Thermodynamic Modeling of an Atkinson Cycle with Respect to Relative AirFuel Ratio, Fuel Mass Flow Rate and Residual Gases R

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamic Modeling of an Atkinson Cycle with Respect to Relative AirFuel Ratio, Fuel Mass Flow Rate and Residual Gases R Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 1 Thermodynamic Modeling of an Atkinson Cycle with respect to Relative AirFuel Ratio, Fuel Mass Flow Rate and Residual Gases R. Ebrahimi∗ Department of Agriculture Machine Mechanics, Shahrekord University, P.O. Box 115, Shahrekord, Iran (Received March 26, 2013; in nal form April 17, 2013) The performance of an air standard Atkinson cycle is analyzed using nite-time thermodynamics. The results show that if the compression ratio is less than a certain value, the power output increases with increasing relative airfuel ratio, while if the compression ratio exceeds a certain value, the power output rst increases and then starts to decrease with increase of relative airfuel ratio. With a further increase in compression ratio, the increase in relative airfuel ratio results in decrease of the power output. Throughout the compression ratio range, the power output increases with increase of fuel mass ow rate. The results also show that if the compression ratio is less than a certain value, the power output increases with increase of residual gases, on the contrast, if the compression ratio exceeds a certain value, the power output decreases with increase of residual gases. The results obtained herein can provide guidance for the design of practical Atkinson engines. DOI: 10.12693/APhysPolA.124.29 PACS: 05.70.Ln, 82.60.Fa, 88.05.−b 1. Introduction formance of an air standard Atkinson cycle under the re- striction of the maximum cycle temperature. The results The Atkinson cycle is a type of internal combustion show that the power output as well as the eciency, for engine, which was designed and built by a British engi- which the maximum power-output occurs, will rise with neer James Atkinson in 1882. The cycle is also called the the increase of maximum cycle temperature. Sargent cycle by several physics-oriented thermodynamic The temperature dependent specic heats of the work- books. The Atkinson cycle engine mainly works at part ing uid have a signicant inuence on the performance. load operating conditions especially in the middle to high Chen et al. [17] built a class of generalized irreversible load range when it is used in a hybrid vehicle [1]. For ex- universal steady ow heat engine cycle model consist- ample, Toyota in its Prius II uses a spark ignition engine ing of two heating branches, two cooling branches, and which achieves high eciency by using a Atkinson cycle two adiabatic branches with consideration of the losses of based on variable valve timing management [2]. heat resistance, heat leakage, and internal irreversibility. In the last two decades there have been many eorts in The performance characteristics of Diesel, Otto, Brayton, developing nite-time thermodynamics [37]. Several au- Atkinson, dual and Miller cycles were derived. thors have examined the nite-time thermodynamic per- Thermodynamic analysis of an ideal air standard formance of the reciprocating heat engines [811]. Le Atkinson cycle with temperature dependent specic heat [12] determined the thermal eciency of a reversible is presented by Al-Sarkhi et al. [18]. This paper outlines Atkinson engine cycle at maximum work output. Ge the eect of maximizing power density on the perfor- et al. [13, 14] studied the eect of variable specic heat mance of the cycle eciency. Chen et al. [19] analyzed of the working uid on the performance of endoreversible the performance characteristics of endoreversible and ir- and irreversible Atkinson cycles. Hou [15] compared the reversible reciprocating Diesel, Otto, Atkinson, Brayton, performances of air standard Atkinson and Otto cycles Braysson, Carnot, dual, and Miller cycles with constant with heat transfer loss considerations. The results show and variable specic heats of the working uid. Ust [20] that the Atkinson cycle has a greater work output and a made a comparative performance analysis and optimiza- higher thermal eciency than the Otto cycle at the same tion of irreversible Atkinson cycle under maximum power operating condition. density and maximum power conditions. It is shown that The compression ratios that maximize the work of the for the Atkinson cycle, a design based on the maximum Otto cycle are always found to be higher than those for power density conditions is more advantageous from the the Atkinson cycle at the same operating conditions. Lin point of view of