Fossil Xenarthran Mammals from Venezuela - Taxonomy, Patterns of Evolution and Associated Faunas

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Xenarthran Mammals from Venezuela - Taxonomy, Patterns of Evolution and Associated Faunas Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Fossil xenarthran mammals from Venezuela - taxonomy, patterns of evolution and associated faunas Carlini, A A Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-58039 Dissertation Published Version Originally published at: Carlini, A A. Fossil xenarthran mammals from Venezuela - taxonomy, patterns of evolution and associated faunas. 2010, University of Zurich, Faculty of Science. FOSSIL XENARTHRAN MAMMALS FROM VENEZUELA – TAXONOMY, PATTERNS OF EVOLUTION AND ASSOCIATED FAUNAS Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Alfredo A. Carlini aus Argentinien Promotionskomitee Prof. Dr. Marcelo Sánchez (Leiter der Dissertation, Vertreter der Universität Zürich) PD Dr. Winand Brinkmann Dr. Richard H. Madden Prof. Dr. Lukas Keller Zürich, 2010 ALFREDO A. CARLINI FOSSIL XENARTHRAN MAMMALS FROM VENEZUELA Zusammenfassung der Dissertation für nichtakademisches Laienpublikum Basierend auf Analysen neuer Fossilfunde werden in der vorliegenden Studie neue Erkenntnisse zur Evolution der Xenarthra des tropischen Südamerikas vorgestellt. Die Vielfalt der Säugetierformen der letzten 10 Millionen Jahre in Venezuela ist ein Schlüssel zum Verständnis der Faunenbewegungen zwischen Süd-, Mittel- und Nordamerika sowie den karibischen Inseln. Es wurden Vertreter zweier Taxa der Xenarthra untersucht: Faultiere, sowie der durch körperbedeckende „Panzer“ charakterisierten Gürteltiere und Glyptodonten. Einige der neu beschriebenen Fossilien repräsentieren neue Stammeslinien und es wurden neuer Gattungen sowie Arten gefunden, welche aus dem südlichen Südamerika unbekannt sind. Der erste Nachweis des Glyptodonten Glyptotherium innerhalb Südamerikas ist ein Indiz für das Vorhandensein von eiszeitlichen „Korridoren“ durch den amerikanischen Kontinent. Abstract for non-academic audience This work presents new discoveries and analyses of fossils documenting the evolution of the Xenarthra mammals in the tropical regions of South America. The mammalian diversity of the last 10 million years in the area north of the Orinoco River in Venezuela, is a key area to understand the faunal exchanges with Central and North America and with the Caribbean Islands. Representatives of two clades were investigated: the sloths, and the armadillos and glyptodonts, characterized by having their body covered by an “armour” shell. Some of the new fossils are representatives of new lineages and are described as new genera and species unknown from southern South America. The first documentation for South America of the glyptodont Glyptotherium suggests the presence of “corridors” across the American continent formed during the maximum glacial periods. CONTENTS ABSTRACT……………………………………………………………………............…p. 7 ZUSAMMENFASSUNG…...……………………………………………………....….....…p. 9 FOREWORD…………………………………………………………..………..……..…p. 11 CHAPTER 1 Book chapter submitted to Tejedor M. & Rosenberger A. Origins and Evolution of Cenozoic South American Mammals, Springer Verlag (Carlini AA, Sánchez-Villagra MR) Fossil mammals from the Venezuelan Neogene and the significance of the intertropical record. The Urumaco sequence……………………..……….………p. 17 CHAPTER 2 Book chapter in press in Urumaco and Venezuelan Palaeontology – The fossil record of the Northern Neotropics, Indiana University Press, edited by Sánchez-Villagra MR, Aguilera O, Carlini AA, eds (Carlini and Zurita) An Introduction to Cingulate Evolution and their evolutionary history during the Great American Biotic Interchange: Biogeographical clues from Venezuela………………………………………………………………….....….