Pdf of JHOS July 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollinator Diversity and Reproductive Success of [I]Epipactis Helleborine[I]
Manuscript to be reviewed Pollinator diversity and reproductive success of Epipactis helleborine (L.) Crantz (Orchidaceae) in anthropogenic and natural habitats Agnieszka Rewicz Corresp., 1 , Radomir Jaskuła 2 , Tomasz Rewicz 3 , Grzegorz Tończyk 2 1 Department of Geobotany and Plant Ecology, University of Lodz, Łódź, Poland 2 Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Łódź, Poland 3 Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Łódź, Poland Corresponding Author: Agnieszka Rewicz Email address: [email protected] Background. Epipactis helleborine is an Eurasian orchid species which prefers woodland environments but it may also spontaneously and successfully colonise human-made artificial and disturbed habitats such as roadsides, town parks and gardens. It is suggested that orchids colonising anthropogenic habitats are characterised by a specific set of features (e.g.: large plant size, fast flower production). However, as it is not well known how pollinator diversity and reproductive success of E. helleborine differs in populations in anthropogenic habitats compared to populations from natural habitats, we wanted to compare pollinator diversity and reproductive success of this orchid species between natural and anthropogenic habitat types. Methods. Pollination biology, reproductive success and autogamy in populations of E. helleborine from anthropogenic (roadside) and natural (forest) habitats were compared. Eight populations (four natural and four human-disturbed ones) in two seasons were studied according to height of plants, length of inflorescences, as well as numbers of juvenile shoots, flowering shoots, flowers, and fruits. The number and diversity of insect pollinators were studied in one natural and two human-disturbed populations. Results. -
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Rare Plant Monitoring 2017
RARE PLANT MONITORING 2017 Ajuga pyramidalis Ophrys insectifera © Zoe Devlin What is it? In 2017, we decided to carry out a small pilot scheme on rare plant monitoring. Where experienced plant recorders had submitted recent casual records of rare plants to the Centre, they were asked if they would be willing to visit their rare plant population once a year during its flowering period and to count the total number of individuals present. The response to the scheme from the small number of recorders contacted has been overwhelming positive and it has resulted in very valuable data being collected in 2017. Data on the rare plant location, the count and additional information about the site is submitted online through a dedicated web portal set up by the Data Centre. The project was discussed and agreed with the NPWS. It is framed around the 2016 Vascular Plant Red List and is mainly focused on monitoring vulnerable, near threatened and rare least concern species. Why is it important? When assessing the national FAST FACTS 2017 conservation status of very rare species according to IUCN Red List methodology, it is recommended that 37 you use annual population count data. That’s the total number of rare plant Given the numbers of rare plant populations that were monitored in the species a country might have, this 2017 pilot information can be difficult to collect in any volume. This citizen science project relies on the generosity of 22 expert volunteers to ‘keep an eye’ on That’s the number of rare plant species rare populations near them and to that were monitored in 2017 submit standardised count data once a year. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
Appendix LEA10 Local Wildlife Site Maps and Citations KENT LOCAL WILDLIFE SITE Site Ref: AS01 Site: Hemsted Forest Grid Ref: TQ819360
Appendix LEA10 Local Wildlife Site maps and citations KENT LOCAL WILDLIFE SITE Site Ref: AS01 Site: Hemsted Forest Grid Ref: TQ819360 580000 580500 581000 581500 582000 582500 583000 583500 138500 138500 138000 138000 137500 137500 137000 137000 136500 136500 136000 136000 135500 135500 135000 135000 134500 134500 134000 134000 580000 580500 581000 581500 582000 582500 583000 583500 0 250 500 1,000 Kent Wildlife Trust 2017 Meters This map is based upon Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationery Office ± © Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings. 100019238. 