Coping with the Bounds: a Neo-Clausewitzean Primer / Thomas J

Total Page:16

File Type:pdf, Size:1020Kb

Coping with the Bounds: a Neo-Clausewitzean Primer / Thomas J About the CCRP The Command and Control Research Program (CCRP) has the mission of improving DoD’s understanding of the national security implications of the Information Age. Focusing upon improving both the state of the art and the state of the practice of command and control, the CCRP helps DoD take full advantage of the opportunities afforded by emerging technologies. The CCRP pursues a broad program of research and analysis in information superiority, information operations, command and control theory, and associated operational concepts that enable us to leverage shared awareness to improve the effectiveness and efficiency of assigned missions. An important aspect of the CCRP program is its ability to serve as a bridge between the operational, technical, analytical, and educational communities. The CCRP provides leadership for the command and control research community by: • articulating critical research issues; • working to strengthen command and control research infrastructure; • sponsoring a series of workshops and symposia; • serving as a clearing house for command and control related research funding; and • disseminating outreach initiatives that include the CCRP Publication Series. This is a continuation in the series of publications produced by the Center for Advanced Concepts and Technology (ACT), which was created as a “skunk works” with funding provided by the CCRP under the auspices of the Assistant Secretary of Defense (NII). This program has demonstrated the importance of having a research program focused on the national security implications of the Information Age. It develops the theoretical foundations to provide DoD with information superiority and highlights the importance of active outreach and dissemination initiatives designed to acquaint senior military personnel and civilians with these emerging issues. The CCRP Publication Series is a key element of this effort. Check our website for the latest CCRP activities and publications. www.dodccrp.org This publication was originally produced by the Institute for National Strategic Studies at the National Defense University (NDU) in 1998 for the CCRP. ABOUT THE COVER: The portrait of Clausewitz is owed to the kind permission of Clausewitz.com. The surrounding motif is known as the Mandelbrot set, the computer plot of a fractal basin boundary. It symbol- izes both the underlying complexity and simplicity that characterize nonlinear dynamics. The complexity is represented by the endless repeti- tion of self-similar patterns. Even when magnified 2.7 million times, additional structure continues to appear. The simplicity is demonstrated by the formula that generates the object: Z2 +C. DoD Command and Control Research Program Assistant Secretary of Defense (NII) & Chief Information Officer Mr. John G. Grimes Special Assistant to the ASD (NII) & Director RIResearch Dr. David S. Alberts Opinions, conclusions, and recommendations expressed or implied within are solely those of the authors. They do not necessarily represent the views of the Department of Defense, or any other U.S. Government agency. Cleared for public release; distribution unlimited. Portions of this publication may be quoted or reprinted without further permission, with credit to the DoD Command and Control Research Program, Washington, D.C. Courtesy copies of reviews would be appreciated. Library of Congress Cataloging-in-Publication Data Czerwinski, Thomas J. Coping with the bounds: A Neo-Clausewitzean Primer / Thomas J. Czerwinski. p. cm Includes bibliographical references. ISBN 1-57906-009-9 1. Military art and science—Philosophy. 2. Nonlinear theories. 3. Complexity (Philosophy) I.Title. U21.2.C94 1998 355.001—dc21 98-14653 January 1998 CIP August 2003 September 2008 Coping with the Bounds A Neo-Clausewitzean Primer Thomas J. Czerwinski “I am convinced that the nations and people who master the new sciences of complexity will become the economic, cultural, and political superpowers of the next century.” Heinz Pagels Physicist, author of Dreams of Reason, and inspira- tion for the character of the Chaos scientist in the book and film “Jurassic Park.” Died climbing a mountain in 1988. Coping with the Bounds A Neo-Clausewitzean Primer Foreword by James K. Greer, Colonel, U.S. Army (Retired) ................................................ iii Preface .................................................................................... 1 Part One: Linearity and Nonlinearity 1 Nonlinearity: An Introduction ............................................ 7 2 The Nature of Linear Reductionism .................................. 25 3 Toward a Nonlinear Reductionism ................................... 35 4 The Meshing of “Tools of Analysis” and “Aids to Learning” ......................................................... 51 The Keystone Clausewitz, Nonlinearity and the Unpredictability of War ........................................... 59 Part Two: Aids to Learning 5 Metaphors ........................................................................ 109 6 Van Creveld’s Iron Rules ................................................. 