……p. 49 CHAPTER 3 Article published in Palaeontologische Zeitschrift (Carlini et al. 2008, Vol. 82/2, pp. 139-152) New Glyptodont from Codore Formation (Pliocene), Falcón State, Venezuela, its relationship with the Asterostemma problem and the palaeobiogeography of the Glyptodontinae……………………………………...……………………………...…p. 73 CHAPTER 4 Article published in Palaeontologische Zeitschrift (Carlini et al. 2008, Vol. 82/2, pp. 125-138) North American Glyptodontines (Xenarthra, Mammalia) in the Upper Pleistocene of northern South America………………………………………………………………p. 87 CHAPTER 5 Article published in Palaeontologische Zeitschrift (Carlini et al. 2008, Vol. 82/2, pp. 153-162) Additions to the knowledge of Urumaquia robusta (Xenarthra, Phyllophaga, Megatheriidae) from the Urumaco Formation (Late Miocene), Estado Falcón, Venezuela……………………………………………………………….…………p. 101 CHAPTER 6 Future perspectives………………………………………………..…p. 111 APPENDIX………………………………………………………………………….….p. 115 Book chapter in press in Urumaco and Venezuelan Palaeontology – The fossil record of the Northern Neotropics, Indiana University Press (Sánchez-Villagra MR, Aguilera O, Carlini AA, eds) The fossil vertebrate record of Venezuela of the last 65 million years……..…p. 117 Article published in Acta Zoologica (Krmpotic et al. 2009, Vol. 90/4, pp. 339-351) Krmpotic CM, Ciancio MR, Barbeito C, Mario RC, Carlini AA. 2009. Osteoderm morphology in recent and fossil euphractine xenarthrans. ………………..…...p. 151 Article published in Mammalian Biology (Galliari et al. 2010, doi:10.1016/j.mambio.2009.03.014) Galliari FC, Carlini AC, Sánchez-Villagra MR. 2010. Evolution of the axial skeleton in armadillos (Mammalia, Dasypodidae)…………………………..…..……….…p. 165 ACKNOWLEDGEMENTS……………………………..…………………………....……p. 173 CURRICULUM VITAE……………………………...……………………...……………p. 175 ALFREDO A. CARLINI FOSSIL XENARTHRAN MAMMALS FROM VENEZUELA Abstract This work presents new discoveries and analyses of fossils documenting much new about the taxonomy and biogeography of Xenarthra, a diverse group of mostly South American distribution. These studies serve to address major issues about the origin and evolution of mammals in the intertropics. Some extensive areas with sedimentary rocks north of the Orinoco River, at the northern extreme of South America, provide a first glimpse into a mammalian diversity from the Neogene unrecorded in other areas of the continent. Some discoveries are being used to document the importance of northern South America as ʻcradle and museumʼ for many clades, and as the key area to understand the nature of the exchanges with Central and North America during the Great American Biotic Interchange and the faunal exchange with the Caribbean Islands during the Cenozoic. Representatives of two main clades of xenarthrans were investigated: the Tardigrada, commonly known as sloths and ground sloths, and the Cingulata, including the armadillos, pampatheres and glyptodonts, characterized by having their body covered by an “armour” shell formed by articulated and joined osteoderms. A new genus of glyptodont is erected, Boreostemma, which serves as example of the distinctive nature of the northern South American xenarthran diversity in contrast to the Argentinian one. The Colombian and Venezuelan species of this genus had been previously allocated in a taxon of widespread distribution, but new fossils and a consideration of the anatomy and phylogenetic significance of known materials suggests the existence of a distinct intertropical genus. Anatomical comparisons leading to phylogenetic conclusions in a temporal framework, suggest that the Glyptodontinae arose in the northernmost regions of South America and their arrival to more southerly areas coincided with the desertification in lower latitudes of South America, maybe by an open landscape corridor close to the andean area (in the late Miocene-Pliocene interval). 