Copernicium? in the Search for Superheavy Elements, Element 112 Was a Stepping Stone Towards the ‘Islands of Stability’

Total Page:16

File Type:pdf, Size:1020Kb

Copernicium? in the Search for Superheavy Elements, Element 112 Was a Stepping Stone Towards the ‘Islands of Stability’ in your element Welcome copernicium? In the search for superheavy elements, element 112 was a stepping stone towards the ‘islands of stability’. Sigurd Hofmann now relates the steps that led to its ‘creation’ and detection. lement 112 did not invite a lot of element 112 in one week. In 2000, a second interest when theoretical nuclear experiment allowed us to measure a second Ephysicists predicted the famous island atom, and two more atoms were produced of stable superheavy elements — elements in 2004 by the RIKEN laboratory in Japan that have a number of nucleons that leads (K. Morita et al. J. Phys. Soc. Jpn. 76, 043201; to arrangements in closed shells, which 2007), thus confirming our data. This led confers them stability despite the high the International Union of Pure and Applied repulsion forces between the protons. Rather Chemistry to assign priority of its discovery than element 112, it was element 126, and to our team, and in April 2009 we were later 114 and 120, that attracted most of asked to suggest a name for element 112. the attention, because they were predicted Our team of 21 researchers from four to have half-lives up to a million years, different nations discussed possible names suggesting that they could be found on LICKI for about a month — including those Earth. Efforts to identify them in nature or in Z KU suggested by students and the public. We S A various nuclear reactions, however, remained K agreed that element 112 should be named unsuccessful, leading scientists to follow after the astronomer Nicolaus Copernicus the difficult and stony path of producing and suggested the name ‘copernicium’ with these elements step-by-step. In 1976, the the abbreviation ‘Cn’. starting point was element 106, now called Copernicus, who lived 500 years ago in the seaborgium, and for many years element 112 transition period between the Middle Ages marked a temporary end to this progress. / LU © ISTOCKPHOTO and modern times, had a significant influence Four key technical improvements were Nicolaus Copernicus is best known for on the political and philosophical thinking required to enable the detection of 112. The challenging the accepted view of the Universe at that time and contributed to the rise of first was an accelerator delivering ion beams by describing a system centred around the Sun, modern science, based on experiments. His of as many different isotopes as possible, with rather than the Earth. representation of the planets also represents beam intensities of at least 1012–1013 ions other systems governed by an attractive force per second, and at about 10% of the speed between small objects revolving around a of light. The second was a target, also made material so that the sum of their protons gave bigger centre. On a microscopic scale, this is from various isotopes, which could stand 112: a zinc beam consisting of 30 protons the atom, with its electrons orbiting around these high beam intensities. The third was and 40 neutrons was used to bombard lead the nucleus and, in the case of copernicium, a separator for fast and efficient separation target nuclei, composed of 82 protons and 112 electrons moving around a nucleus of the reaction products from the beam, 126 neutrons, resulting in a new element that consisting of 112 protons and 165 neutrons. and finally a detector system for a reliable had 112 protons and 166 neutrons — that is, Copernicium should behave as a identification of the element obtained. an atomic-mass number of 278. transition metal, as it is below zinc, cadmium In our laboratory, these advances were Although forcing the two nuclei (zinc and and mercury in group 12, and its similarity made possible with the accelerator UNILAC lead) together requires a considerable amount to the latter has already been shown by initial (Universal Linear Accelerator), a rotating of energy — the reacting nuclei do not easily experiments adsorbing a few atoms of it onto target wheel, the electromagnetic separator amalgamate, and are much more likely to be a gold surface. It might be a little bit more SHIP (Separator