119 7 Perrow’s Quadrants ......................................................... 143 8 Genetic Algorithms, or Artificial Life ............................... 155 9 Pattern Recognition ......................................................... 165 10 Interaction Searches ...................................................... 183 Afterword ........................................................................... 211 About the Author ................................................................ 219 About James K. Greer, Colonel, U.S. Army (Retired) ......... 221 Catalog of CCRP Publications ........................................... 223 Foreword mericans and the American military in particular like the A scientific method and linearity in war. We are drawn to military theories that play to our strengths. We avidly seek the- ories that tell us if we can overmatch our opponent in manufacturing the tools of war, synchronize combat power to mass overwhelming fire on an enemy, or strike precisely the right target at the right time; we are sure to win. We base our doctrine on Jomini, Mahan and Mitchell because they promise that clear lines of operations, decisive points and overwhelm- ing mass will yield victory. And so while we speak of Clausewitz and Sun Tzu we have yet to truly internalize their concepts. That is because they both speak of uncertainty and a moral component of war; fuzzy concepts that are difficult to translate into the clarity we expect in combat orders, aim points and military decisions. The only problem is… War is chaotic, complex, non-linear and uncertain Always Was; Always Will Be And, since the end of the Cold War we have been frustrated time and time again by the complexity and chaos of operations at the lower end of the spectrum of conflict; where Irregular Warfare, Counter-Insurgency, and Peacekeeping Operations iii iv Coping with the Bounds have been the main effort the last twenty years. Certainly our application of mass, firepower and speed led to victory in Desert Storm, the quick defeat of Saddam’s regular forces in Iraq in 2003, and the removal of Noriega through a coup de main. Yet in Somalia, Haiti, Bosnia, Kosovo, Afghanistan and Iraq linear thinking and Newtonian-based approaches have proven largely unequal to the task. The conclusion that nearly every military thinker and practi- tioner has now reached is that we need a comprehensive approach to warfare; one that combines the approaches to both regular and irregular warfare; that combines the sciences of linearity and non-linearity; and that enables truly successful operations anywhere along the spectrum of conflict. In the revised edition of Coping with the Bounds Tom Czer- winski provides us the beginnings of a conceptual basis for that comprehensive approach. That conceptual basis will be criti- cal as we develop the doctrines, organizations and technologies that will enable decisive operations anywhere along the spec- trum of conflict. His introduction of a neo-Clausewitzean thought continues the process of leading us away from largely linear and process-oriented thinking and in the direction of balanced thinking that incorporates both linear and non-linear thought. Perhaps more importantly this work serves as a primer for leader development. Junior and senior military leaders in Iraq and Afghanistan and civilian leaders throughout the US Gov- ernment have struggled to rationalize what they have been taught with what they have experienced. In simple terms they’ve been taught linear dynamics and have experienced non-linear dynamics. Coping with the Bounds provides those Foreword v leaders a framework for understanding the challenges they face and how solutions might be found. If we are to “win our nation’s wars” against the complex and adaptive enemies we face, and if we are to remain the most powerful and effective armed forces in the world, then we are going to have to take a neo-Clausewitzean approach to war- fare that in many ways departs from the thinking of the 20th Century. Tom Czerwinski and Coping with the Bounds start us along that intellectual journey. James K. Greer Colonel, U.S. Army (Retired) Preface his revised edition shifts the emphasis and tightens the Torganization of the original which appeared in 1998. The first edition emphasized the “gee whiz” of applying the emerg- ing sciences of nonlinear dynamics; of chaos and complexity to military affairs. In the intervening
Recommended publications
  • Seamscape a Procedural Generation System for Accelerated Creation of 3D Landscapes
    SeamScape A procedural generation system for accelerated creation of 3D landscapes Bachelor Thesis in Computer Science and Engineering Link to video demonstration: youtu.be/K5yaTmksIOM Sebastian Ekman Anders Hansson Thomas Högberg Anna Nylander Alma Ottedag Joakim Thorén Chalmers University of Technology University of Gothenburg Department of Computer Science and Engineering Gothenburg, Sweden, June 2016 The Authors grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. SeamScape A procedural generation system for accelerated creation of 3D landscapes Sebastian Ekman Anders Hansson Thomas Högberg Anna Nylander Alma Ottedag Joakim Thorén c Sebastian Ekman, 2016. c Anders Hansson, 2016. c Thomas Högberg, 2016. c Anna Nylander, 2016. c Alma Ottedag, 2016.