7 ALFREDO A. CARLINI FOSSIL XENARTHRAN MAMMALS FROM VENEZUELA The presence of Glyptotherium is documented in the latest Pleistocene (ca. 14 ka) of Venezuela. The discovery of an otherwise North and Central American genus is of great biogeographical significance, as it suggests the presence of “corridors” that could have formed during the maximum of glacial periods. A similar bidirectional migratory pattern has been proposed for another Cingulata group, the pampatheriids, as well as for a megatherin genus. Because of taphonomical bias, most Tardigrada taxa treated here are represented by long bones, most frequently femora, and consequently, much new anatomical reference work was needed, as most xenarthran fossil and living taxa have been traditionally diagnosed based on other features of the anatomy. The tardigrade diversity recorded in the Neogene of Venezuela is surprisingly large and comparable to that reached only a few times during their history, including the Late Oligocene of Patagonia, Middle Miocene of Patagonia and Late Miocene of northeastern Argentina. New remains of several postcranial bones of the tardigrade Urumaquia robusta are described, significantly improving the knowledge of the species and its relations to other Megatheriinae, in particular with Pyramiodontherium and Megatheriops. The Venezuelan xenarthran fossil localities contain a rich diversity and include very basal tardigrade taxa, the earliest representatives of new lineages, as well as clades not known from the extensively prospected sites of southern South America. Key Words: South America, Postcranial Anatomy, Biogeography, Great American Biotic Interchange, Miocene, Pliocene, Pleistocene 8 ALFREDO A. CARLINI FOSSIL XENARTHRAN MAMMALS FROM VENEZUELA Zusammenfassung Basierend auf Analysen neuer Fossilfunde werden in der vorliegenden Studie neue Erkenntnisse
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
    Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.).
    [Show full text]
  • Evolutionary and Functional Implications of Incisor Enamel Microstructure Diversity in Notoungulata (Placentalia, Mammalia)
    Journal of Mammalian Evolution https://doi.org/10.1007/s10914-019-09462-z ORIGINAL PAPER Evolutionary and Functional Implications of Incisor Enamel Microstructure Diversity in Notoungulata (Placentalia, Mammalia) Andréa Filippo1 & Daniela C. Kalthoff2 & Guillaume Billet1 & Helder Gomes Rodrigues1,3,4 # The Author(s) 2019 Abstract Notoungulates are an extinct clade of South American mammals, comprising a large diversity of body sizes and skeletal morphologies, and including taxa with highly specialized dentitions. The evolutionary history of notoungulates is characterized by numerous dental convergences, such as continuous growth of both molars and incisors, which repeatedly occurred in late- diverging families to counter the effects of abrasion. The main goal of this study is to determine if the acquisition of high-crowned incisors in different notoungulate families was accompanied by significant and repeated changes in their enamel microstructure. More generally, it aims at identifying evolutionary patterns of incisor enamel microstructure in notoungulates. Fifty-eight samples of incisors encompassing 21 genera of notoungulates were sectioned to study the enamel microstructure using a scanning electron microscope. We showed that most Eocene taxa were characterized by an incisor schmelzmuster involving only radial enamel. Interestingly, derived schmelzmusters involving the presence of Hunter-Schreger bands (HSB) and of modified radial enamel occurred in all four late-diverging families, mostly in parallel with morphological specializations, such as crown height increase. Despite a high degree of homoplasy, some characters detected at different levels of enamel complexity (e.g., labial versus lingual sides, upper versus lower incisors) might also be useful for phylogenetic reconstructions. Comparisons with perissodactyls showed that notoungulates paralleled equids in some aspects related to abrasion resistance, in having evolved transverse to oblique HSB combined with modified radial enamel and high-crowned incisors.
