Polycomb Cbx Family Members Mediate the Balance Between Haematopoietic Stem Cell Self-Renewal and Differentiation

Total Page:16

File Type:pdf, Size:1020Kb

Polycomb Cbx Family Members Mediate the Balance Between Haematopoietic Stem Cell Self-Renewal and Differentiation ARTICLES Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation Karin Klauke1, Vi²nja Radulovi¢1, Mathilde Broekhuis1, Ellen Weersing1, Erik Zwart1, Sandra Olthof1, Martha Ritsema1, Sophia Bruggeman1, Xudong Wu2, Kristian Helin2, Leonid Bystrykh1 and Gerald de Haan1,3 The balance between self-renewal and differentiation of adult stem cells is essential for tissue homeostasis. Here we show that in the haematopoietic system this process is governed by polycomb chromobox (Cbx) proteins. Cbx7 is specifically expressed in haematopoietic stem cells (HSCs), and its overexpression enhances self-renewal and induces leukaemia. This effect is dependent on integration into polycomb repressive complex-1 (PRC1) and requires H3K27me3 binding. In contrast, overexpression of Cbx2, Cbx4 or Cbx8 results in differentiation and exhaustion of HSCs. ChIP-sequencing analysis shows that Cbx7 and Cbx8 share most of their targets; we identified approximately 200 differential targets. Whereas genes targeted by Cbx8 are highly expressed in HSCs and become repressed in progenitors, Cbx7 targets show the opposite expression pattern. Thus, Cbx7 preserves HSC self-renewal by repressing progenitor-specific genes. Taken together, the presence of distinct Cbx proteins confers target selectivity to PRC1 and provides a molecular balance between self-renewal and differentiation of HSCs. Mature blood cells have a limited lifespan and are continuously unclear. Yet, expression patterns of PcG family members vary between replenished by the activity of HSCs, which have the potential to undergo distinct tissues and between various cell types within the same tissue4–7. both self-renewal and differentiation. Identifying the molecular basis For example, in the haematopoietic system, Bmi1 is specifically of this process will be of great value for a fundamental understanding expressed in immature haematopoietic cells, whereas the expression of normal and malignant haematopoiesis and holds promise for stem of the Bmi1 paralogue Mel18 is increased during differentiation6. This cell-based therapies in the future. argues for the existence of cell-type- and differentiation-stage-specific Proteins that maintain or modify the transcriptional profile of PRC1 and PRC2 subcomplexes with unique molecular functions8–11. stem cells by organizing chromatin structure can be considered as Analysis of the composition of the PRC1 complex showed that it key epigenetic candidates. Polycomb group (PcG) proteins were first contains a single representative of the Cbx family; either Cbx2, Cbx4, discovered as important developmental regulators in Drosophila1. Cbx7 or Cbx8 (refs 12,13). The amino-terminal chromodomain of According to the classical PcG model, they assemble into at least Cbx family members can bind H3K9me3 and H3K27me3 (refs 14,15), two complexes, PRC1 and PRC2, which collaborate to repress gene albeit with unequal affinities16,17. Therefore, the Cbx proteins are key transcription by catalysing histone modifications2,3. PRC2 is comprised components for targeting PRC1 to specific genomic loci to regulate of three core components (Ezh, Suz12 and Eed), of which the gene expression. Whereas several PcG proteins, such as Ezh2 and Bmi1, SET-domain containing Ezh protein contributes to gene repression by have shown to be important for HSC self-renewal6,18–22, no data are tri-methylating histone H3 on Lys 9 and 27 (H3K9me3, H3K27me3). available for how different Cbx subunits contribute to HSC regulation. PRC1 contains Pcgf (for example Bmi1 and Mel18), Phc, Ring1 and By overexpressing individual Cbx family members in HSCs, we Cbx, and catalyses mono-ubiquitylation of H2AK119. have interrogated the biological function of different Cbx-containing Whereas in Drosophila each polycomb component is encoded by PRC1 complexes. We show that the decision of HSCs to self-renew a single gene, the number of genes encoding for PcG proteins has or differentiate critically depends on the molecular composition increased in mammals. However, the relevance of this diversification is of the PRC1 complex. 1European Institute for the Biology of Ageing (ERIBA), Section Ageing Biology and Stem Cells, University Medical Centre Groningen, University of Groningen, Groningen 9700 AD, The Netherlands. 