Defining the Molecular and Cellular Mechanisms of EZH2's Dynamic Role In

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Molecular and Cellular Mechanisms of EZH2's Dynamic Role In Defining the Molecular and Cellular Mechanisms of EZH2's Dynamic Role in Tumourigenesis Thomas Mortimer University College London and The Francis Crick Institute PhD Supervisor: Dr Paola Scaffidi A thesis submitted for the degree of Doctor of Philosophy University College London July 2019 Declaration I, Thomas Mortimer confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Epigenetic regulators are recurrently hijacked by cancer cells to enhance and maintain their malignant properties. Remarkably, epigenetic regulators are often co-opted by cancer cells in their wild-type unmutated form without any discernible changes to their intrinsic properties. However, the molecular mechanisms that underlie the co-option of these key regulators of cellular identity remain largely unclear. To generate a mechanistic paradigm for this phenomenon, I investigate how the Polycomb component EZH2 transitions from its physiological role in regulating normal development and tissue maintenance, to its pathological role as a tumour promoter. Focussing on the role of EZH2 in the central nervous system, I show that oncogenic signalling redistributes EZH2 on chromatin, leading to transcriptional misregulation of key neural homeotic genes and a malignant rewiring of normal development programmes. This is achieved by de-repression of spinal cord-specifying HOX genes and repression of the forebrain and neural stem cell transcription factor EMX2, an expression switch observed in both glioblastoma cell lines and patient samples. By in vivo assays, I show that EMX2 is a potent tumour suppressor in glioblastoma, suggesting that EMX2 repression by EZH2 is important for glioblastoma maintenance. Beyond its chromatin distribution, I also show that transformation alters the binding partners of EZH2, suggesting that dynamic changes to the composition of Polycomb complexes may promote tumour formation. Thus, by performing a detailed multi-omics characterisation of how neoplastic transformation alters the distribution, activity and binding partners of EZH2, I provide a unique insight into the molecular and cellular mechanisms underlying wild-type EZH2's dynamic role in tumourigenesis. 3 Impact Statement Therapeutic targeting of epigenetic regulators is emerging as an effective treatment strategy in many cancer types. In particular, EZH2, a transcriptional repressor crucial in development and tissue maintenance, acts as a tumour promoter in various malignancies and is also a clinically-relevant therapeutic target. However, the full range of cancer types for which EZH2-targeted therapy may be an effective option remains unclear and there exists no means to identify the specific patients who may benefit. Moreover, by undetermined mechanisms, EZH2 acts as both a tumour suppressor and promoter in cancer, potentially confounding the use of EZH2-targeted therapy. To address these important issues, I performed a detailed characterisation of molecular mechanisms which enable EZH2 to acts as a tumour promoter in cancer, leading to discoveries that I believe are of both academic and clinical interest. In the first part of this study, I reveal that in glioblastoma, transformation- induced redistribution of EZH2 causes gene expression changes at key neural transcription factors. This finding provides a clinically-relevant insight into the molecular mechanisms which drive glioblastoma growth, a pertinent finding given glioblastomas poor prognosis and our limited knowledge of its underlying mechanisms. Furthermore, based on EZH2’s mechanism of action in glioblastoma, I propose a stage-specific model to describe EZH2’s dichotomous tumour suppressive and promoting roles, presenting a theoretical framework which may help others research and interpret the tumour promoting roles of more epigenetic regulators. In addition, the extensive ChIP-seq, RNA- seq and proteomics data sets generated in this study will provide a valuable resource to others in the epigenetics community, potentially stimulating and complementing future research. In the second part of this study, I describe how transformation alters the composition of PRC2 through changing the binding of specific accessory proteins. The role of PRC2 accessory proteins remains poorly defined, and hence this provides an important insight to how these proteins function in both normal and cancer cells. Moreover, I present preliminary evidence that PRC2 accessory proteins in their wild-type form can play tumour suppressive and promoting roles in cancer, providing a starting point for future research to 4 characterise in greater detail the function of these proteins in cancer - research which may have important clinical implications. In the final part of this study, I present a detailed comparative analysis of genetic and pharmacological loss-of-function approaches for determining the genes regulated by EZH2. This controlled comparison will provide a reference point for others considering on embarking on similar studies, enabling them to make a rational and informed decision as to the experimental loss-of-function approach to employ. 