    [Show full text]
  • Carettochelys Insculpta) in the KIKORI REGION, PAPUA NEW GUINEA
    NESTING ECOLOGY, HARVEST AND CONSERVATION OF THE PIG-NOSED TURTLE (Carettochelys insculpta) IN THE KIKORI REGION, PAPUA NEW GUINEA by CARLA CAMILO EISEMBERG DE ALVARENGA B.Sc. (Federal University of Minas Gerais – UFMG) (2004) M.Sc. (National Institute for Amazon Research) (2006) Institute for Applied Ecology University of Canberra Australia A thesis submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy at the University of Canberra. October 2010 Certificate of Authorship of Thesis Except where clearly acknowledged in footnotes, quotations and the bibliography, I certify that I am the sole author of the thesis submitted today, entitled Nesting ecology, harvest and conservation of the Pig-nosed turtle (Carettochelys insculpta) in the Kikori region, Papua New Guinea I further certify that to the best of my knowledge the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis. The material in the thesis has not been the basis of an award of any other degree or diploma.The thesis complies with University requirements for a thesis as set out in Gold Book Part 7: Examination of Higher Degree by Research Theses Policy, Schedule Two (S2). …………………………………………… Signature of Candidate .......................................................................... Signature of chair of the supervisory panel ………15-Mar-11…………………….. Date Copyright This thesis (© by Carla C. Eisemberg, 2010) may be freely copied or distributed for private and/or commercial use and study. However, no part of this thesis or the information herein may be included in a publication or referred to in a publication without the written consent of Carla C.
    [Show full text]
  • Archive Table 1 – Data for Pre-GABI South American Paleofaunas Analyzed in the Present Study
    Archive Table 1 – Data for pre-GABI South American paleofaunas analyzed in the present study. SALMA refers to South American Land Mammal “Age,” an informal system of biochronologic units that allows for intracontinental correlation (see Fig. 1). Fauna SALMA (Age) Pred. Prey Ratio Source(s) Notes Chasicoan both upper and lower Arroyo Chasicó 3 38 0.08 Croft in press (late Miocene) biozones Kay et al., 1997; Meldrum Monkey Beds, La Laventan 2 49 0.04 and Kay, 1997; Croft, in only Monkey Beds level Venta, Colombia (middle Miocene) press Kay et al., 1997; Meldrum Entire fauna, La Laventan entire fauna (i.e., all 6 64 0.09 and Kay, 1997; Croft, in Venta, Colombia (middle Miocene) levels) press Quebrada Honda, Laventan (middle 2 28 0.07 Croft in press Bolivia Miocene) Collón-Curá, Colloncuran 1 37 0.03 Croft in press Argentina (middle Miocene) P. australe Zone, Santacrucian upper biozone of 2 34 0.06 Tauber 1997 Santa Cruz, Argentina (early Miocene) Santa Cruz Fm. P. attenuatum Zone, Santacrucian lower biozone of 1 30 0.03 Tauber 1997 Santa Cruz, Argentina (early Miocene) Santa Cruz Fm. Santacrucian Croft et al., 2004, unpubl. Chucal, Chile 0 17 0.00 (early Miocene) data Scarritt Pocket, Deseadan Chaffee, 1952; Marshall 2 17 0.12 Argentina (late Oligocene) et al., 1986 Shockey 1997a with additions based on Sánchez-Villagra and Kay, 1997; Shockey, Deseadan (late Salla, Bolivia 6 37 0.16 1997b, 2005; Shockey all levels Oligocene) and Anaya, 2004, in press; Reguero and Cerdeño, 2005; Shockey et al., 2005 Flynn et al., 2003b; Croft Tinguirirican Tinguiririca, Chile 0 25 0.00 et al., 2003; Reguero et (early Oligocene) al., 2003 La Gran Hondonada, Mustersan 2 37 0.05 Cladera et al., 2004 Argentina (late Eocene) Gran Barranca, Barrancan subage of Casamayoran 4 42 0.10 Cifelli 1985 Argentina (late Eocene) SALMA Archive Table 2 – Data for Australian paleofaunas analyzed in the present study.
    [Show full text]
  • Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
    Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene.