2Biotech Research and Innovation Centre (BRIC), Centre for Epigenetics and DanStem, University of Copenhagen, Copenhagen 2200, Denmark. 3Correspondence should be addressed to G.d.H. (e-mail: [email protected]) Received 24 April 2012; accepted 1 February 2013; published online 17 March 2013; DOI: 10.1038/ncb2701 NATURE CELL BIOLOGY VOLUME 15 j NUMBER 4 j APRIL 2013 353 © 2013 Macmillan Publishers Limited. All rights reserved. ARTICLES RESULTS B-cell reconstitution (Supplementary Fig. S4a), suggesting that Cbx2 Distinct expression of Cbx family members during has a role in lymphopoiesis, but not myelopoiesis. However, HSPCs haematopoietic differentiation that overexpress Cbx2, Cbx4 or Cbx8 all fail to contribute to long-term First, we assessed the expression of Cbx family members in purified haematopoietic reconstitution (Fig. 2a), suggesting a rapid exhaustion haematopoietic subpopulations. Cbx7 is highly expressed in long-term of progenitors and HSCs. In contrast, cells that overexpress Cbx7 HSCs (LT-HSCs), and its transcript levels gradually decreases on lineage have a prominent competitive advantage over non-transduced cells, as commitment (Fig. 1a,b). However, Cbx7 is also highly expressed revealed by high chimaerism levels in peripheral blood (Fig. 2a). in differentiated lymphoid lineages (Fig. 1a and Supplementary Out of 22 mice, 20 reconstituted with Cbx7-overexpressing HSPCs Fig. S2). The Cbx8 transcript is equally expressed in various developed lethal leukaemias with variable latencies (Fig. 2b–d). Twelve primitive haematopoietic cells. However, at the protein level, Cbx8 mice were diagnosed with T-cell leukaemia. These mice showed levels increase on lineage commitment, indicating a possible role increased white blood cell (WBC) counts (Supplementary Fig. S4d for post-transcriptional regulation10,23. Cbx4 is abundant in most and Table S1), enlarged lymph nodes and splenomegaly (Fig. 2c and haematopoietic cell populations whereas Cbx2 is rather marginally but Supplementary Fig. S4d). Thymus and liver were variably affected C C ubiquitously expressed (Fig. 1a,b and Supplementary Fig. S2). Notably, (Supplementary Table S1). Cells were CD3e (Fig. 2d), CD4 and C of all Cbx family members, the Cbx7 transcript is most abundantly CD127 (Supplementary Fig. S4b and Table S1). Interestingly, Cbx7 expressed in LT-HSCs. These data suggest that the PRC1 complex in protein level was found to be elevated in human lymphoid tumours24. HSCs preferentially contains Cbx7. Previously, overexpression of Cbx7 in collaboration with c-Myc, in the lymphoid compartment has been shown to cause T-cell lymphomas24. Cbx family members affect in vitro self-renewal potential Here, we neither observed upregulation of c-Myc nor of other major As Cbx family members compete for integration into PRC1 (refs 12,13), oncogenes involved in lymphomagenesis (Supplementary Fig. S5). overexpression of individual Cbx family members can change the com- The second type of leukaemia developed with a short latency (∼4 position of PRC1 complexes in favour of inclusion of the overexpressed weeks for 3 out of 4 mice) and was classified as an immature leukaemia. Cbx protein. We overexpressed individual Cbx family members in Malignant cells did not express any of the lineage markers used for post-5FU-treated bone marrow (hereafter referred to as hematopoietic analysis (Fig. 2d and Supplementary Fig. S4c and Table S1). Peripheral stem and progenitors cells (HSPCs)). In cytokine-driven cultures, Cbx7 WBC counts were increased (Supplementary Fig. S4d and Table S1) and overexpression results in a strong proliferative advantage (Fig. 1c) and cells showed a blast-like morphology (Supplementary Fig. S4d). Finally, substantially increases the fraction of cells in the S–G2/M phase, without 2 out of 22 mice developed erythroid leukaemias. Spleens were mildly affecting apoptosis (Supplementary Fig. S3a,b). In contrast, Cbx4 or enlarged and one mouse showed haemorrhagic lesions in lymph nodes Cbx8 overexpression leads to decreased proliferation (Fig. 1c and (Fig. 2c). The numbers of peripheral WBCs and erythrocytes were Supplementary Fig. S3a,b), whereas Cbx2 overexpression does not lead decreased (Supplementary Fig. S4d and Table S1), whereas the number to any detectable changes in proliferation (Fig. 1c). In liquid cultures, of reticulocytes was increased (Supplementary Fig. S4d). In addition, Cbx7-overexpressing HSPCs retain an immature blast-like morphology bone marrow and spleen samples revealed numerous erythroid (Supplementary Fig. S3c), whereas most Cbx8 cells differentiate into precursors at variable stages of maturation (Supplementary Fig. S4d). myeloid cells within 10 days (Supplementary Fig. S3c). Malignant GFPC cells expressed Ter119 (Fig. 2d and Supplementary To measure self-renewal, cells were plated in methylcellulose-based Table S1). For two mice it was not possible to determine the leukemia colony assays, followed by whole-dish or single-colony replating. Over- subtype (mice number 2 and 20 in Supplementary Table S1). These expression of Cbx7 substantially increases the colony-forming ability. results show that Cbx7 has a strong oncogenic potential in vivo, whereas This effect is even more pronounced after
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Polycomb CBX7 Directly Controls Trimethylation of Histone H3 at Lysine 9 at the P16 Locus
    Polycomb CBX7 Directly Controls Trimethylation of Histone H3 at Lysine 9 at the p16 Locus Qiang Li1., Xiuhong Wang1., Zheming Lu1, Baozhen Zhang1, Zhenpo Guan1, Zhaojun Liu1, Qiming Zhong1, Liankun Gu1, Jing Zhou1, Budong Zhu2, Jiafu Ji3, Dajun Deng1* 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Etiology, Peking University Cancer Hospital and Institute, Beijing, China, 2 Department of Internal Medicine, Peking University Cancer Hospital and Institute, Beijing, China, 3 Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China Abstract Background: H3K9 trimethylation (H3K9me3) and binding of PcG repressor complex-1 (PRC1) may play crucial roles in the epigenetic silencing of the p16 gene. However, the mechanism of the initiation of this trimethylation is unknown. Methodology/Principal Findings: In the present study, we found that upregulating the expression of PRC1 component Cbx7 in gastric cancer cell lines MGC803 and BGC823 led to significantly suppress the expression of genes within the p16- Arf-p15 locus. H3K9me3 formation was observed at the p16 promoter and Regulatory Domain (RD). CBX7 and SUV39H2 binding to these regions were also detectable in the CBX7-stably upregulated cells. CBX7-SUV39H2 complexes were observed within nucleus in bimolecular fluorescence complementation assay (BiFC). Mutations of the chromodomain or deletion of Pc-box abolished the CBX7-binding and H3K9me3 formation, and thus partially repressed the function of CBX7. SiRNA-knockdown of Suv39h2 blocked the repressive effect of CBX7 on p16 transcription. Moreover, we found that expression of CBX7 in gastric carcinoma tissues with p16 methylation was significantly lower than that in their corresponding normal tissues, which showed a negative correlation with transcription of p16 in gastric mucosa.
    [Show full text]
  • Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7
    Article Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7 Graphical Abstract Authors N Kelsey N. Lamb, Daniel Bsteh, H O H O H O Sarah N. Dishman, ..., Lindsey I. James, N N N N N O O H O H O OH Oliver Bell, Stephen V. Frye Correspondence [email protected] (O.B.), [email protected] (S.V.F.) N H O H O H O N N N In Brief N N O O H O H O OH Lamb et al. describe the discovery of UNC4976 as a cellularly efficacious inhibitor of CBX7. Despite similar potency, selectivity, and permeability to previously published probe UNC3866, UNC4976 possesses a unique mechanism of action as a positive allosteric modulator of nucleic acid binding to CBX7 that rationalizes its enhanced cellular activity. Highlights d CBX7 mESC reporter line revealed UNC4976 as a more potent antagonist than UNC3866 d Unique mechanism of action for UNC4976 as a modulator of DNA/RNA binding to CBX7 d UNC4976 reduces CBX7/PRC1 CHIP peaks on chromatin with greater efficacy than UNC3866 d UNC4976 reactivates PRC1 target genes more effectively than UNC3866 in HEK293 cells Lamb et al., 2019, Cell Chemical Biology 26, 1–15 October 17, 2019 ª 2019 Elsevier Ltd. https://doi.org/10.1016/j.chembiol.2019.07.013 Please cite this article in press as: Lamb et al., Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7, Cell Chemical Biology (2019), https://doi.org/10.1016/j.chembiol.2019.07.013 Cell Chemical Biology Article Discovery and Characterization of a Cellular Potent Positive Allosteric Modulator of the Polycomb Repressive Complex 1 Chromodomain, CBX7 Kelsey N.