for Heavy Ion reaction repulsed by immensely strong electric forces volatile than mercury, but will very likely be Products) and the use of position-sensitive acting between their protons — this barrier a liquid at room temperature. Of course, with silicon detectors. This combination allowed can be overcome and the attractive force only a few rapidly decaying atoms having us to detect nuclei with lifetimes ranging between the nuclei leads to nuclear fusion. been made so far, it is not likely to be of from one microsecond to a few hours, and This reaction releases energy, and the hot practical use for some time, but its detection detect each element from 107 to 111. In nucleus created by this exothermic process paves the way to heavier elements still — the 1996 we were ready to synthesize element then cools down by emitting one neutron, aforementioned superheavy elements. ❐ 112. We selected a beam and a target and the nucleus 277 remains, which is the one we were able to study. SIGURD HOFMANN is at the Heavy Ion Even with the most intensive beams, Research Centre (GSI) in Darmstadt, we managed to produce only one atom of Germany. e-mail: [email protected] Mt Ds Rg 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 146 NATURE CHEMISTRY | VOL 2 | FEBRUARY 2010 | www.nature.com/naturechemistry © 2010 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • An Octad for Darmstadtium and Excitement for Copernicium
    SYNOPSIS An Octad for Darmstadtium and Excitement for Copernicium The discovery that copernicium can decay into a new isotope of darmstadtium and the observation of a previously unseen excited state of copernicium provide clues to the location of the “island of stability.” By Katherine Wright holy grail of nuclear physics is to understand the stability uncover its position. of the periodic table’s heaviest elements. The problem Ais, these elements only exist in the lab and are hard to The team made their discoveries while studying the decay of make. In an experiment at the GSI Helmholtz Center for Heavy isotopes of flerovium, which they created by hitting a plutonium Ion Research in Germany, researchers have now observed a target with calcium ions. In their experiments, flerovium-288 previously unseen isotope of the heavy element darmstadtium (Z = 114, N = 174) decayed first into copernicium-284 and measured the decay of an excited state of an isotope of (Z = 112, N = 172) and then into darmstadtium-280 (Z = 110, another heavy element, copernicium [1]. The results could N = 170), a previously unseen isotope. They also measured an provide “anchor points” for theories that predict the stability of excited state of copernicium-282, another isotope of these heavy elements, says Anton Såmark-Roth, of Lund copernicium. Copernicium-282 is interesting because it University in Sweden, who helped conduct the experiments. contains an even number of protons and neutrons, and researchers had not previously measured an excited state of a A nuclide’s stability depends on how many protons (Z) and superheavy even-even nucleus, Såmark-Roth says.
    [Show full text]
  • Gas-Phase Chemistry of Element 114, Flerovium
    EPJ Web of Conferences 131, 07003 (2016) DOI: 10.1051/epjconf/201613107003 Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements Gas-phase chemistry of element 114, flerovium Alexander Yakushev1,2,a and Robert Eichler3,4 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany 2 Helmholtz-Institut Mainz, 55099 Mainz, Germany 3 Paul Scherrer Institut, 5232 Villigen PSI, Switzerland 4 University of Bern, Department of Chemistry and Biochemistry, 3012 Bern, Switzerland Abstract. Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of 2 2 the valence shell 7s 7p1/2 is expected due to the orbital splitting and the 2 2 contraction not only of the 7s but also of the spherical 7p1/2 closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature. 1. Introduction Man-made superheavy elements (SHE, atomic number Z ≥ 104) are unique in two aspects. Their nuclei exist only due to nuclear shell effects, and their electron structure is influenced by increasingly important relativistic effects [1–3]. Recently the synthesis of elements 113, 115, 117 and 118 has been approved, thus, the discovery of all elements of the 7th row in the periodic table of elements with proton number Z up to 118 has been acknowledged [4].
