Samantha Klein 2009 the Conic Sections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Study of Dandelin Spheres: a Second Year Investigation
CALIFORNIA STATE SCIENCE FAIR 2009 PROJECT SUMMARY Name(s) Project Number Sundeep Bekal S1602 Project Title A Study of Dandelin Spheres: A Second Year Investigation Abstract Objectives/Goals The purpose of this investigation is to see if there is a relationship that forms between the radius of the smaller dandelin sphere to the tangent of the angle RLM and distances that form inside the ellipse. Methods/Materials I investigated a conic section of an ellipse that contained two Dandelin Spheres to determine if there was such a relationship. I used the same program as last year, Geometer's Sketchpad, to generate measurements of last year's 2D model of the conic section so that I could better investigate the relationship. After slicing the spheres along the central pole, I looked to see if there were any patterns or relationships. To do this I set the radius of the smaller circle (sphere in 3-D) to 1.09 cm. I changed the radius by .05 cm every time while also noting how the other segments changed or did not change. Materials -Geometer's Sketchpad -Calculator -Computer -Paper -Pencil Results After looking through the data tables I noticed that the radius had the same exact values as (a+c)(tan(1/2) angleRLM), where (a+c) is the distance located in the ellipse. I also noticed that the ratio of the (radius)/(a+c) had the same values as tan((1/2 angleRLM)). I figured that this would be true because the tan (theta)=(opposite)/(adjacent) which in this case, would be tan ((1/2 angleRLM)) = (radius)/(a+c). -
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture. -
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
Automatic Estimation of Sphere Centers from Images of Calibrated Cameras
Automatic Estimation of Sphere Centers from Images of Calibrated Cameras Levente Hajder 1 , Tekla Toth´ 1 and Zoltan´ Pusztai 1 1Department of Algorithms and Their Applications, Eotv¨ os¨ Lorand´ University, Pazm´ any´ Peter´ stny. 1/C, Budapest, Hungary, H-1117 fhajder,tekla.toth,[email protected] Keywords: Ellipse Detection, Spatial Estimation, Calibrated Camera, 3D Computer Vision Abstract: Calibration of devices with different modalities is a key problem in robotic vision. Regular spatial objects, such as planes, are frequently used for this task. This paper deals with the automatic detection of ellipses in camera images, as well as to estimate the 3D position of the spheres corresponding to the detected 2D ellipses. We propose two novel methods to (i) detect an ellipse in camera images and (ii) estimate the spatial location of the corresponding sphere if its size is known. The algorithms are tested both quantitatively and qualitatively. They are applied for calibrating the sensor system of autonomous cars equipped with digital cameras, depth sensors and LiDAR devices. 1 INTRODUCTION putation and memory costs. Probabilistic Hough Transform (PHT) is a variant of the classical HT: it Ellipse fitting in images has been a long researched randomly selects a small subset of the edge points problem in computer vision for many decades (Prof- which is used as input for HT (Kiryati et al., 1991). fitt, 1982). Ellipses can be used for camera calibra- The 5D parameter space can be divided into two tion (Ji and Hu, 2001; Heikkila, 2000), estimating the pieces. First, the ellipse center is estimated, then the position of parts in an assembly system (Shin et al., remaining three parameters are found in the second 2011) or for defect detection in printed circuit boards stage (Yuen et al., 1989; Tsuji and Matsumoto, 1978). -
Exploding the Ellipse Arnold Good
Exploding the Ellipse Arnold Good Mathematics Teacher, March 1999, Volume 92, Number 3, pp. 186–188 Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). More than 200 books, videos, software, posters, and research reports are available through NCTM’S publication program. Individual members receive a 20% reduction off the list price. For more information on membership in the NCTM, please call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright May 1991 by the National Council of Teachers of Mathematics. All rights reserved. Arnold Good, Framingham State College, Framingham, MA 01701, is experimenting with a new approach to teaching second-year calculus that stresses sequences and series over integration techniques. eaders are advised to proceed with caution. Those with a weak heart may wish to consult a physician first. What we are about to do is explode an ellipse. This Rrisky business is not often undertaken by the professional mathematician, whose polytechnic endeavors are usually limited to encounters with administrators. Ellipses of the standard form of x2 y2 1 5 1, a2 b2 where a > b, are not suitable for exploding because they just move out of view as they explode. Hence, before the ellipse explodes, we must secure it in the neighborhood of the origin by translating the left vertex to the origin and anchoring the left focus to a point on the x-axis. -
Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces
S S symmetry Article Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces Miekyung Choi 1 and Young Ho Kim 2,* 1 Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 52828, Korea; [email protected] 2 Department of Mathematics, Kyungpook National University, Daegu 41566, Korea * Correspondence: [email protected]; Tel.: +82-53-950-5888 Received: 20 September 2018; Accepted: 12 October 2018; Published: 16 October 2018 Abstract: A finite-type immersion or smooth map is a nice tool to classify submanifolds of Euclidean space, which comes from the eigenvalue problem of immersion. The notion of generalized 1-type is a natural generalization of 1-type in the usual sense and pointwise 1-type. We classify ruled surfaces with a generalized 1-type Gauss map as part of a plane, a circular cylinder, a cylinder over a base curve of an infinite type, a helicoid, a right cone and a conical surface of G-type. Keywords: ruled surface; pointwise 1-type Gauss map; generalized 1-type Gauss map; conical surface of G-type 1. Introduction Nash’s embedding theorem enables us to study Riemannian manifolds extensively by regarding a Riemannian manifold as a submanifold of Euclidean space with sufficiently high codimension. By means of such a setting, we can have rich geometric information from the intrinsic and extrinsic properties of submanifolds of Euclidean space. Inspired by the degree of algebraic varieties, B.-Y. Chen introduced the notion of order and type of submanifolds of Euclidean space. Furthermore, he developed the theory of finite-type submanifolds and estimated the total mean curvature of compact submanifolds of Euclidean space in the late 1970s ([1]). -
Algebraic Study of the Apollonius Circle of Three Ellipses
EWCG 2005, Eindhoven, March 9–11, 2005 Algebraic Study of the Apollonius Circle of Three Ellipses Ioannis Z. Emiris∗ George M. Tzoumas∗ Abstract methods readily extend to arbitrary inputs. The algorithms for the Apollonius diagram of el- We study the external tritangent Apollonius (or lipses typically use the following 2 main predicates. Voronoi) circle to three ellipses. This problem arises Further predicates are examined in [4]. when one wishes to compute the Apollonius (or (1) given two ellipses and a point outside of both, Voronoi) diagram of a set of ellipses, but is also of decide which is the ellipse closest to the point, independent interest in enumerative geometry. This under the Euclidean metric paper is restricted to non-intersecting ellipses, but the extension to arbitrary ellipses is possible. (2) given 4 ellipses, decide the relative position of the We propose an efficient representation of the dis- fourth one with respect to the external tritangent tance between a point and an ellipse by considering a Apollonius circle of the first three parametric circle tangent to an ellipse. The distance For predicate (1) we consider a circle, centered at the of its center to the ellipse is expressed by requiring point, with unknown radius, which corresponds to the that their characteristic polynomial have at least one distance to be compared. A tangency point between multiple real root. We study the complexity of the the circle and the ellipse exists iff the discriminant tritangent Apollonius circle problem, using the above of the corresponding pencil’s determinant vanishes. representation for the distance, as well as sparse (or Hence we arrive at a method using algebraic numbers toric) elimination. -
A Cochleoid Cone Udc 514.1=111
FACTA UNIVERSITATIS Series: Architecture and Civil Engineering Vol. 9, No 3, 2011, pp. 501 - 509 DOI: 10.2298/FUACE1103501N CONE WHOSE DIRECTRIX IS A CYLINDRICAL HELIX AND THE VERTEX OF THE DIRECTRIX IS – A COCHLEOID CONE UDC 514.1=111 Vladan Nikolić*, Sonja Krasić, Olivera Nikolić University of Niš, The Faculty of Civil Engineering and Architecture, Serbia * [email protected] Abstract. The paper treated a cone with a cylindrical helix as a directrix and the vertex on it. Characteristic elements of a surface formed in such way and the basis are identified, and characteristic flat intersections of planes are classified. Also considered is the potential of practical application of such cone in architecture and design. Key words: cocleoid cones, vertex on directrix, cylindrical helix directrix. 1. INTRODUCTION Cone is a deriving singly curved rectilinear surface. A randomly chosen point A on the directrix d1 will, along with the directirx d2 determine totally defined conical surface k, figure 1. If directirx d3 penetrates through this conical surface in the point P, then the connection line AP, regarding that it intersects all three directrices (d1, d2 and d3), will be the generatrix of rectilinear surface. If the directrix d3 penetrates through the men- tioned conical surface in two, three or more points, then through point A will pass two, three or more generatrices of the rectilinear surface.[7] Directrix of a rectilinear surface can be any planar or spatial curve. By changing the form and mutual position of the directrices, various type of rectilinear surfaces can be obtained. If the directrices d1 and d2 intersect, and the intersection point is designated with A, then the top of the created surface will occur on the directrix d2, figure 2. -