5 Acknowledgements I would like to begin first and foremost by thanking my Ph.D. supervisor Paola Scaffidi. Paola, your phenomenal support, superlative critiques and boundless creativity have made my Ph.D. not only scientifically formative and engaging, but also an incredible journey. I am immensely appreciative for the countless hours you have spent diligently proof-reading work, patiently explaining concepts and dishing out sage advice. I have been unbelievably fortunate to have shared my Ph.D. with a cast of fantastic lab mates/friends. Josep, you have been as much part of my Ph.D. as my pipettes, indispensable but only good with small amounts of liquid… In all seriousness, I am lucky to have had someone with your sense of humour and drive to do my Ph.D. alongside. Cristina, you are the bedrock of this lab. Your support and advice has enabled me to overcome so many of my Ph.D.’s twists and turns I think I’ve lost count... Not only that, but working with you has been amazing fun! Elanor, you are a consummate scientist, and if I can achieve just a fraction of your professionalism and skill I will surely retire a happy man. Thanks for everything you’ve helped me with and all the great times along the way! Giannis, Puay, Marina and Thomas, it’s been a pleasure spending days, nights, weekends and everything in-between in the lab with you all. You are top notch scientists and are going to achieve incredible things. Of course a huge thanks to all past lab members, especially to Matt Burney whose tutoring in all things R and command line was invaluable for this project’s success. I want to thank everyone in the FACS, Advanced sequencing, Genomics, Histopathology and Bioinformatics STPs, without whom none of this would have been possible. In particular, Harshil Patel for imparting his computational wisdom to help initiate me into the world of bioinformatics. Claire, you may never know what EZH2 is, but you have helped me through every stage of this journey. I am enormously indebted to you. 6 Table of contents Declaration…. .............................................................................................. 2 Abstract..........................................................................................................3 Impact Statement ........................................................................................ 4 Acknowledgements .................................................................................... 6 Table of contents ........................................................................................ 7 Table of figures ......................................................................................... 11 Abbreviations ............................................................................................ 14 Chapter 1. Introduction ............................................................................. 17 1.1 Architecture and mechanisms of Polycomb repressive complexes ....................................................................................... 18 1.1.1 PRC2 composition and function ................................................. 19 1.1.2 PRC1 composition and activity ................................................... 24 1.1.3 PRC2 targeting to chromatin ...................................................... 25 1.1.4 Synergistic activity of PRC1 and PRC2 ...................................... 26 1.1.5 Complex interplay between PRC2 and DNA methylation ........... 28 1.2 PRC2 in development and tissue maintenance ............................ 29 1.2.1 PRC2 in mammalian development ............................................. 29 1.2.2 PRC2 in tissue maintenance ...................................................... 32 1.3 Epigenetic mechanisms and cancer .............................................. 34 1.3.1 Mutagenic disruption of epigenetic mechanisms ........................ 34 1.3.2 Tumour promotion by wild-type epigenetic regulators ................. 37 1.4 PRC2 in cancer ............................................................................... 38 1.4.1 Tumour promotion by wild-type PRC2 ........................................ 38 1.4.2 Oncogenic PRC2 mutations ....................................................... 40 1.4.3 Tumour suppression by PRC2 ..................................................
Recommended publications
  • 422.Full.Pdf
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch Angel Carlos Roma´n,1 Francisco J. Gonza´lez-Rico,1 Eduardo Molto´,2,3 Henar Hernando,4 Ana Neto,5 Cristina Vicente-Garcia,2,3 Esteban Ballestar,4 Jose´ L. Go´mez-Skarmeta,5 Jana Vavrova-Anderson,6 Robert J. White,6,7 Lluı´s Montoliu,2,3 and Pedro M. Ferna´ndez-Salguero1,8 1Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; 2Centro Nacional de Biotecnologı´a (CNB), Consejo Superior de Investigaciones Cientı´ficas (CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain; 3Centro de Investigacio´n Biome´dica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; 4Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain; 5Centro Andaluz de Biologı´a del Desarrollo, CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; 6College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; 7Beatson Institute for Cancer Research, Glasgow, G61 1BD, United Kingdom Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent in- trinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE.