    [Show full text]
  • Atomic Properties of the Elements
    P E R I O D I C T A B L E Group 1 18 IA Atomic Properties of the Elements VIIIA 2 1 S FREQUENTLY USED FUNDAMENTAL PHYSICAL CONSTANTS§ S 1 1/2 Physical Measurement Laboratory www.nist.gov/pml 2 0 1 second = 9 192 631 770 periods of radiation corresponding to the H transition between the two hyperfine levels of the ground state of 133Cs Standard Reference Data www.nist.gov/srd He 1 Hydrogen −1 § For the most accurate Helium speed of light in vacuum c 299 792 458 m s (exact) values of these and 1.008* −34 4.002602 2 1s 2 Planck constant h 6.626 070 x 10 J s ( ħ /2 ) other constants, visit 13 14 15 16 17 1s −19 13.5984 IIA elementary charge e 1.602 177 x 10 C physics.nist.gov/constants IIIA IVA VA VIA VIIA 24.5874 −31 2 1 electron mass me 9.109 384 x 10 kg 2 3 4 3 2 1 3 S1/2 4 S0 2 5 P°1/2 6 P0 7 S3/2° 8 P2 9 P3/2° 10 S0 mec 0.510 999 MeV −27 Solids Li Be proton mass mp 1.672 622 x 10 kg B C N O F Ne 2 Lithium Beryllium fine-structure constant 1/137.035 999 Liquids Boron Carbon Nitrogen Oxygen Fluorine Neon 6.94* 9.0121831 −1 10.81* 12.011* 14.007* 15.999* 18.99840316* 20.1797 Rydberg constant R 10 973 731.569 m 2 2 2 Gases 2 2 2 2 2 2 2 3 2 2 4 2 2 5 2 2 6 15 1s 2s 2p 1s 2s 1s 2s 1s 2s 1s 2s 1s 2s 1s 2s R c 3.289 841 960 x 10 Hz 2p 2p 1s 2s 2p 2p 2p 5.3917 9.3227 Artificially 8.2980 11.2603 14.5341 13.6181 17.4228 21.5645 R hc 13.605 693 eV 2 1 -19 Prepared 2 3 4 3 2 1 11 S1/2 12 S0 electron volt eV 1.602 176 6 x 10 J 13 P1/2° 14 P0 15 S3/2° 16 P2 17 P3/2° 18 S0 −23 −1 Boltzmann constant k 1.380 65 x 10 J K −1 −1 Na Mg molar gas constant
    [Show full text]
  • Chemical Element 112 Named 'Copernicium' 24 February 2010
    Chemical element 112 named 'Copernicium' 24 February 2010 IUPAC (International Union of Pure and Applied Copernicium is the sixth chemical element GSI Chemistry) accepted the name proposed by the scientist named. The other elements carry the international discovering team around Sigurd names Bohrium (element 107), Hassium (element Hofmann at the GSI Helmholtzzentrum. The team 108), Meitnerium (element 109), Darmstadtium had suggested "Cp" as the chemical symbol for the (element 110), and Roentgenium (element 111). 21 new element. However, since the chemical symbol scientists from Germany, Finland, Russia, and "Cp" gave cause for concerns, as this abbreviation Slovakia collaborated in the GSI experiments that also has other scientific meanings, the discoverers lead to the discovery of element 112. and IUPAC agreed to change the symbol to "Cn". Copernicium is 277 times heavier than hydrogen, More information: 'Copernicium' proposed as making it the heaviest element officially recognized name for newly discovered element 112 -- by IUPAC. www.physorg.com/news166791177.html The suggested name "Copernicium" in honor of Nicolaus Copernicus follows the tradition of naming chemical elements after merited scientists. IUPAC Provided by Helmholtz Association of German officially announced the endorsement of the new Research Centres element's name on February 19th, Nicolaus Copernicus' birthday. Copernicus was born on February 19, 1473 in Toru?, Poland. His work in the field of astronomy is the basis for our modern, heliocentric world view, which states that the Sun is the center of our solar system with the Earth and all the other planets circling around it. An international team of scientists headed by Sigurd Hofmann was able to produce the element copernicium at GSI for the first time already on February 9, 1996.
    [Show full text]
  • No. It's Livermorium!