    [Show full text]
  • Observation of Nonlinear Verticum-Type Systems Applied to Ecological Monitoring
    2nd Reading June 4, 2012 13:53 WSPC S1793-5245 242-IJB 1250051 International Journal of Biomathematics Vol. 5, No. 6 (November 2012) 1250051 (15 pages) c World Scientific Publishing Company DOI: 10.1142/S1793524512500519 OBSERVATION OF NONLINEAR VERTICUM-TYPE SYSTEMS APPLIED TO ECOLOGICAL MONITORING S. MOLNAR´ Institute of Mathematics and Informatics Szent Istv´an University P´ater K. u. 1., H-2103 Godollo, Hungary [email protected] M. GAMEZ´ ∗ and I. LOPEZ´ † Department of Statistics and Applied Mathematics University of Almer´ıa La Ca˜nada de San Urbano 04120 Almer´ıa, Spain ∗[email protected][email protected] Received 4 November 2011 Accepted 13 January 2012 Published 7 June 2012 In this paper the concept of a nonlinear verticum-type observation system is introduced. These systems are composed from several “subsystems” connected sequentially in a particular way: a part of the state variables of each “subsystem” also appears in the next “subsystem” as an “exogenous variable” which can also be interpreted as a con- trol generated by an “exosystem”. Therefore, these “subsystems” are not observation systems, but formally can be considered as control-observation systems. The problem of observability of such systems can be reduced to rank conditions on the “subsystems”. Indeed, under the condition of Lyapunov stability of an equilibrium of the “large”, verticum-type system, it is shown that the Kalman rank condition on the linearization of the “subsystems” implies the observability of the original, nonlinear verticum-type system. For an illustration of the above linearization result, a stage-structured fishery model with reserve area is considered.
    [Show full text]
  • Procedural Generation of a 3D Terrain Model Based on a Predefined
    Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Bachelor of Science Thesis in Applied Information Technology Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 Bachelor of Science Thesis Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 The Authors grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström © Matilda Andersson, 2017.
    [Show full text]
  • Annual Report 2018
    2018 Annual Report 4 A Message from the Chair 5 A Message from the Director & President 6 Remembering Keith L. Sachs 10 Collecting 16 Exhibiting & Conserving 22 Learning & Interpreting 26 Connecting & Collaborating 30 Building 34 Supporting 38 Volunteering & Staffing 42 Report of the Chief Financial Officer Front cover: The Philadelphia Assembled exhibition joined art and civic engagement. Initiated by artist Jeanne van Heeswijk and shaped by hundreds of collaborators, it told a story of radical community building and active resistance; this spread, clockwise from top left: 6 Keith L. Sachs (photograph by Elizabeth Leitzell); Blocks, Strips, Strings, and Half Squares, 2005, by Mary Lee Bendolph (Purchased with the Phoebe W. Haas fund for Costume and Textiles, and gift of the Souls Grown Deep Foundation from the William S. Arnett Collection, 2017-229-23); Delphi Art Club students at Traction Company; Rubens Peale’s From Nature in the Garden (1856) was among the works displayed at the 2018 Philadelphia Antiques and Art Show; the North Vaulted Walkway will open in spring 2019 (architectural rendering by Gehry Partners, LLP and KXL); back cover: Schleissheim (detail), 1881, by J. Frank Currier (Purchased with funds contributed by Dr. Salvatore 10 22 M. Valenti, 2017-151-1) 30 34 A Message from the Chair A Message from the As I observe the progress of our Core Project, I am keenly aware of the enormity of the undertaking and its importance to the Museum’s future. Director & President It will be transformative. It will not only expand our exhibition space, but also enhance our opportunities for community outreach.