    [Show full text]
  • Homeobox Gene Methylation in Lung Cancer Studied by Genome-Wide Analysis with a Microarray-Based Methylated Cpg Island Recovery Assay
    Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay Tibor Rauch*, Zunde Wang*, Xinmin Zhang†, Xueyan Zhong*, Xiwei Wu‡, Sean K. Lau§, Kemp H. Kernstine¶, Arthur D. Riggs*ʈ, and Gerd P. Pfeifer*ʈ *Division of Biology, ‡Division of Information Sciences, §Division of Pathology, and ¶Division of Surgery, Beckman Research Institute of the City of Hope, Duarte, CA 91010; and †NimbleGen Systems, Inc., Madison, WI 53711 Contributed by Arthur D. Riggs, February 5, 2007 (sent for review December 11, 2006) De novo methylation of CpG islands is a common phenomenon in and in this way they are key determinants of cell identity and human cancer, but the mechanisms of cancer-associated DNA potential targets during tumorigenesis. methylation are not known. We have used tiling arrays in combi- We recently developed a DNA methylation detection technique, nation with the methylated CpG island recovery assay to investi- the methylated CpG island recovery assay (MIRA) (12). This gate methylation of CpG islands genome-wide and at high reso- technique is based on the high affinity of a complex of the MBD2b lution. We find that all four HOX gene clusters on chromosomes 2, and MBD3L1 proteins for CpG-methylated DNA (13) and is 7, 12, and 17 are preferential targets for DNA methylation in cancer compatible with microarray-based methodology (14). We previ- cell lines and in early-stage lung cancer. CpG islands associated ously found that several homeobox genes were methylated in a lung with many other homeobox genes, such as SIX, LHX, PAX, DLX, and cancer cell line (14).
    [Show full text]
  • The Structural Basis for Selective Binding of Non-Methylated Cpg Islands by the CFP1 CXXC Domain
    ARTICLE Received 13 Dec 2010 | Accepted 9 Feb 2011 | Published 8 Mar 2011 DOI: 10.1038/ncomms1237 The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain Chao Xu1,*, Chuanbing Bian1,*, Robert Lam1, Aiping Dong1 & Jinrong Min1,2 CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif. 1 Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada. 2 Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.M. (email: [email protected]). NATURE COMMUNICATIONS | 2:227 | DOI: 10.1038/ncomms1237 | www.nature.com/naturecommunications © 2011 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1237 pG islands contain a high density of CpG content and embrace the promoters of most genes in vertebrate genomes1.
    [Show full text]
  • Genome-Wide Association Study of Body Weight
    Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, Cedric Gondro To cite this version: Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, et al.. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genetics Selection Evolution, 2015, 47 (1), pp.66. 10.1186/s12711-015-0142-4. hal-01341302 HAL Id: hal-01341302 https://hal.archives-ouvertes.fr/hal-01341302 Submitted on 4 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. et al. Genetics Selection Evolution Al-Mamun (2015) 47:66 Genetics DOI 10.1186/s12711-015-0142-4 Selection Evolution RESEARCH ARTICLE Open Access Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun1,2, Paul Kwan2, Samuel A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Polycomb CBX7 Directly Controls Trimethylation of Histone H3 at Lysine 9 at the P16 Locus
    Polycomb CBX7 Directly Controls Trimethylation of Histone H3 at Lysine 9 at the p16 Locus Qiang Li1., Xiuhong Wang1., Zheming Lu1, Baozhen Zhang1, Zhenpo Guan1, Zhaojun Liu1, Qiming Zhong1, Liankun Gu1, Jing Zhou1, Budong Zhu2, Jiafu Ji3, Dajun Deng1* 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Etiology, Peking University Cancer Hospital and Institute, Beijing, China, 2 Department of Internal Medicine, Peking University Cancer Hospital and Institute, Beijing, China, 3 Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China Abstract Background: H3K9 trimethylation (H3K9me3) and binding of PcG repressor complex-1 (PRC1) may play crucial roles in the epigenetic silencing of the p16 gene. However, the mechanism of the initiation of this trimethylation is unknown. Methodology/Principal Findings: In the present study, we found that upregulating the expression of PRC1 component Cbx7 in gastric cancer cell lines MGC803 and BGC823 led to significantly suppress the expression of genes within the p16- Arf-p15 locus. H3K9me3 formation was observed at the p16 promoter and Regulatory Domain (RD). CBX7 and SUV39H2 binding to these regions were also detectable in the CBX7-stably upregulated cells. CBX7-SUV39H2 complexes were observed within nucleus in bimolecular fluorescence complementation assay (BiFC). Mutations of the chromodomain or deletion of Pc-box abolished the CBX7-binding and H3K9me3 formation, and thus partially repressed the function of CBX7. SiRNA-knockdown of Suv39h2 blocked the repressive effect of CBX7 on p16 transcription. Moreover, we found that expression of CBX7 in gastric carcinoma tissues with p16 methylation was significantly lower than that in their corresponding normal tissues, which showed a negative correlation with transcription of p16 in gastric mucosa.