    [Show full text]
  • LCFPD Track Identification and Walking Gaits
    Track Identification Cat Rabbit ➢ 4 toes on each foot ➢ 4 toes on each foot ➢ round tracks ➢ oval tracks ➢ no claw marks ➢ front of skid has claw marks ➢ hind paws narrower ➢ almost impossible to see pads Dog, Fox, Coyote Raccoon ( Dog family) ➢ 5 toes on each foot ➢ 4 toes on each foot ➢ toes close together ➢ tracks maple leaf shaped or egg shaped ➢ toes long and finger shaped ➢ claw marks appear ➢ claw marks appear ➢ front feet larger Weasel, Skunk, Mink Opossum (Weasel Family) ➢ 5 toes on each foot ➢ 5 toes on each foot ➢ toes spread widely ➢ toes close together ➢ toes long and finger shaped ➢ toes short and round ➢ no claw mark on hind thumbs ➢ some partially webbed Mice, Squirrels, etc. (Rodent Family) Deer ➢ 4 toes on front feet, 5 toes on hind ➢ 2 toes on each foot feet ➢ tracks are paired when bounding ➢ front feet show dew claws ➢ hind feet step in fore feet ➢ size of track is important in separating species tracks ➢ may leave tail mark Walking Gaits Pace Diagonal Walk (Raccoon) (Dog Family, Cat, Deer, Opossum) Move both left feet together, Left front, right hind, right then both right feet front, left hind Bound Gallop (Weasel Family) (Rodent Family, Rabbit) Move both front feet together, Move both feet together, then then both hind feet move both hind feet Place hind feet behind front feet Place hind feet ahead of front feet .
    [Show full text]
  • Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina
    Palaeontologia Electronica palaeo-electronica.org An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina Juan D. Carrillo and Robert J. Asher ABSTRACT We describe one of the oldest notoungulate skeletons with associated cranioden- tal and postcranial elements: Thomashuxleya externa (Isotemnidae) from Cañadón Vaca in Patagonia, Argentina (Vacan subage of the Casamayoran SALMA, middle Eocene). We provide body mass estimates given by different elements of the skeleton, describe the bone histology, and study its phylogenetic position. We note differences in the scapulae, humerii, ulnae, and radii of the new specimen in comparison with other specimens previously referred to this taxon. We estimate a body mass of 84 ± 24.2 kg, showing that notoungulates had acquired a large body mass by the middle Eocene. Bone histology shows that the new specimen was skeletally mature. The new material supports the placement of Thomashuxleya as an early, divergent member of Toxodon- tia. Among placentals, our phylogenetic analysis of a combined DNA, collagen, and morphology matrix favor only a limited number of possible phylogenetic relationships, but cannot yet arbitrate between potential affinities with Afrotheria or Laurasiatheria. With no constraint, maximum parsimony supports Thomashuxleya and Carodnia with Afrotheria. With Notoungulata and Litopterna constrained as monophyletic (including Macrauchenia and Toxodon known for collagens), these clades are reconstructed on the stem
    [Show full text]
  • Systematic Index 881 SYSTEMATIC INDEX