    [Show full text]
  • Nonlinear System Stability and Behavioral Analysis for Effective
    S S symmetry Article Nonlinear System Stability and Behavioral Analysis for Effective Implementation of Artificial Lower Limb Susmita Das 1 , Dalia Nandi 2, Biswarup Neogi 3 and Biswajit Sarkar 4,* 1 Narula Institute of Technology, Kolkata 700109, India; [email protected] 2 Indian Institute of Information Technology Kalyani, Kalyani 741235, India; [email protected] 3 JIS College of Engineering., Kalyani 741235, India; [email protected] 4 Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected] or [email protected] Received: 8 September 2020; Accepted: 14 October 2020; Published: 19 October 2020 Abstract: System performance and efficiency depends on the stability criteria. The lower limb prosthetic model design requires some prerequisites such as hardware design functionality and compatibility of the building block materials. Effective implementation of mathematical model simulation symmetry towards the achievement of hardware design is the focus of the present work. Different postures of lower limb have been considered in this paper to be analyzed for artificial system design of lower limb movement. The generated polynomial equations of the sitting and standing positions of the normal limb are represented with overall system transfer function. The behavioral analysis of the lower limb model shows the nonlinear nature. The Euler-Lagrange method is utilized to describe the nonlinearity in the field of forward dynamics of the artificial system. The stability factor through phase portrait analysis is checked with respect to nonlinear system characteristics of the lower limb. The asymptotic stability has been achieved utilizing the most applicable Lyapunov method for nonlinear systems.
    [Show full text]
  • Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems
    UNIVERSITY of CALIFORNIA Santa Barbara Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering by Ryan M. Mohr Committee in charge: Professor Igor Mezi´c,Chair Professor Bassam Bamieh Professor Jeffrey Moehlis Professor Mihai Putinar June 2014 The dissertation of Ryan M. Mohr is approved: Bassam Bamieh Jeffrey Moehlis Mihai Putinar Igor Mezi´c,Committee Chair May 2014 Spectral Properties of the Koopman Operator in the Analysis of Nonstationary Dynamical Systems Copyright c 2014 by Ryan M. Mohr iii To my family and dear friends iv Acknowledgements Above all, I would like to thank my family, my parents Beth and Jim, and brothers Brennan and Gralan. Without their support, encouragement, confidence and love, I would not be the person I am today. I am also grateful to my advisor, Professor Igor Mezi´c,who introduced and guided me through the field of dynamical systems and encouraged my mathematical pursuits, even when I fell down the (many) proverbial (mathematical) rabbit holes. I learned many fascinating things from these wandering forays on a wide range of topics, both contributing to my dissertation and not. Our many interesting discussions on math- ematics, research, and philosophy are among the highlights of my graduate school career. His confidence in my abilities and research has been a constant source of encouragement, especially when I felt uncertain in them myself. His enthusiasm for science and deep, meaningful work has set the tone for the rest of my career and taught me the level of research problems I should consider and the quality I should strive for.
    [Show full text]
  • Rethinking the International System As a Complex Adaptive System
    Munich Personal RePEc Archive A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System Scartozzi, Cesare M. University of Tokyo, Graduate School of Public Policy 2018 Online at https://mpra.ub.uni-muenchen.de/95496/ MPRA Paper No. 95496, posted 12 Aug 2019 10:50 UTC 1SFQVCMJDBUJPOJournal on Policy and Complex Systems • Volume 4, Number 1 • Spring 2018 A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System Cesare Scartozzi Graduate School of Public Policy, University of Tokyo [email protected] 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan ORCID number: 0000-0002-4350-4386. Abstract The international system is a complex adaptive system with emer- gent properties and dynamics of self-organization and informa- tion processing. As such, it is better understood with a multidis- ciplinary approach that borrows methodologies from the field of complexity science and integrates them to the theoretical perspec- tives offered by the field of international relations (IR). This study is set to formalize a complex systems theory approach to the study of international affairs and introduce a new taxonomy for IR with the two-pronged aim of improving interoperability between differ- ent epistemological communities and outlining a formal grammar that set the basis for modeling international politics as a complex adaptive system. Keywords: international politics, international relations theory, complex systems theory, taxonomy, adaptation, fitness, self-orga- nization This is a prepublication version of: Scartozzi, Cesare M. “A New Taxonomy for International Relations: Rethinking the International System as a Complex Adaptive System.” Journal on Policy and Complex Systems 4, no.