    [Show full text]
  • Continuous MLL-ENL Expression Is Necessary to Establish a ''Hox Code'' and Maintain Immortalization of Hematopoietic Progenitor Cells
    Research Article Continuous MLL-ENL Expression Is Necessary to Establish a ‘‘Hox Code’’ and Maintain Immortalization of Hematopoietic Progenitor Cells Sarah J. Horton,1 David G. Grier,3 Glenda J. McGonigle,3 Alexander Thompson,3 Michelle Morrow,1 Inusha De Silva,1 Dale A. Moulding,1 Dimitris Kioussis,2 Terence R.J. Lappin,3 Hugh J.M. Brady,1 and Owen Williams1 1Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London; 2Division of Molecular Immunology, National Institute for Medical Research, London, United Kingdom; and 3Department of Child Health, Queen’s University, Belfast, United Kingdom Abstract essential for definitive hematopoiesis and that it is required to The t[(11;19)(p22;q23)] translocation, which gives rise to the maintain, but not to initiate, the expression of multiple Hox genes MLL-ENL fusion protein, is commonly found in infant acute during embryogenesis (5–9). Some Hox genes are oncogenic when leukemias of both the myeloid and lymphoid lineage. To overexpressed in hematopoietic progenitor cells (10, 11). Taken investigate the molecular mechanism of immortalization by together, this suggests that aberrant regulation of Hox genes by MLL-ENL we established a Tet-regulatable system of MLL- MLL fusion proteins is the basis for leukemias involving MLL ENL expression in primary hematopoietic progenitor cells. translocations (12). Several recent publications do indeed suggest Immortalized myeloid cell lines were generated, which that Hox genes may play an important role in leukemia induced by are dependent on continued MLL-ENL expression for their MLL fusion proteins (13–16). survival and proliferation. These cells either terminally MLL translocations result in the generation of an in-frame differentiate or die when MLL-ENL expression is turned chimeric fusion in which MLL is joined to one of over 40 different off with doxycycline.
    [Show full text]
  • Histone H3.3 Maintains Genome Integrity During Mammalian Development
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Histone H3.3 maintains genome integrity during mammalian development Chuan-Wei Jang, Yoichiro Shibata, Joshua Starmer, Della Yee, and Terry Magnuson Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA Histone H3.3 is a highly conserved histone H3 replacement variant in metazoans and has been implicated in many important biological processes, including cell differentiation and reprogramming. Germline and somatic mutations in H3.3 genomic incorporation pathway components or in H3.3 encoding genes have been associated with human congenital diseases and cancers, respectively. However, the role of H3.3 in mammalian development remains un- clear. To address this question, we generated H3.3-null mouse models through classical genetic approaches. We found that H3.3 plays an essential role in mouse development. Complete depletion of H3.3 leads to developmental retardation and early embryonic lethality. At the cellular level, H3.3 loss triggers cell cycle suppression and cell death. Surprisingly, H3.3 depletion does not dramatically disrupt gene regulation in the developing embryo. Instead, H3.3 depletion causes dysfunction of heterochromatin structures at telomeres, centromeres, and pericentromeric regions of chromosomes, leading to mitotic defects. The resulting karyotypical abnormalities and DNA damage lead to p53 pathway activation. In summary, our results reveal that an important function of H3.3 is to support chro- mosomal heterochromatic structures, thus maintaining genome integrity during mammalian development. [Keywords: histone H3.3; genome integrity; transcriptional regulation; cell proliferation; apoptosis; mouse embryonic development] Supplemental material is available for this article.