    [Show full text]
  • Foxj1-Dependent Gene Expression Is Required for Differentiation of Radial Glia Into Ependymal Cells and a Subset of Astrocytes in the Postnatal Brain Benoit V
    RESEARCH ARTICLE 4021 Development 136, 4021-4031 (2009) doi:10.1242/dev.041129 FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain Benoit V. Jacquet1, Raul Salinas-Mondragon1, Huixuan Liang1, Blair Therit1, Justin D. Buie1, Michael Dykstra2, Kenneth Campbell3, Lawrence E. Ostrowski4, Steven L. Brody5 and H. Troy Ghashghaei1,* Neuronal specification occurs at the periventricular surface of the embryonic central nervous system. During early postnatal periods, radial glial cells in various ventricular zones of the brain differentiate into ependymal cells and astrocytes. However, mechanisms that drive this time- and cell-specific differentiation remain largely unknown. Here, we show that expression of the forkhead transcription factor FoxJ1 in mice is required for differentiation into ependymal cells and a small subset of FoxJ1+ astrocytes in the lateral ventricles, where these cells form a postnatal neural stem cell niche. Moreover, we show that a subset of FoxJ1+ cells harvested from the stem cell niche can self-renew and possess neurogenic potential. Using a transcriptome comparison of FoxJ1- null and wild-type microdissected tissue, we identified candidate genes regulated by FoxJ1 during early postnatal development. The list includes a significant number of microtubule-associated proteins, some of which form a protein complex that could regulate the transport of basal bodies to the ventricular surface of differentiating ependymal cells during FoxJ1-dependent ciliogenesis. Our results suggest that time- and cell-specific expression of FoxJ1 in the brain acts on an array of target genes to regulate the differentiation of ependymal cells and a small subset of astrocytes in the adult stem cell niche.
    [Show full text]
  • Review Article Polycomb Protein Family Member CBX7 Plays a Critical Role in Cancer Progression
    Am J Cancer Res 2015;5(5):1594-1601 www.ajcr.us /ISSN:2156-6976/ajcr0006941 Review Article Polycomb protein family member CBX7 plays a critical role in cancer progression Pierlorenzo Pallante1, Floriana Forzati1, Antonella Federico1, Claudio Arra2, Alfredo Fusco1,3 1Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS), Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; 2Istituto Nazionale dei Tumori, Fondazione Pascale, Via M. Semmola, 80131 Naples, Italy; 3Instituto Nacional de Câncer - INCA, Rua André Cavalcanti, 37-Centro, Rio de Janeiro, CEP 20231-050 RJ, Brazil Received February 10, 2015; Accepted April 13, 2015; Epub April 15, 2015; Published May 1, 2015 Abstract: CBX7 is a polycomb protein that participates in the formation of polycomb repressive complex 1. Apart from few exceptions, CBX7 expression is lost in human malignant neoplasias and a clear correlation between its downregulated expression and a cancer aggressiveness and poor prognosis has been observed. These findings in- dicate a critical role of CBX7 in cancer progression. Consistently, CBX7 is able to differentially regulate crucial genes involved in cancer progression and in epithelial-mesenchymal transition, as osteopontin and E-cadherin. Recent evidences indicate a role of CBX7 also in the modulation of response to therapy. In conclusion, CBX7 represents an important prognostic factor, whose loss of expression in general indicates a bad prognosis and a progression towards a fully malignant phenotype. Keywords: CBX7, cancer progression, polycomb group CBX7 and the polycomb group proteins the chromodomain, then controlling the expres- sion of multiple genes [1-3].