    [Show full text]
  • Chapter 8 Nonlinear Systems
    Chapter 8 Nonlinear systems 8.1 Linearization, critical points, and equilibria Note: 1 lecture, §6.1–§6.2 in [EP], §9.2–§9.3 in [BD] Except for a few brief detours in chapter 1, we considered mostly linear equations. Linear equations suffice in many applications, but in reality most phenomena require nonlinear equations. Nonlinear equations, however, are notoriously more difficult to understand than linear ones, and many strange new phenomena appear when we allow our equations to be nonlinear. Not to worry, we did not waste all this time studying linear equations. Nonlinear equations can often be approximated by linear ones if we only need a solution “locally,” for example, only for a short period of time, or only for certain parameters. Understanding linear equations can also give us qualitative understanding about a more general nonlinear problem. The idea is similar to what you did in calculus in trying to approximate a function by a line with the right slope. In § 2.4 we looked at the pendulum of length L. The goal was to solve for the angle θ(t) as a function of the time t. The equation for the setup is the nonlinear equation L g θ�� + sinθ=0. θ L Instead of solving this equation, we solved the rather easier linear equation g θ�� + θ=0. L While the solution to the linear equation is not exactly what we were looking for, it is rather close to the original, as long as the angleθ is small and the time period involved is short. You might ask: Why don’t we just solve the nonlinear problem? Well, it might be very difficult, impractical, or impossible to solve analytically, depending on the equation in question.
    [Show full text]
  • NONLINEARITIES, FEEDBACKS and CRITICAL THRESHOLDS WITHIN the EARTH's CLIMATE SYSTEM 1. Introduction Nonlinear Phenomena Charac
    NONLINEARITIES, FEEDBACKS AND CRITICAL THRESHOLDS WITHIN THE EARTH’S CLIMATE SYSTEM JOSÉ A. RIAL 1,ROGERA.PIELKESR.2, MARTIN BENISTON 3, MARTIN CLAUSSEN 4, JOSEP CANADELL 5, PETER COX 6, HERMANN HELD 4, NATHALIE DE NOBLET-DUCOUDRÉ 7, RONALD PRINN 8, JAMES F. REYNOLDS 9 and JOSÉ D. SALAS 10 1Wave Propagation Laboratory, Department of Geological Sciences CB#3315, University of North Carolina, Chapel Hill, NC 27599-3315, U.S.A. E-mail: [email protected] 2Atmospheric Science Dept., Colorado State University, Fort Collins, CO 80523, U.S.A. 3Dept. of Geosciences, Geography, Univ. of Fribourg, Pérolles, Ch-1700 Fribourg, Switzerland 4Potsdam Institute for Climate Impact Research, Telegrafenberg C4, 14473 Potsdam, P.O. Box 601203, Potsdam, Germany 5GCP-IPO, Earth Observation Centre, CSIRO, GPO Box 3023, Canberra, ACT 2601, Australia 6Met Office Hadley Centre, London Road, Bracknell, Berkshire RG12 2SY, U.K. 7DSM/LSCE, Laboratoire des Sciences du Climat et de l’Environnement, Unité mixte de Recherche CEA-CNRS, Bat. 709 Orme des Merisiers, 91191 Gif-sur-Yvette, France 8Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A. 9Department of Biology and Nicholas School of the Environmental and Earth Sciences, Phytotron Bldg., Science Dr., Box 90340, Duke University, Durham, NC 27708, U.S.A. 10Dept. of Civil Engineering, Colorado State University, Fort Collins, CO 80523, U.S.A. Abstract. The Earth’s climate system is highly nonlinear: inputs and outputs are not proportional, change is often episodic and abrupt, rather than slow and gradual, and multiple equilibria are the norm.