engine sizes and thermal eciency. Liu and Hou [16] investigated the eects of heat loss, as char- and Chen [21] investigated the inuence of variable heat acterized by a percentage of fuel's energy, friction and capacities of the working uid, heat leak losses, com- variable specic heats of the working uid, on the per- pression and expansion eciencies and other parame- ters on the optimal performance of the Otto, Brayton, Miller, Diesel and Atkinson cycles. Ebrahimi [22] ana- lyzed the eects of the variable residual gases of working ∗e-mail: [email protected] uid on the performance of an endoreversible Atkinson cycle. Ebrahimi [23] also investigated the eects of the (29) 30 R. Ebrahimi h i h i mean piston speed, the equivalence ratio and the cylinder ma ma (1−xr) λ m sCva + Cvf + xrCvr 1+λ m s wall temperature on the performance of an irreversible C = f f vt m Atkinson cycle. On the basis of research workers [1223], 1 + λ a mf s (4) eects of relative airfuel ratio, fuel mass ow rate and where , and are the mass specic heat at con- residual gases on the performance of the air standard Cva Cvf Cvr stant volume for air, fuel and residual gases, respectively. Atkinson cycle are derived in this paper. The mass specic heat at constant pressure for the working uid ( ) is dened as: 2. Thermodynamic analysis Cpt h i h i ma ma (1−xr) λ m sCpa + Cpf + xrCpr 1+λ m s The pressurevolume (P V ) and the temperature C = f f pt m entropy ( ) diagrams of an irreversible Atkinson heat 1+λ a T S mf s (5) engine is shown in Fig. 1, where T , T , T , T , T , 1 2s 2 3 4 where , and are the mass specic heat at and T are the temperatures of the working substance Cpa Cpf Cpr 4s constant pressure for air, fuel and residual gases, respec- in state points 1, 2s, 2, 3, 4, and 4s. Process 1 ! 2s is tively. a reversible adiabatic compression, while process 1 ! 2 is an irreversible adiabatic process that takes into ac- The heat added per second in the isochoric (2 ! 3) count the internal irreversibility in the real compression heat addition process may be written as process. Heat addition is an isochoric process 2 ! 3. Q_ in =m _ tCvt(T3 − T2) Process s is a reversible adiabatic expansion, while 3 ! 4 n h i is an irreversible adiabatic process that takes into ma 3 ! 4 =m _ f (1−xr) λ m sCva + Cvf account the internal irreversibility in the real expansion f h i oT − T ma 3 2 process. The heat-removing process is the reversible con- +xrCvr 1+λ (6) mf s stant pressure 4 ! 1. 1−xr where T is the absolute temperature. The heat rejected in the isobaric heat rejection process (4 ! 1) may be written as n ma Q_ out =m _ tCpt(T4 − T1) =m _ f (1−xr) λ Cpa mf s oT4 − T1 ma (7) +Cpf + xrCpr 1+λ m s : f 1−xr The total energy of the fuel per second input into the engine, of a gasoline type fuel, such as octane, can be expressed in terms of equivalence ratio factor from mea- sured data as [25, 26]: Q_ fuel = ηcomm_ f QLHV = (−1:44738 + 4:18581λ Fig. 1. (a) diagram, (b) diagram for the air P V T S 2 standard Atkinson cycle. −1:86876λ )_mf QLHV; (8) where ηcom is the combustion eciency, QLHV is the The relations between the mass ow rate of the fuel lower caloric value of the fuel. (m_ f ) and the mass ow rate of the air (m_ a), between m_ f Besides the irreversibility of the adiabatic processes, and the mass ow rate of the airfuel mixture (m_ t) are the heat transfer irreversibility between the working uid dened as [24, 25]: and the cylinder wall is not negligible. ma For an ideal Atkinson cycle model, there are no heat m_ a =m _ f λ (1) mf s and transfer losses. However, for a real Atkinson cycle, heat h i transfer irreversibility between the working uid and the ma m_ f 1+λ cylinder wall is not negligible. If the heat leakage coe- mf s (2) m_ t = ; cient of the cylinder wall is , the heat loss through the 1−xr B cylinder wall is given in the following linear expression where ma=mf is the airfuel ratio and the subscript s denotes stoichiometric conditions, λ is the relative air [19, 25]: fuel ratio and is the residual fraction from the previous h i xr ma Q_ ht =m _ tB(T2 + T3 − 2T0) =m _ f B 1+λ cycle, and one can nd it as mf s mr T2 + T3 − 2T0 xr = ; (3) × : (9) ma + mf + mr 1−xr where mr is the mass of residual gases. It should be noted It is assumed that the heat loss through the cylinder wall here that the residual gases were assumed to consist of is proportional to the average temperature of both the CO2,H2O and N2. working uid and the cylinder wall and that the wall tem- The mass specic heat at constant volume for the perature is constant at T0. Equation (9) implies the fact working uid (Cvt) is dened as: that there is a heat leak loss in the combustion process.