    in your element Uuh? No. It’s livermorium! Alpha decay into flerovium? It must be Lv, saysKat Day, as she tells us how little we know about element 116. t the end of last year, the International behaviour in polonium, which we’d expect to Union of Pure and Applied Chemistry have very similar chemistry. The most stable A(IUPAC) announced the verification class of polonium compounds are polonides, of the discoveries of four new chemical for example Na2Po (ref. 8), so in theory elements, 113, 115, 117 and 118, thus Na2Lv and its analogues should be attainable, completing period 7 of the periodic table1. though they are yet to be synthesized. Though now named2 (no doubt after having Experiments carried out in 2011 showed 3 213 212m read the Sceptical Chymist blog post ), that the hydrides BiH3 and PoH2 were 9 we shall wait until the public consultation surprisingly thermally stable . LvH2 would period is over before In Your Element visits be expected to be less stable than the much these ephemeral entities. lighter polonium hydride, but its chemical In the meantime, what do we know of investigation might be possible in the gas their close neighbour, element 116? Well, after phase, if a sufficiently stable isotope can a false start4, the element was first legitimately be found. reported in 2000 by a collaborative team Despite the considerable challenges posed following experiments at the Joint Institute for by the short-lived nature of livermorium, EMMA SOFIA KARLSSON, STOCKHOLM, SWEDEN STOCKHOLM, KARLSSON, EMMA SOFIA Nuclear Research (JINR) in Dubna, Russia.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • Upper Limit of the Periodic Table and the Future Superheavy Elements
    CLASSROOM Rajarshi Ghosh Upper Limit of the Periodic Table and the Future Department of Chemistry The University of Burdwan ∗ Superheavy Elements Burdwan 713 104, India. Email: [email protected] Controversy surrounds the isolation and stability of the fu- ture transactinoid elements (after oganesson) in the periodic table. A single conclusion has not yet been drawn for the highest possible atomic number, though there are several the- oretical as well as experimental results regarding this. In this article, the scientific backgrounds of those upcoming super- heavy elements (SHE) and their proposed electronic charac- ters are briefly described. Introduction Totally 118 elements, starting from hydrogen (atomic number 1) to oganesson (atomic number 118) are accommodated in the mod- ern form of the periodic table comprising seven periods and eigh- teen groups. Total 92 natural elements (if technetium is consid- ered as natural) are there in the periodic table (up to uranium hav- ing atomic number 92). In the actinoid series, only four elements— Keywords actinium, thorium, protactinium and uranium—are natural. The Superheavy elements, actinoid rest of the eleven elements—from neptunium (atomic number 93) series, transactinoid elements, periodic table. to lawrencium (atomic number 103)—are synthetic. Elements after actinoids (i.e., from rutherfordium) are called transactinoid elements. These are also called superheavy elements (SHE) as they have very high atomic numbers. Prof. G T Seaborg had Elements after actinoids a very distinct contribution in the field of transuranium element (i.e., from synthesis. For this, Prof. Seaborg was awarded the Nobel Prize in rutherfordium) are called transactinoid elements. 1951.
    [Show full text]
  • Critical Mineral Resources of the United States— Economic and Environmental Geology and Prospects for Future Supply
    Critical Mineral Resources of the United States— Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802 U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 francium radium rutherfordium
    [Show full text]
  • Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants John Dustin Despotopulos University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Despotopulos, John Dustin, "Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2345. http://dx.doi.org/10.34917/7645877 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INVESTIGATION OF FLEROVIUM AND ELEMENT 115 HOMOLOGS WITH MACROCYCLIC EXTRACTANTS By John Dustin Despotopulos Bachelor of Science in Chemistry University of Oregon 2010 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy
    [Show full text]
  • Python Module Index 79
    mendeleev Documentation Release 0.9.0 Lukasz Mentel Sep 04, 2021 CONTENTS 1 Getting started 3 1.1 Overview.................................................3 1.2 Contributing...............................................3 1.3 Citing...................................................3 1.4 Related projects.............................................4 1.5 Funding..................................................4 2 Installation 5 3 Tutorials 7 3.1 Quick start................................................7 3.2 Bulk data access............................................. 14 3.3 Electronic configuration......................................... 21 3.4 Ions.................................................... 23 3.5 Visualizing custom periodic tables.................................... 25 3.6 Advanced visulization tutorial...................................... 27 3.7 Jupyter notebooks............................................ 30 4 Data 31 4.1 Elements................................................. 31 4.2 Isotopes.................................................. 35 5 Electronegativities 37 5.1 Allen................................................... 37 5.2 Allred and Rochow............................................ 38 5.3 Cottrell and Sutton............................................ 38 5.4 Ghosh................................................... 38 5.5 Gordy................................................... 39 5.6 Li and Xue................................................ 39 5.7 Martynov and Batsanov........................................
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]