2017. Approved: 2017 Jun AS01 Hemsted Forest Page 1 of 3 KENT LOCAL WILDLIFE SITE KWT File Ref: 820362 Site Name: Hemsted Forest Site Ref. No: AS01 LPA: Ashford / Tunbridge Wells Central Grid Ref: TQ 819360 Parish: Cranbrook / Benenden / Category: Woodland, grassland Biddenden Owner: Forestry Commission Natural Area: High Weald Area: 509.25 ha AONB: No Date first notified: 1986 TPO: Yes Dates revised: 1993, Feb 2000, June 2016 Date last approved: June 2017 REASON FOR DESIGNATION Much of the woodland within this site is included on Natural England’s Provisional Ancient Woodland Inventory and is known to support at least 42 ancient woodland vascular plant indicator species. The site also includes areas of secondary woodland which are contiguous with the ancient woodland and which are considered to have the potential for colonisation by species associated with the ancient woodland. RATIONALE FOR SITE BOUNDARY The site boundary stretches from Tottenden Wood in the far south to Hammer Wood at the north. -
Shepway Local Development Framework Green Infrastructure Report
EB 08.20 Shepway Local Development Framework Green Infrastructure Report Elham Park Wood Shepway Green Infrastructure Report July 2011 1 Contents 1. Green Infrastructure - definitions 2. Components of GI 3. Functions and benefits of GI 4. GI policy context 5. The GI resource in Shepway 6. Biodiversity GI in Shepway 7. Linear Feature GI 8. Civic Amenity GI 9. Key issues and opportunities in relation to strategic development sites Shepway Green Infrastructure Report July 2011 2 1. Green Infrastructure - definitions 1.1 A number of definitions of Green Infrastructure (GI) are in use including:- PPS12 – “…a network of multi-functional green space, both new and existing, both rural and urban, which supports the natural and ecological processes and is integral to the health and quality of life of sustainable communities.” 1.2 South East Plan/South East GI Partnership – “For the purposes of spatial planning the term green infrastructure (GI) relates to the active planning and management of sub-regional networks of multi-functional open space. These networks should be managed and designed to support biodiversity and wider quality of life, particularly in areas undergoing large scale change.“ 1.3 Natural England – “Green Infrastructure (GI) is a strategically planned and delivered network of high quality green spaces and other environmental features. It should be designed and managed as a multifunctional resource capable of delivering a wide range of environmental and quality of life benefits for local communities. Green Infrastructure includes parks, open spaces, playing fields, woodlands, allotments and private gardens.” 1.4 The common features of these definitions are that GI:- • involves natural and managed green areas in urban and rural settings • is about the strategic connection of open green areas • should provide multiple benefits for people 2. -
Reproductive Success of Anacamptis Morio (Orchidaceae) in the Donau-Auen National Park, Austria
Reproductive success of Anacamptis morio (Orchidaceae) in the Donau-Auen National Park, Austria Master´s thesis for acquiring the academic grade “Diplom-Ingenieurin” (Dipl.-Ing.in) equivalent to Master of Science (MSc) submitted by Christina Felicitas Teibert supervisors Priv.-Doz. Dr. Matthias Kropf Ao.Univ.Prof. Dipl.-Ing. Dr.nat.techn. Monika Kriechbaum Vienna, April 2018 University of Natural Resources and Life Sciences, Vienna Institute for Integrative Nature Conservation Research Affidavit I hereby declare that I am the sole author of this work. No assistance other than that which is permitted has been used. Ideas and quotes taken directly or indirectly from other sources are identified as such. This written work has not yet been submitted in any part. ______________________ Acknowledgements First, I want to give my most profound thanks to my supervisors Matthias Kropf and Monika Kriechbaum, who enthused me with science, botany and in special the topic of orchids. They always had time when I came with questions, and, or enthusiastic ideas for new hypothesis about my research issues. All our talks and discussions where very delightful and gave me the opportunity to satisfy my thirst for knowledge and to learn a lot! Further on, I want to give my thanks to Karoline Zsak, my advisor and contact person from the Donau-Auen National Park, for her organizational support and quick response in times of need! In addition to that, I want to thank the Donau-Auen National Park for the financial support and the permission of making my scientific research possible! Furthermore, I want to give my thanks to Baerbel Pachinger for her help in the identification of bumblebees and wild bees and Bernhard Splechtna for one or two hints about technical issues on my laptop! Finally, I want to give my thanks for the chance to occupy a working table at the “Institute for Integrative Nature Conservation Research” where I found a perfect working environment with charming colleagues of keen scientists. -