Recommended publications
  • Benchmarking a 2018 Toyota Camry 2.5L Atkinson Cycle Engine With
    Downloaded from SAE International by John Kargul, Thursday, April 04, 2019 2019-01-0249 Published 02 Apr 2019 Benchmarking a 2018 Toyota Camry 2.5-Liter INTERNATIONAL. Atkinson Cycle Engine with Cooled-EGR John Kargul, Mark Stuhldreher, Daniel Barba, Charles Schenk, Stanislav Bohac, Joseph McDonald, and Paul Dekraker US Environmental Protection Agency Josh Alden Southwest Research Institute Citation: Kargul, J., Stuhldreher, M., Barba, D., Schenk, C. et al., “Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR,” SAE Technical Paper 2019-01-0249, 2019, doi:10.4271/2019-01-0249. Abstract idle, low, medium, and high load engine operation. Motoring s part of the U.S. Environmental Protection Agency’s torque, wide open throttle (WOT) torque and fuel consumption (EPA’s) continuing assessment of advanced light-duty are measured during transient operation using both EPA Tier Aautomotive technologies in support of regulatory and 2 and Tier 3 test fuels. Te design and performance of this 2018 compliance programs, a 2018 Toyota Camry A25A-FKS 2.5-liter engine is described and compared to Toyota’s published 4-cylinder, 2.5-liter, naturally aspirated, Atkinson Cycle engine data and to EPA’s previous projections of the efciency of an with cooled exhaust gas recirculation (cEGR) was bench- Atkinson Cycle engine with cEGR. The Brake Thermal marked. Te engine was tested on an engine dynamometer Efciency (BTE) map for the Toyota A25A-FKS engine shows with and without its 8-speed automatic transmission, and with a peak efciency near 40 percent, which is the highest value of the engine wiring harness tethered to a complete vehicle parked any publicly available map for a non-hybrid production gasoline outside of the test cell.
    [Show full text]
  • Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems by Tony Ho a Dissertation
    Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems By Tony Ho A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Ralph Greif, Co-Chair Professor Samuel S. Mao, Co-Chair Professor Van P. Carey Professor Per F. Peterson Spring 2012 Abstract Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems by Tony Ho Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Ralph Greif, Co-Chair Professor Samuel S. Mao, Co-Chair The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable energy and waste heat recovery systems. A brief review of current advanced vapor power cycles including the Organic Rankine Cycle (ORC), the zeotropic Rankine cycle, the Kalina cycle, the transcritical cycle, and the trilateral flash cycle is presented. The premise and motivation for the OFC concept is that essentially by improving temperature matching to the energy reservoir stream during heat addition to the power cycle, less irreversibilities are generated and more power can be produced from a given finite thermal energy reservoir. In this study, modern equations of state explicit in Helmholtz energy such as the BACKONE equations, multi-parameter Span- Wagner equations, and the equations compiled in NIST REFPROP 8.0 were used to accurately determine thermodynamic property data for the working fluids considered. Though these equations of state tend to be significantly more complex than cubic equations both in form and computational schemes, modern Helmholtz equations provide much higher accuracy in the high pressure regions, liquid regions, and two-phase regions and also can be extended to accurately describe complex polar fluids.
    [Show full text]
  • Compression of an Ideal Gas with Temperature Dependent Specific
    Session 3666 Compression of an Ideal Gas with Temperature-Dependent Specific Heat Capacities Donald W. Mueller, Jr., Hosni I. Abu-Mulaweh Engineering Department Indiana University–Purdue University Fort Wayne Fort Wayne, IN 46805-1499, USA Overview The compression of gas in a steady-state, steady-flow (SSSF) compressor is an important topic that is addressed in virtually all engineering thermodynamics courses. A typical situation encountered is when the gas inlet conditions, temperature and pressure, are known and the compressor dis- charge pressure is specified. The traditional instructional approach is to make certain assumptions about the compression process and about the gas itself. For example, a special case often consid- ered is that the compression process is reversible and adiabatic, i.e. isentropic. The gas is usually ÊÌ considered to be ideal, i.e. ÈÚ applies, with either constant or temperature-dependent spe- cific heat capacities. The constant specific heat capacity assumption allows for direct computation of the discharge temperature, while the temperature-dependent specific heat assumption does not. In this paper, a MATLAB computer model of the compression process is presented. The substance being compressed is air which is considered to be an ideal gas with temperature-dependent specific heat capacities. Two approaches are presented to describe the temperature-dependent properties of air. The first approach is to use the ideal gas table data from Ref. [1] with a look-up interpolation scheme. The second approach is to use a curve fit with the NASA Lewis coefficients [2,3]. The computer model developed makes use of a bracketing–bisection algorithm [4] to determine the temperature of the air after compression.