    systematic index 881 SYSTEMATIC INDEX Acanthodoras 28, 41, 544, 546-548 Anchoviella sp. 20, 152, 153, 158, 159 Acanthodoras cataphractus 28, 41, 544, 546-548 Ancistrinae 412, 438 ACESTRORHYNCHIDAE 24, 130, 168, 334-337 ANCISTRINI 412, 438 Acestrorhynchus 24, 72, 82, 84, 334-337 Ancistrus 438, 442-449 Acestrorhynchus falcatus 24, 334-336 Ancistrus aff. hoplogenys 26, 443-446 Acestrorhynchus guianensis 336 Ancistrus gr. leucostictus 26, 443, 446, 447 Acestrorhynchus microlepis 24, 82, 84, 334, 336, Ancistrus sp. ‘reticulate’ 26, 443, 446, 447 337 Ancistrus temminckii 26, 443, 448, 449 ACHIRIDAE 33, 77, 123, 794-799 Anostomidae 21, 33, 50, 131, 168, 184-201, 202 Achirus 4, 33, 794, 796, 797 Anostomus 131, 184, 185, 188-191 Achirus achirus 4, 33, 794, 796, 797 Anostomus anostomus 21, 185, 188, 189 Achirus declivis 33, 794, 796 Anostomus brevior 21, 185, 188, 189 Achirus lineatus 796 Anostomus ternetzi 21, 117, 185, 188-191 Acipenser 5 Aphyocharacidium melandetum 22, 232, 236, 237 Acnodon 23, 48, 288-292 APHYOCHARACINAE 23, 132, 304, 305 Acnodon oligacanthus 23, 48, 289-292 Aphyocharax erythrurus 23, 132, 304, 305 ACTINOPTERYGII 8 Apionichthys dumerili 33, 794, 796-798 Adontosternarchus 602 Apistogramma 720, 723, 728-731, 756 Aequidens 31, 724, 726-729, 750, 752 Apistogramma ortmanni 31, 723, 728-730 Aequidens geayi 750 Apistogramma steindachneri 31, 41, 69, 79, 723, Aequidens paloemeuensis 31, 724, 726, 727 730, 731 Aequidens potaroensis 726 apteronotidae 29, 124, 602-607 Aequidens tetramerus 31, 724, 728, 729 Apteronotus albifrons 4, 29,
    [Show full text]
  • Pliocene), Falc6n State, Venezuela, Its Relationship with the Asterostemma Problem, and the Paleobiogeography of the Glyptodontinae ALFREDO A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Pal&ontologische Zeitschrift 2008, Vol. 82•2, p. 139-152, 30-06-2008 New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleobiogeography of the Glyptodontinae ALFREDO A. CARLINI, La Plata; ALFREDO E. ZURITA, La Plata; GUSTAVO J. SCILLATO-YANI~, La Plata; RODOLFO S,&,NCHEZ, Urumaco & ORANGEL A. AGUILERA, Coro with 3 figures CARLINI, A.A.; ZURITA,A.E.; SCILLATO-YANI~,G.J.; S.~NCHEZ,R. & AGUILERA,O.A. 2008. New Glyptodont from the Codore Formation (Pliocene), Falc6n State, Venezuela, its relationship with the Asterostemma problem, and the paleo- biogeography of the Glyptodontinae. - Palaontologische Zeitschrift 82 (2): 139-152, 3 figs., Stuttgart, 30. 6. 2008. Abstract: One of the basal Glyptodontidae groups is represented by the Propalaehoplophorinae (late Oligocene - mid- dle Miocene), whose genera (Propalaehoplophorus, Eucinepeltus, Metopotoxus, Cochlops, and Asterostemma) were initially recognized in Argentinian Patagonia. Among these, Asterostemma was characterized by its wide latitudinal distribution, ranging from southernmost (Patagonia) to northernmost (Colombia, Venezuela) South America. How- ever, the generic assignation of the Miocene species from Colombia and Venezuela (A.? acostae, A. gigantea, and A. venezolensis) was contested by some authors, who explicitly accepted the possibility that these species could corre- spond to a new genus, different from those recognized in southern areas. A new comparative study of taxa from Argen- tinian Patagonia, Colombia and Venezuela (together with the recognition of a new genus and species for the Pliocene of the latter country) indicates that the species in northern South America are not Propalaehoplophorinae, but represent the first stages in the cladogenesis of the Glyptodontinae glyptodontids, the history of which was heretofore restricted to the late Miocene - early Holocene of southernmost South America.