New Localities of Ophrys Insectifera (Orchidaceae) in Bulgaria
PROCEEDINGS OF THE BALKAN SCIENTIFIC CONFERENCE OF BIOLOGY IN PLOVDIV (BULGARIA) FROM 19TH TILL 21ST OF MAY 2005 (EDS B. GRUEV, M. NIKOLOVA AND A. DONEV), 2005 (P. 312–320) NEW LOCALITIES OF OPHRYS INSECTIFERA (ORCHIDACEAE) IN BULGARIA Tsvetomir Tsvetanov1,*, Vladimir Vladimirov1, Antoaneta Petrova2 1 - Institute of Botany, Bulgarian Academy of Sciences, Sofia, Bulgaria 2 - Botanical Garden, Bulgarian Academy of Sciences, Sofia, Bulgaria * - address for correspondence: [email protected] ABSTRACT. Two new localities of Ophrys insectifera (Orchidaceae) has been found in the Buynovo and Trigrad gorges in the Central Rhodope Mountains. The species had been previously known from a single locality in the Golo Bardo Mountain, where only one specimen had been detected recently. Therefore, the species was considered as an extremely rare in the Bulgarian flora and included in the Annex 3 (Protected species) to the national Biodiversity Act. A total of ca. 25 individuals has been found in the two new localities. Assessment of the species against the IUCN Red List Criteria at national level resulted in a national category “Critically endangered” (CR C2a(i)+D), based on the very small number of individuals in the populations, the limited area of occupancy and severely fragmented locations. KEY WORDS: new chorological data, Ophrys, Orchidaceae, critically endangered species, Rhodope Mts INTRODUCTION Ophrys is among the taxonomically most intricate vascular plant genera in the European flora. Following the taxonomic concept of Delforge (1995) it is represented with 5 species in the Bulgarian flora - O. apifera Huds., O. cornuta Steven, O. insectifera L., O. reinholdii H. Fleischm. and O. mammosa Desf. (Assyov & al. -
Non-Native Invasive Plants of the City of Alexandria, Virginia
March 1, 2019 Non-Native Invasive Plants of the City of Alexandria, Virginia Non-native invasive plants have increasingly become a major threat to natural areas, parks, forests, and wetlands by displacing native species and wildlife and significantly degrading habitats. Today, they are considered the greatest threat to natural areas and global biodiversity, second only to habitat loss resulting from development and urbanization (Vitousek et al. 1996, Pimentel et al. 2005). The Virginia Department of Conservation and Recreation has identified 90 non-native invasive plants that threaten natural areas and lands in Virginia (Heffernan et al. 2014) and Swearingen et al. (2010) include 80 plants from a list of nearly 280 non-native invasive plant species documented within the mid- Atlantic region. Largely overlapping with these and other regional lists are 116 species that were documented in the City of Alexandria, Virginia during vegetation surveys and natural resource assessments by the City of Alexandria Dept. of Recreation, Parks, and Cultural Activities (RPCA), Natural Lands Management Section. This list is not regulatory but serves as an educational reference informing those with concerns about non-native invasive plants in the City of Alexandria and vicinity, including taking action to prevent the further spread of these species by not planting them. Exotic species are those that are not native to a particular place or habitat as a result of human intervention. A non-native invasive plant is here defined as one that exhibits some degree of invasiveness, whether dominant and widespread in a particular habitat or landscape or much less common but long-lived and extremely persistent in places where it occurs. -
Ophrys Insectifera L
Ophrys insectifera L. Fly Orchid A slender orchid of woodland edges, calcareous fens and other open habitats, Ophrys insectifera has distinctive flowers that lure pollinators by mimicry and the release of pheromones. Flowers have a velvety, purplish- brown labellum with an iridescent blue patch and a broad terminal lobe with two shining ‘pseudoeyes’, and very narrow petals resembling a pair of antennae. Its British strongholds are in the south and east of England. Elsewhere it is scattered across the Midlands, northern England and southern Ireland, rare in Wales, and absent from Scotland. Substantial declines throughout its range have led to an assessment of Vulnerable in Great Britain. ©Pete Stroh IDENTIFICATION 2011). The (2-5) unspotted elliptic-oblong