    [Show full text]
  • Analysis of a CO2 Transcritical Refrigeration Cycle with a Vortex Tube Expansion
    sustainability Article Analysis of a CO2 Transcritical Refrigeration Cycle with a Vortex Tube Expansion Yefeng Liu *, Ying Sun and Danping Tang University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected] (Y.S.); [email protected] (D.T.) * Correspondence: [email protected]; Tel.: +86-21-55272320; Fax: +86-21-55272376 Received: 25 January 2019; Accepted: 19 March 2019; Published: 4 April 2019 Abstract: A carbon dioxide (CO2) refrigeration system in a transcritical cycle requires modifications to improve the coefficient of performance (COP) for energy saving. This modification has become more important with the system’s more and more widely used applications in heat pump water heaters, automotive air conditioning, and space heating. In this paper, a single vortex tube is proposed to replace the expansion valve of a traditional CO2 transcritical refrigeration system to reduce irreversible loss and improve the COP. The principle of the proposed system is introduced and analyzed: Its mathematical model was developed to simulate and compare the system performance to the traditional system. The results showed that the proposed system could save energy, and the vortex tube inlet temperature and discharge pressure had significant impacts on COP improvement. When the vortex tube inlet temperature was 45 ◦C, and the discharge pressure was 9 MPa, the COP increased 33.7%. When the isentropic efficiency or cold mass fraction of the vortex tube increased, the COP increased about 10%. When the evaporation temperature or the cooling water inlet temperature of the desuperheater decreased, the COP also could increase about 10%. The optimal discharge pressure correlation of the proposed system was established, and its influences on COP improvement are discussed.
    [Show full text]
  • Eindhoven University of Technology MASTER Counterflow Pulse-Tube
    Eindhoven University of Technology MASTER Counterflow pulse-tube refrigerator Franssen, R.J.M. Award date: 2001 Link to publication Disclaimer This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain Technische Universiteit Eindhoven Faculteit Technische Natuurkunde Capaciteitsgroep Lage Temperaturen Counterflow pulse-tube refrigerator R.J.M. Franssen Prof. Dr. A.T.A.M. de Waele (supervisor and coach) May 2001 Abstract Abstract In this report we discuss a new type of pulse-tube refrigerator. A pulse-tube refrigerator is a cooler with no moving parts in the cold region. This has the advantage that the cooler is simpler and more reliable, and it also reduces vibrations, which is useful in several applications.
    [Show full text]
  • Hybrid Electric Vehicles: a Review of Existing Configurations and Thermodynamic Cycles
    Review Hybrid Electric Vehicles: A Review of Existing Configurations and Thermodynamic Cycles Rogelio León , Christian Montaleza , José Luis Maldonado , Marcos Tostado-Véliz * and Francisco Jurado Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain; [email protected] (R.L.); [email protected] (C.M.); [email protected] (J.L.M.); [email protected] (F.J.) * Correspondence: [email protected]; Tel.: +34-953-648580 Abstract: The mobility industry has experienced a fast evolution towards electric-based transport in recent years. Recently, hybrid electric vehicles, which combine electric and conventional combustion systems, have become the most popular alternative by far. This is due to longer autonomy and more extended refueling networks in comparison with the recharging points system, which is still quite limited in some countries. This paper aims to conduct a literature review on thermodynamic models of heat engines used in hybrid electric vehicles and their respective configurations for series, parallel and mixed powertrain. It will discuss the most important models of thermal energy in combustion engines such as the Otto, Atkinson and Miller cycles which are widely used in commercial hybrid electric vehicle models. In short, this work aims at serving as an illustrative but descriptive document, which may be valuable for multiple research and academic purposes. Keywords: hybrid electric vehicle; ignition engines; thermodynamic models; autonomy; hybrid configuration series-parallel-mixed; hybridization; micro-hybrid; mild-hybrid; full-hybrid Citation: León, R.; Montaleza, C.; Maldonado, J.L.; Tostado-Véliz, M.; Jurado, F. Hybrid Electric Vehicles: A Review of Existing Configurations 1. Introduction and Thermodynamic Cycles.