    [Show full text]
  • Apa 1068.Qxd
    AMEGHINIANA (Rev. Asoc. Paleontol. Argent.) - 41 (3): 475-484. Buenos Aires, 30-09-2004 ISSN 0002-7014 A new South American mioclaenid (Mammalia: Ungulatomorpha) from the Tertiary of Patagonia, Argentina Javier N. GELFO1 Resumen. UN NUEVO MIOCLAENIDO SUDAMERICANO (MAMMALIA: UNGULATOMORPHA) DEL TERCIARIO DE PATAGONIA, ARGENTINA. Se describe un nuevo “condilartro” Mioclaenidae, proveniente de la Edad Mamífero Casamayorense, Subedad Barranquense, de Paso de Indios, Provincia del Chubut. El nuevo ta- xón Pascualodus patagoniensis gen. et sp. nov., representado por un molar superior izquierdo, es compara- do con otros Mioclaenidae, con los Didolodontidae y los más primitivos Litopterna. Una hipótesis filoge- nética provisoria es expresada a través de un cladograma de consenso estricto y uno de compromiso de mayoría. Si bien el análisis confirma la agrupación de los taxa sudamericanos en un grupo monofilético, existen numerosos puntos sin resolver. Pascualodus patagoniensis se ubica como un taxón terminal, en una politomía que reúne por un lado a los Mioclaenidae sudamericanos y por el otro, a los Didolodontidae y Litopterna. Por otra parte la consideración de caracteres dentales superiores de Escribania chubutensis, pre- viamente el único Mioclaenidae patagónico conocido, modifica sus relaciones filogenéticas vinculándolo al Didolodontidae Didolodus sp. La asignación de Pascualodus patagoniensis a los Mioclaenidae constituye el registro más moderno y el más austral de la familia. Abstract. A new Mioclaenidae “condylarth” of the Casamayoran Land Mammal Age, Barrancan subage, from Paso de Indios, Chubut Province is described. The new taxon Pascualodus patagoniensis gen. et sp. nov., represented by a left upper first molar, is compared with other Mioclaenidae; the Didolodontidae and some primitive litopterns.
    [Show full text]
  • Paleogene Glyptodontidae Propalaehoplophorinae (Mammalia, Xenarthra) in Extra-Patagonian Areas
    Andean Geology 43 (1): 127-136. January, 2016 Andean Geology doi: 10.5027/andgeoV43n1-a07 www.andeangeology.cl PALEONTOLOGICAL NOTE Paleogene Glyptodontidae Propalaehoplophorinae (Mammalia, Xenarthra) in extra-Patagonian areas Alfredo E. Zurita1, Laureano R. González-Ruiz2, Angel R. Miño-Boilini1, Rafael Hersbt3, Gustavo J. Scillato-Yané4, Pedro Cuaranta1 1 Centro de Ecología Aplicada del Litoral (CECOAL-CONICET) y Universidad Nacional del Nordeste, Ruta 5, km. 2,5, 3400, CC 128 Corrientes, Argentina. [email protected]; [email protected]; [email protected] 2 Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB), Universidad Nacional de la Patagonia “San Juan Bosco” sede Esquel (UNPSJB), Centro de Investigaciones Esquel de Montaña y Estepa Patagónica (CIEMEP-CONICET), Roca 780, 9200, Esquel, Chubut, Argentina. [email protected] 3 Instituto Superior de Correlación Geológica (INSUGEO-CONICET), Las Piedras 201 7º/B, 4000 San Miguel de Tucumán, Argentina. [email protected] 4 Division Paleontología de Vertebrados, Museo de La Plata, Universidad Nacional de La Plata (CONICET), Paseo del Bosque, s/n 1900 La Plata, Buenos Aires, Argentina. [email protected] ABSTRACT. Paleogene records of Cingulata Glyptodontidae are scarce. The only well described comes from the Paleogene of Argentine Patagonia. Two subfamilies have been reported for that period: Glyptatelinae and Propalaehoplophorinae. Until this contribution, the latter taxon was geographically restricted to the locality of El Pajarito (Late Oligocene, Deseadan SALMA), Chubut province, Argentina. Here we present and describe the northernmost record of a Paleogene Propalaehoplophorinae. The material is represented by three associated osteoderms of the dorsal carapace from the Fray Bentos Formation (Late Oligocene, Deseadan SALMA) in the locality of Cueva del Tigre, Chajarí, Entre Ríos province, Argentina.
    [Show full text]