    [Show full text]
  • Modeling Vascular Homeostasis and Improving Data Filtering Methods for Model Calibration
    Modeling Vascular Homeostasis and Improving Data Filtering Methods for Model Calibration by Jiacheng Wu A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering − Mechanical Engineering and the Designated Emphasis in Computational Science and Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Shawn C. Shadden, Chair Professor Grace D. O'Connell Professor Peter L. Bartlett Spring 2019 Modeling Vascular Homeostasis and Improving Data Filtering Methods for Model Calibration Copyright 2019 by Jiacheng Wu 1 Abstract Modeling Vascular Homeostasis and Improving Data Filtering Methods for Model Calibration by Jiacheng Wu Doctor of Philosophy in Engineering − Mechanical Engineering and the Designated Emphasis in Computational Science and Engineering University of California, Berkeley Professor Shawn C. Shadden, Chair Vascular homeostasis is the preferred state that blood vessels try to maintain against external mechanical and chemical stimuli. The vascular adaptive behavior around the homeostatic state is closely related to cardiovascular disease progressions such as arterial aneurysms. In this work, we develop a multi-physics computational framework that couples vascular growth & remodeling (G&R), wall mechanics and hemodynamics to describe the overall vascular adaptive behavior. The coupled simulation is implemented in patient-specific geometries to predict aneurysm progression. Lyapunov stability analysis of the governing
    [Show full text]
  • Nonlinear Control Systems
    1. Introduction to Nonlinear Systems Nonlinear Control Systems Ant´onioPedro Aguiar [email protected] 1. Introduction to Nonlinear Systems IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7Epedro/NCS2012/ 2011/2012 1 1. Introduction to Nonlinear Systems Objective The main goal of this course is to provide to the students a solid background in analysis and design of nonlinear control systems Why analysis? (and not only simulation) • Every day computers are becoming more and more powerful to simulate complex systems • Simulation combined with good intuition can provide useful insight into system's behavior Nevertheless • It is not feasible to rely only on simulations when trying to obtain guarantees of stability and performance of nonlinear systems, since crucial cases may be missed • Analysis tools provide the means to obtain formal mathematical proofs (certificates) about the system's behavior • results may be surprising, i.e, something we had not thought to simulate. 2 1. Introduction to Nonlinear Systems Why study nonlinear systems? Nonlinear versus linear systems • Huge body of work in analysis and control of linear systems • most models currently available are linear (but most real systems are nonlinear...) However • dynamics of linear systems are not rich enough to describe many commonly observed phenomena 3 1. Introduction to Nonlinear Systems Examples of essentially nonlinear phenomena • Finite escape time, i.e, the state can go to infinity in finite time (while this is impossible to happen for linear systems) • Multiple isolated equilibria, while linear systems can only have one isolated equilibrium point, that is, one steady state operating point • Limit cycles (oscillation of fixed amplitude and frequency, irrespective of the initial state) • Subharmonic, harmonic or almost-periodic oscillations; • A stable linear system under a periodic input produces an output of the same frequency.
    [Show full text]
  • Application of Symmetry and Symmetry Analyses to Systems of First-Order Equations Arising from Mathematical Modelling in Epidemiology
    Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 159–169 Application of Symmetry and Symmetry Analyses to Systems of First-Order Equations Arising from Mathematical Modelling in Epidemiology P.G.L. LEACH † and K. ANDRIOPOULOS ‡ † School of Mathematical and Statistical Sciences, University of Natal, Durban 4041, South Africa E-mail: [email protected] ‡ Department of Mathematics, National and Capodistrian University of Athens, Panepistimioupolis, Ilisia, 15771 Athens, Greece E-mail: [email protected] We examine the integrability, in terms of the Painlev´e singularity analysis and of the Lie symmetry analysis, of systems of nonlinear first-order ordinary differential equations that arise in the particular area of Mathematical Modelling known as Rational Epidemiology. These analyses are presented as being complementary to the standard analysis using the methods of Dynamical Systems. The importance to obtain complete understanding of evo- lution of epidemics – one need think only of the potential for devastation by HIV-AIDS in African countries or the more recent threat posed by SARS – demands that all possi- ble approaches of analysis be used. The concept of decomposed systems is introduced as illustrating some rather attractive mathematical properties of certain classes of systems of equations arising in Mathematical Modelling. Such systems allow the mathematician some opportunity to enjoy Mathematics even in the context of quite strict applications. 1 Introduction There are four standard approaches to the analysis of a system of nonlinear first-order ordi- nary differential equations of the type which arise frequently in Mathematical Modelling. The approaches comprise numerical computation, dynamical systems, singularity analysis and sym- metry analysis, all of which possess extensive literatures.
    [Show full text]