    [Show full text]
  • RECIPROCATING ENGINES Franck Nicolleau
    RECIPROCATING ENGINES Franck Nicolleau To cite this version: Franck Nicolleau. RECIPROCATING ENGINES. Master. RECIPROCATING ENGINES, Sheffield, United Kingdom. 2010, pp.189. cel-01548212 HAL Id: cel-01548212 https://hal.archives-ouvertes.fr/cel-01548212 Submitted on 27 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Mechanical Engineering - 14 May 2010 -1- UNIVERSITY OF SHEFFIELD Department of Mechanical Engineering Mappin street, Sheffield, S1 3JD, England RECIPROCATING ENGINES Autumn Semester 2010 MEC403 - MEng, semester 7 - MEC6403 - MSc(Res) Dr. F. C. G. A. Nicolleau MD54 Telephone: +44 (0)114 22 27700. Direct Line: +44 (0)114 22 27867 Fax: +44 (0)114 22 27890 email: F.Nicolleau@sheffield.ac.uk http://www.shef.ac.uk/mecheng/mecheng cms/staff/fcgan/ MEng 4th year Course Tutor : Pr N. Qin European and Year Abroad Tutor : C. Pinna MSc(Res) and MPhil Course Director : F. C. G. A. Nicolleau c 2010 F C G A Nicolleau, The University of Sheffield -2- Combustion engines Table of content -3- Table of content Table of content 3 Nomenclature 9 Introduction 13 Acknowledgement 16 I - Introduction and Fundamentals of combustion 17 1 Introduction to combustion engines 19 1.1 Pistonengines..................................
    [Show full text]
  • Efficiency of Atkinson Engine at Maximum Power Density Using Temperature Dependent Specific Heats
    Volume 2, Number 2, Jun. 2008 ISSN 1995-6665 JJMIE Pages 71 - 75 Jordan Journal of Mechanical and Industrial Engineering Efficiency of Atkinson Engine at Maximum Power Density using Temperature Dependent Specific Heats A. Al-Sarkhi, B. Akash *, E. Abu-Nada and I. Al-Hinti Department of Mechanical Engineering, Hashemite University, Zarqa, 13115, Jordan Abstract Thermodynamic analysis of an ideal air-standard Atkinson cycle with temperature dependant specific heat is presented in this paper. The paper outlines the effect of maximizing power density on the performance of the cycle efficiency. The power density is defined as the ratio of the power output to the maximum cycle specific volume. It showed significant effect on the performance of the cycle over the constant specific heat model. The results obtained from this work can be helpful in the thermodynamic modeling and in the evaluation of real Atkinson engines over other engines. © 2008 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved Keywords: Atkinson engine; power density; temperature dependant specific heat; specific heats of air (the working fluid) were used. The maximization of the power density is defined as the ratio 1. Introduction of the maximum power to the maximum specific volume in the cycle. It takes into consideration the engine size The Atkinson cycle (the complete expansion cycle) is instead of just maximizing its power output. The inclusion named after its inventor James Atkinson in 1882 [1]. As of the engine size in the calculation of its performance is a shown in Fig. 1, the cycle involves isentropic compression very important factor from an economical point of view.
    [Show full text]
  • Performance Analysis of an Atkinson Cycle Engine Under Effective Power
    Vol. 132 (2017) ACTA PHYSICA POLONICA A No. 4 Performance Analysis of an Atkinson Cycle Engine under Effective Power and Effective Power Density Conditions G. Gonca∗ Yildiz Technical University, Naval Arch. and Marine Eng. Depart., Besiktas, Istanbul, Turkey (Received November 16, 2016; in final form May 20, 2017) This study presents performance optimization of an Atkinson cycle engine using criteria named as effective power and effective power density conditions. The effects of design and operating parameters such as compression ratio, cycle pressure ratio, cycle temperature ratio, equivalence ratio, bore/stroke ratio, inlet temperature, inlet pressure, engine speed, friction coefficient, mean piston speed and stroke length, on the performance characteristics have been examined. Moreover, the energy losses have been determined as fuel energy and they have been classified as incomplete combustion losses, friction losses, heat transfer losses, and exhaust output losses. Realistic values of specific heats have been used depending on temperature of working fluid. The results of the study can be assessed as an engineering tool by the Atkinson cycle engine designers. DOI: 10.12693/APhysPolA.132.1306 PACS/topics: gasoline engine, Atkinson cycle, engine performance, power density, finite-time thermodynamics 1. Introduction on artificial neural network technique. Gahruei et al. [28] compared the performances of dual Diesel cycle and dual In the recent years, the researchers carried out several AC based on the FTT by considering irreversible energy studies [1–21] on the Miller cycle (MC) engine to dimin- losses. It was observed from the results that the perfor- ish NOx emissions by reducing the maximum combus- mance of dual AC are higher than that of dual Diesel tion temperatures of the engines.