    [Show full text]
  • Mouse Cbx8 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cbx8 Knockout Project (CRISPR/Cas9) Objective: To create a Cbx8 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cbx8 gene (NCBI Reference Sequence: NM_013926 ; Ensembl: ENSMUSG00000025578 ) is located on Mouse chromosome 11. 5 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 5 (Transcript: ENSMUST00000026663). Exon 1~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit impaired MLL-AF9 transformation but are otherwise viable with normal hematopoiesis. Exon 1 starts from about 0.09% of the coding region. Exon 1~5 covers 100.0% of the coding region. The size of effective KO region: ~2169 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 Legends Exon of mouse Cbx8 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of stop codon is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Regulation of Cancer Epigenomes with a Histone-Binding Synthetic Transcription Factor
    www.nature.com/npjgenmed ARTICLE OPEN Regulation of cancer epigenomes with a histone-binding synthetic transcription factor David B. Nyer1, Rene M. Daer1, Daniel Vargas1, Caroline Hom1 and Karmella A. Haynes1 Chromatin proteins have expanded the mammalian synthetic biology toolbox by enabling control of active and silenced states at endogenous genes. Others have reported synthetic proteins that bind DNA and regulate genes by altering chromatin marks, such as histone modifications. Previously, we reported the first synthetic transcriptional activator, the “Polycomb-based transcription factor” (PcTF) that reads histone modifications through a protein–protein interaction between the polycomb chromodomain motif and trimethylated lysine 27 of histone H3 (H3K27me3). Here, we describe the genome-wide behavior of the polycomb-based transcription factor fusion protein. Transcriptome and chromatin profiling revealed several polycomb-based transcription factor- sensitive promoter regions marked by distal H3K27me3 and proximal fusion protein binding. These results illuminate a mechanism in which polycomb-based transcription factor interactions bridge epigenomic marks with the transcription initiation complex at target genes. In three cancer-derived human cell lines tested here, some target genes encode developmental regulators and tumor suppressors. Thus, the polycomb-based transcription factor represents a powerful new fusion protein-based method for cancer research and treatment where silencing marks are translated into direct gene activation. npj Genomic Medicine (2017) 2:1 ; doi:10.1038/s41525-016-0002-3 INTRODUCTION to the C terminus of the 60 amino acid PCD. The C-terminal VP64 Proteins from the gene regulatory complex known as chromatin domain allows PcTF to stimulate activation at repressed mediate stable, epigenetic expression states that persist over H3K27me3-associated genes (Fig.
    [Show full text]
  • Identification of Multiple Risk Loci and Regulatory Mechanisms Influencing Susceptibility to Multiple Myeloma
    Corrected: Author correction ARTICLE DOI: 10.1038/s41467-018-04989-w OPEN Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma Molly Went1, Amit Sud 1, Asta Försti2,3, Britt-Marie Halvarsson4, Niels Weinhold et al.# Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. 1234567890():,; We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregu- lation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM. Correspondence and requests for materials should be addressed to K.H. (email: [email protected]) or to B.N. (email: [email protected]) or to R.S.H. (email: [email protected]). #A full list of authors and their affliations appears at the end of the paper. NATURE COMMUNICATIONS | (2018) 9:3707 | DOI: 10.1038/s41467-018-04989-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04989-w ultiple myeloma (MM) is a malignancy of plasma cells consistent OR across all GWAS data sets, by genotyping an Mprimarily located within the bone marrow.