2.3 Conic Sections: Ellipse
2.3 Conic Sections: Ellipse Ellipse: (locus definition) set of all points (x, y) in the plane such that the sum of each of the distances from F1 and F2 is d. Standard Form of an Ellipse: Horizontal Ellipse Vertical Ellipse 22 22 (xh−−) ( yk) (xh−−) ( yk) +=1 +=1 ab22 ba22 center = (hk, ) 2a = length of major axis 2b = length of minor axis c = distance from center to focus cab222=− c eccentricity e = ( 01<<e the closer to 0 the more circular) a 22 (xy+12) ( −) Ex. Graph +=1 925 Center: (−1, 2 ) Endpoints of Major Axis: (-1, 7) & ( -1, -3) Endpoints of Minor Axis: (-4, -2) & (2, 2) Foci: (-1, 6) & (-1, -2) Eccentricity: 4/5 Ex. Graph xyxy22+4224330−++= x2 + 4y2 − 2x + 24y + 33 = 0 x2 − 2x + 4y2 + 24y = −33 x2 − 2x + 4( y2 + 6y) = −33 x2 − 2x +12 + 4( y2 + 6y + 32 ) = −33+1+ 4(9) (x −1)2 + 4( y + 3)2 = 4 (x −1)2 + 4( y + 3)2 4 = 4 4 (x −1)2 ( y + 3)2 + = 1 4 1 Homework: In Exercises 1-8, graph the ellipse. Find the center, the lines that contain the major and minor axes, the vertices, the endpoints of the minor axis, the foci, and the eccentricity. x2 y2 x2 y2 1. + = 1 2. + = 1 225 16 36 49 (x − 4)2 ( y + 5)2 (x +11)2 ( y + 7)2 3. + = 1 4. + = 1 25 64 1 25 (x − 2)2 ( y − 7)2 (x +1)2 ( y + 9)2 5. + = 1 6. + = 1 14 7 16 81 (x + 8)2 ( y −1)2 (x − 6)2 ( y − 8)2 7. -
Calculus Terminology
AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential -
A Human Introduction to Geometry Spring 2017 UM Da Vinci Program Drew Armstrong
A Human Introduction to Geometry Spring 2017 UM da Vinci Program Drew Armstrong Contents 1 The Pythagorean Tradition? 2 1.1 Pythagoras and 2.................................. 2 1.2 Plato and Regular Polyhedra . 9 1.3 Kepler and Conic Sections . 18 2 Euclidean and Non-Euclidean Geometry 29 2.1 The Deductive Method . 29 2.2 Euclid's Elements ................................... 32 2.3 Selections from Book I . 40 2.4 Triangles and Curvature . 48 3 The Problem of Measurement 60 3.1 Pure and Applied Mathematics . 60 3.2 Eudoxus' Theory of Proportion . 63 3.3 Archimedes and the Existence of π ......................... 70 3.4 Trigonometry is Hard . 83 3.5 Rigorous and Intuitive Mathematics . 105 3.6 Impossible Problems . 109 4 Coordinate Geometry and Transformations 110 5 Projective Geometry 110 Introduction Geometry is the most human of mathematical pursuits; so much so that it was regarded as insufficiently rigorous for twentieth century tastes and was largely banished from the under- graduate curriculum. This is a shame because drawing and looking at pictures are excellent ways to engage students. Visual intuition is also the primary way that we can hack our pri- mate architecture, to allow us to make progress in more abstract kinds of mathematics that would otherwise be impossible to comprehend. In this class we will embrace the human side of mathematics by following the story of geometry|pure and applied|through the ages. On the applied side we will follow geom- etry from its earliest use in land measurement, through the discovery of perspective drawing in the Renaissance, to its use today in computer graphics. -
Extension of Eigenvalue Problems on Gauss Map of Ruled Surfaces
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 September 2018 doi:10.20944/preprints201809.0407.v1 Peer-reviewed version available at Symmetry 2018, 10, 514; doi:10.3390/sym10100514 EXTENSION OF EIGENVALUE PROBLEMS ON GAUSS MAP OF RULED SURFACES MIEKYUNG CHOI AND YOUNG HO KIM* Abstract. A finite-type immersion or smooth map is a nice tool to classify subman- ifolds of Euclidean space, which comes from eigenvalue problem of immersion. The notion of generalized 1-type is a natural generalization of those of 1-type in the usual sense and pointwise 1-type. We classify ruled surfaces with generalized 1-type Gauss map as part of a plane, a circular cylinder, a cylinder over a base curve of an infinite type, a helicoid, a right cone and a conical surface of G-type. 1. Introduction Nash's embedding theorem enables us to study Riemannian manifolds extensively by regarding a Riemannian manifold as a submanifold of Euclidean space with sufficiently high codimension. By means of such a setting, we can have rich geometric information from the intrinsic and extrinsic properties of submanifolds of Euclidean space. Inspired by the degree of algebraic varieties, B.-Y. Chen introduced the notion of order and type of submanifolds of Euclidean space. Furthermore, he developed the theory of finite- type submanifolds and estimated the total mean curvature of compact submanifolds of Euclidean space in the late 1970s ([3]). In particular, the notion of finite-type immersion is a direct generalization of eigen- value problem relative to the immersion of a Riemannian manifold into a Euclidean space: Let x : M ! Em be an isometric immersion of a submanifold M into the Eu- clidean m-space Em and ∆ the Laplace operator of M in Em.