    [Show full text]
  • Thermodynamics of Power Generation
    THERMAL MACHINES AND HEAT ENGINES Thermal machines ......................................................................................................................................... 1 The heat engine ......................................................................................................................................... 2 What it is ............................................................................................................................................... 2 What it is for ......................................................................................................................................... 2 Thermal aspects of heat engines ........................................................................................................... 3 Carnot cycle .............................................................................................................................................. 3 Gas power cycles ...................................................................................................................................... 4 Otto cycle .............................................................................................................................................. 5 Diesel cycle ........................................................................................................................................... 8 Brayton cycle .....................................................................................................................................
    [Show full text]
  • Atkinson Engine - Stop/Start Systems
    A survey of state-of-the-art fuel efficiency ATKINSON CYCLE ENGINES & technologies and designs for passenger cars STOP-START SYSTEMS Driving Automotive Innovation Conference Washington DC, September 13th, 2016 V 1.13 Dr. Dean Tomazic, Executive VP & CTO, FEV North America, Inc. © by FEV – all rights reserved. Confidential – no passing on to third parties Agenda n Introduction n Development Trends - Atkinson Engine - Stop/Start Systems n Summary V 1.13 © by FEV – all rights reserved. Confidential – no passing on to third parties | 2 Development Trends Engines ATKINSON ENGINE & STOP-START TECHNOLOGY Atkinson Engine Technology n Current conventional engines exhibit efficiency losses due to incomplete in-cylinder expansion n Atkinson cycle increases efficiency at expense of power density n Changes to the engines’ valve timing and compression ratio mitigate these losses n Max. engine efficiency demonstrated in field: up to 40% (Toyota Prius) James Atkinson Patent (1882) Stop-Start Technology n Current conventional engines continue running while vehicle is not moving à waste of fuel n Mechanism to shut off engine when not used and turn it back on quickly is highly desired n Stop-start systems allow to only operate the engine when needed to propel the vehicle n System is directly attached to the engine and hence relatively simple n Impressive improvements in overall fuel consumption demonstrated in the field V 1.13 Source: FEV research © by FEV – all rights reserved. Confidential – no passing on to third parties | 3 Development Trends Engines
    [Show full text]
  • Review of the Fundamentals Thermal Sciences
    Review of the Fundamentals Reading Problems Review Chapter 3 and property tables More specifically, look at: 3.2 ! 3.4, 3.6, 3.7, 8.4, 8.5, 8.6, 8.8 Thermal Sciences The thermal sciences involve the storage, transfer and conversion of energy. Thermodynamics HeatTransfer Conservationofmass Conduction Conservationofenergy Convection Secondlawofthermodynamics Radiation HeatTransfer Properties Conjugate Thermal Thermodynamics Systems Engineering FluidsMechanics FluidMechanics Fluidstatics Conservationofmomentum Mechanicalenergyequation Modeling Thermodynamics: the study of energy, energy transformations and its relation to matter. The anal- ysis of thermal systems is achieved through the application of the governing conservation equations, namely Conservation of Mass, Conservation of Energy (1st law of thermodynam- ics), the 2nd law of thermodynamics and the property relations. Heat Transfer: the study of energy in transit including the relationship between energy, matter, space and time. The three principal modes of heat transfer examined are conduction, con- vection and radiation, where all three modes are affected by the thermophysical properties, geometrical constraints and the temperatures associated with the heat sources and sinks used to drive heat transfer. Fluid Mechanics: the study of fluids at rest or in motion. While this course will not deal exten- sively with fluid mechanics we will be influenced by the governing equations for fluid flow, namely Conservation of Momentum and Conservation of Mass. 1 Examples of Energy Conversion windmills
    [Show full text]