    [Show full text]
  • Polycomb Genes Are Associated with Response to Imatinib in Chronic Myeloid Leukemia
    Research Article For reprint orders, please contact: [email protected] 7 Research Article 2015/07/28 Polycomb genes are associated with response to imatinib in chronic myeloid leukemia Epigenomics Aim: Imatinib is a tyrosine kinase inhibitor that has revolutionized the treatment Francesco Crea1,2,3, Antonello of chronic myeloid leukemia (CML). Despite its efficacy, about a third of patients Di Paolo4, Hui Hsuan Liu1, discontinue the treatment due to therapy failure or intolerance. The rational Marialuisa Polillo4, 1 identification of patients less likely to respond to imatinib would be of paramount Pier-Luc Clermont , Francesca Guerrini5, Elena Ciabatti5, clinical relevance. We have shown that transmembrane transporter hOCT1 genotyping Federica Ricci5, Claudia predicts imatinib activity. In parallel, Polycomb group genes (PcGs) are epigenetic Baratè5, Giulia Fontanelli5, repressors implicated in CML progression and in therapy resistance. Patients & Sara Barsotti5, Riccardo methods: We measured the expression of eight PcGs in paired pre- and post-imatinib Morganti6, Romano Danesi4, bone marrow samples from 30 CML patients. Results: BMI1, PHC3, CBX6 and CBX7 Yuzhuo Wang1,2, Mario expression was significantly increased during imatinib treatment. Post-treatment levels Petrini5, Sara Galimberti*,‡,5 of CBX6 and CBX7 predicted 3-month response rate. Measurement of post-treatment & Cheryl D Helgason**,‡,1 BMI1 levels improved the predictive power of hOCT1 genotyping. Conclusion: These 1Experimental Therapeutics, BCCA Research Centre,
    [Show full text]
  • A Chromatin-Independent Role of Polycomb-Like 1 to Stabilize P53 and Promote Cellular Quiescence
    Downloaded from genesdev.cshlp.org on March 4, 2020 - Published by Cold Spring Harbor Laboratory Press A chromatin-independent role of Polycomb-like 1 to stabilize p53 and promote cellular quiescence Gerard L. Brien,1 Evan Healy,1,7 Emilia Jerman,1,7 Eric Conway,1 Elisa Fadda,2 Darragh O’Donovan,3 Andrei V. Krivtsov,4 Alan M. Rice,1 Conor J. Kearney,1 Andrew Flaus,5 Simon S. McDade,6 Seamus J. Martin,1 Aoife McLysaght,1 David J. O’Connell,3 Scott A. Armstrong,4 and Adrian P. Bracken1 1Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; 2Department of Chemistry, National University of Ireland, Maynooth, Ireland; 3The Conway Institute, University College Dublin, Dublin 4, Ireland; 4Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; 5Centre for Chromosome Biology, School of Life Sciences, National University of Ireland Galway, Galway, Ireland; 6Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast BT9 7BL, United Kingdom Polycomb-like proteins 1–3 (PCL1–3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regu- lated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage.
    [Show full text]
  • A Tool for Searching Putative Factors Regulating Gene Expression Using Chip-Seq Data Jianming Zeng, Gang Li
    Int. J. Biol. Sci. 2018, Vol. 14 1724 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(12): 1724-1731. doi: 10.7150/ijbs.28850 Research Paper TFmapper: A Tool for Searching Putative Factors Regulating Gene Expression Using ChIP-seq Data Jianming Zeng, Gang Li Faculty of Health Sciences, University of Macau, Taipa, Macau, China Corresponding author: Gang Li, Faculty of Health Sciences, University of Macau, Taipa, Macau, China. Email address: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.07.29; Accepted: 2018.07.30; Published: 2018.09.07 Abstract Background: Next-generation sequencing coupled to chromatin immunoprecipitation (ChIP-seq), DNase I hypersensitivity (DNase-seq) and the transposase-accessible chromatin assay (ATAC-seq) has generated enormous amounts of data, markedly improved our understanding of the transcriptional and epigenetic control of gene expression. To take advantage of the availability of such datasets and provide clues on what factors, including transcription factors, epigenetic regulators and histone modifications, potentially regulates the expression of a gene of interest, a tool for simultaneous queries of multiple datasets using symbols or genomic coordinates as search terms is needed. Results: In this study, we annotated the peaks of thousands of ChIP-seq datasets generated by ENCODE project, or ChIP-seq/DNase-seq/ATAC-seq datasets deposited in Gene Expression Omnibus (GEO) and curated by Cistrome project; We built a MySQL database called TFmapper containing the annotations and associated metadata, allowing users without bioinformatics expertise to search across thousands of datasets to identify factors targeting a genomic region/gene of interest in a specified sample through a web interface.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information Flow
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]