivar-Warren & Kathy F.J. Tang 9:00 AM ONE HEALTH EPIGENOMICS AND MICROBIOMES: FROM SOIL TO LARGE-SCALE OYSTER RESTORATION IN THE CHESAPEAKE BAY, A PRELIMINARY WHOLE-GENOME TEST FOR ADAPTIVE INTER-INDIVIDUAL VARIABILITY OF FEEDING RATES AND FEEDING- PEOPLE WORKSHOP: RECOGNITION TO WINNERS OF STUDENT USA DIFFERENTIATION IN AN ISOLATED LOW-SALINITY EASTERN OYSTER DIGESTIVE FEEDBACKS IN MYTILUS EDULIS TRAVEL AWARDS AND OUTSTANDING RESEARCHERS IN Westby POPULATION Steeves*, Strohmeier, Filgueira, Strand AQUACULTURE – ONE HEALTH PIONEERS ADDRESSING Hare, Kutsumi ECOSYSTEM, ANIMAL, AND PUBLIC HEALTH Alcivar-Warren 9:15 AM TOWARDS TESTING THE HYPOTHESIS OF TRANSGENERATIONAL PRINCIPLES FOR RESTORATION REEF MONITORING: ACCURACY AND WHOLE-GENOME RESEQUENCING REVEALS GENETIC VARIATIONS HABITAT TYPE INFLUENCES PHYSIOLOGICAL RESPONSE OF AN EPIGENETIC INHERITANCE (TGEI) OF HEALTH EFFECTS CAUSED BY PRECISION OF HABITAT-SPECIFIC ABUNDANCE AND DENSITY AND SELECTION SIGNATURES IN EASTERN OYSTER
    [Show full text]
  • Recognizing Cephalopod Boreholes in Shells and the Northward Spread of Octopus Vulgaris Cuvier, 1797 (Cephalopoda, Octopodoidea)
    Vita Malacologica 13: 53-56 20 December 2015 Recognizing cephalopod boreholes in shells and the northward spread of Octopus vulgaris Cuvier, 1797 (Cephalopoda, Octopodoidea) Auke-Florian HIEMSTRA Middelstegracht 20B, 2312 TW Leiden, The Netherlands email: [email protected] Key words: Cephalopods, Octopus , predation, hole-boring, The Netherlands ABSTRACT & Arnold, 1969; Wodinsky, 1969; Hartwick et al., 1978; Boyle & Knobloch, 1981; Cortez et al., 1998; Steer & Octopuses prey on molluscs by boring through their shell. Semmens, 2003; Anderson et al., 2008; for taxonomical Among the regular naticid borings, traces of cephalopod pre - updates see Norman & Hochberg, 2005). However, the habit dation should be found soon on Dutch beaches. Bottom trawl - of drilling may prove to be more widespread within octopods ing has declined, and by the effects of global warming since only few species have actually been investigated Octopus will find its way back to the North Sea where it lived (Bromley, 1993). Drilled holes were found in polypla - before. I describe the distinguishing characters for Octopus cophoran, gastropod and bivalve mollusc shells, Nautilus and bore holes, give an introduction into this type of behaviour, crustacean carapaces (Tucker & Mapes, 1978; Saunders et al., present a short history of Dutch octopuses and a prediction of 1991; Nixon & Boyle, 1982; Guerra & Nixon, 1987; Nixon et their future. al., 1988; Mather & Nixon, 1990; Nixon, 1987). Arnold & Arnold (1969) and Wodinsky (1969) both describe the act of drilling in detail. This behaviour consists INTRODUCTION of the following steps (Wodinsky, 1969): recognizing and selecting the prey, drilling a hole in the shell, ejecting a secre - Aristotle was the first to observe octopuses feed on mol - tory substance into the drilled hole, and removing the mollusc luscs (see D’Arcy Thompson, 1910), but it was Fujita who from its shell and eating it.
    [Show full text]
  • IAN Symbol Library Catalog
    Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake
    [Show full text]