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7
    Article Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7 Graphical Abstract Authors N Kelsey N. Lamb, Daniel Bsteh, H O H O H O Sarah N. Dishman, ..., Lindsey I. James, N N N N N O O H O H O OH Oliver Bell, Stephen V. Frye Correspondence [email protected] (O.B.), [email protected] (S.V.F.) N H O H O H O N N N In Brief N N O O H O H O OH Lamb et al. describe the discovery of UNC4976 as a cellularly efficacious inhibitor of CBX7. Despite similar potency, selectivity, and permeability to previously published probe UNC3866, UNC4976 possesses a unique mechanism of action as a positive allosteric modulator of nucleic acid binding to CBX7 that rationalizes its enhanced cellular activity. Highlights d CBX7 mESC reporter line revealed UNC4976 as a more potent antagonist than UNC3866 d Unique mechanism of action for UNC4976 as a modulator of DNA/RNA binding to CBX7 d UNC4976 reduces CBX7/PRC1 CHIP peaks on chromatin with greater efficacy than UNC3866 d UNC4976 reactivates PRC1 target genes more effectively than UNC3866 in HEK293 cells Lamb et al., 2019, Cell Chemical Biology 26, 1–15 October 17, 2019 ª 2019 Elsevier Ltd. https://doi.org/10.1016/j.chembiol.2019.07.013 Please cite this article in press as: Lamb et al., Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7, Cell Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.07.013 Cell Chemical Biology Article Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7 Kelsey N.
    [Show full text]
  • Foxj1-Dependent Gene Expression Is Required for Differentiation of Radial Glia Into Ependymal Cells and a Subset of Astrocytes in the Postnatal Brain Benoit V
    RESEARCH ARTICLE 4021 Development 136, 4021-4031 (2009) doi:10.1242/dev.041129 FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain Benoit V. Jacquet1, Raul Salinas-Mondragon1, Huixuan Liang1, Blair Therit1, Justin D. Buie1, Michael Dykstra2, Kenneth Campbell3, Lawrence E. Ostrowski4, Steven L. Brody5 and H. Troy Ghashghaei1,* Neuronal specification occurs at the periventricular surface of the embryonic central nervous system. During early postnatal periods, radial glial cells in various ventricular zones of the brain differentiate into ependymal cells and astrocytes. However, mechanisms that drive this time- and cell-specific differentiation remain largely unknown. Here, we show that expression of the forkhead transcription factor FoxJ1 in mice is required for differentiation into ependymal cells and a small subset of FoxJ1+ astrocytes in the lateral ventricles, where these cells form a postnatal neural stem cell niche. Moreover, we show that a subset of FoxJ1+ cells harvested from the stem cell niche can self-renew and possess neurogenic potential. Using a transcriptome comparison of FoxJ1- null and wild-type microdissected tissue, we identified candidate genes regulated by FoxJ1 during early postnatal development. The list includes a significant number of microtubule-associated proteins, some of which form a protein complex that could regulate the transport of basal bodies to the ventricular surface of differentiating ependymal cells during FoxJ1-dependent ciliogenesis. Our results suggest that time- and cell-specific expression of FoxJ1 in the brain acts on an array of target genes to regulate the differentiation of ependymal cells and a small subset of astrocytes in the adult stem cell niche.
    [Show full text]
  • Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture
    Genes 2015, 6, 790-811; doi:10.3390/genes6030790 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture Navneet K. Matharu 1,* and Sajad H. Ahanger 2,* 1 Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA 2 Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich 8952, Switzerland * Authors to whom correspondence should be addressed; E-Mails: [email protected] (N.K.M.); [email protected] (S.H.A.). Academic Editor: Jessica Tyler Received: 8 June 2015 / Accepted: 20 August 2015 / Published: 1 September 2015 Abstract: The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress.
    [Show full text]