leaves from which the flowering spike arises have a shiny, bluish-green Ophrys insectifera stems can reach 60 cm in height but are appearance. often difficult to spot amid the surrounding vegetation. Three yellow-green sepals contrast with the much smaller (less than half as long) vertical, slender purplish-brown labellum which SIMILAR SPECIES has a velvety texture (Stace 2010) due to short, fine, downy The distinctive lateral lobes, filiform petals, and slender hairs. appearance of the labellum should readily separate it from The labellum has two narrow side lobes spreading outwards other Ophrys species. In rare instances, individuals of O. and a broad terminal lobe which is notched at the tip and has insectifera lack normal pigmentation (e.g. white sepals; two shining ‘pseudoeyes’ (Harrap & Harrap 2009). Flowers greenish-yellow patterning on the labellum). Natural also have a distinctive iridescent blue patch on the speculum, hybridization between O. -
Orchid Observers
Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum Agrimonia eupatoria Robbirt & al. 2011 and UK specimens of Ophrys sphegodes Mill NHM Origins and Evolution Initiative: UK Phenology Project • 20,000 herbarium sheets imaged and transcribed • Volunteer contributed taxonomic revision, morphometric and plant/insect pollinator data compiled • Extension of volunteer work to extract additional phenology data from other UK museums and botanic gardens • 7,000 herbarium sheets curated and mounted • Collaboration with BSBI/Herbaria@Home • Preliminary analyses of orchid phenology underway Robbirt & al. (2011) . Validation of biological collections as a source of phenological data for use in climate change studies: a case study with the orchid Ophrys sphegodes. J. Ecol. Brooks, Self, Toloni & Sparks (2014). Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int. J. Biometeorol. Johnson & al. (2011) Climate Change and Biosphere Response: Unlocking the Collections Vault. Bioscience. Specimens of Gymnadenia conopsea (L.) R.Br Orchid Observers Phenology of UK Plants Orchids and Zooniverse Mark Spencer & Kath Castillo Department of Life Sciences Natural History Museum 56 species of wild orchid in the UK 29 taxa selected for this study Anacamptis morio Anacamptis pyramidalis Cephalanthera damasonium Coeloglossum viride Corallorhiza trifida Dactylorhiza fuchsii Dactylorhiza incarnata Dactylorhiza maculata Dactylorhiza praetermissa Dactylorhiza purpurella Epipactis palustris Goodyera repens Gymnadenia borealis Gymnadenia conopsea Gymnadenia densiflora Hammarbya paludosa Herminium monorchis Neotinea ustulata Neottia cordata Neottia nidus-avis Neottia ovata Ophrys apifera Ophrys insectifera Orchis anthropophora Orchis mascula Platanthera bifolia Platanthera chlorantha Pseudorchis albida Spiranthes spiralis Fly orchid (Ophrys insectifera) Participants: 1. -
Anacamptis Morio) at Upwood Meadows NNR, Huntingdonshire
British & Irish Botany 1(2): 107-116, 2019 Long-term monitoring of Green-winged Orchid (Anacamptis morio) at Upwood Meadows NNR, Huntingdonshire Peter A. Stroh* Botanical Society of Britain and Ireland, Cambridge University Botanic Garden, 1 Brookside, Cambridge CB2 1JE, UK *Corresponding author: Peter Stroh: [email protected] This pdf constitutes the Version of Record published on 21st May 2019 Abstract The results of monitoring a population of Anacamptis morio over a 40-year period (1978-2017) in a permanent plot at Upwood Meadows NNR, Huntingdonshire, are presented. Flowering and vegetative plants were recorded each year, with individuals relocated using phenomarkers and triangulation. The majority of plants flowered for over half of their lifespan, the average lifespan of an individual plant was almost 10 years, and the known maximum lifespan above-ground for an individual was at least 36 years. The average age of the cohort became much younger over the course of the study, with potential reasons given including extreme old age, a lack of recruitment, and climate. Key words: demography; fixed plot; recruitment; mortality; triangulation Introduction In 1962 Terry Wells became the Nature Conservancy’s first grassland ecologist, based at Monks Wood, Huntingdonshire. In his first three years at the Research Station he set up a number of long-term monitoring projects, mainly across the chalk and limestone of southern England, designed to study the dynamics of British orchids and changes to associated vegetation. One of the first of these studies, set up in the early 1960s, followed the fate of a cohort of Autumn Lady’s Tresses (Spiranthes spiralis) at Knocking Hoe in Bedfordshire.