Crustacea: Tanaidacea) from Japan, with Remarks on the Functions of Serial Ridges and Title Grooves on the Appendages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Malacostracan Fauna of Two Arctic Fjords (West Spitsbergen): the Diversity And
+ Models OCEANO-95; No. of Pages 24 Oceanologia (2017) xxx, xxx—xxx Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE The malacostracan fauna of two Arctic fjords (west Spitsbergen): the diversity and distribution patterns of its pelagic and benthic components Joanna Legeżyńska *, Maria Włodarska-Kowalczuk, Marta Gluchowska, Mateusz Ormańczyk, Monika Kędra, Jan Marcin Węsławski Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland Received 14 July 2016; accepted 6 January 2017 KEYWORDS Summary This study examines the performance of pelagic and benthic Malacostraca in two Malacostraca; glacial fjords of west Spitsbergen: Kongsfjorden, strongly influenced by warm Atlantic waters, Arctic; and Hornsund which, because of the strong impact of the cold Sørkapp Current, has more of Svalbard; an Arctic character. The material was collected during 12 summer expeditions organized from Diversity; 1997 to 2013. In all, 24 pelagic and 116 benthic taxa were recorded, most of them widely Distribution distributed Arctic-boreal species. The advection of different water masses from the shelf had a direct impact on the structure of the pelagic Malacostraca communities, resulting in the clear dominance of the sub-arctic hyperiid amphipod Themisto abyssorum in Kongsfjorden and the great abundance of Decapoda larvae in Hornsund. The taxonomic, functional and size compositions of the benthic malacostracan assemblages varied between the two fjords, and also between the glacier-proximate inner bays and the main fjord basins, as a result of the varying dominance patterns of the same assemblage of species. There was a significant drop in species richness in the strongly disturbed glacial bays of both fjords, but only in Hornsund was this accompanied by a significant decrease in density and diversity, probably due to greater isolation and poorer quality of sediment organic matter in its innermost basin. -
11 Kak&Ang Pg 421-432.Indd
CONTENTS 2012 ZOOLOGY THE RAFFLES BULLETIN OF (continued from front cover) The taxonomy of the slipper lobster Chelarctus cultrifer (Ortmann, 1897) (Crustacea: Decapoda: Scyllaridae), with description of a The Raffles Bulletin new species. Chien-Hui Yang and Tin-Yam Chan .......................................................................................................................... 449 On a new species of Phricotelphusa Alcock, 1909, from a limestone cave in Perlis, Peninsular Malaysia (Crustacea: Decapoda: Brachyura: Gecarcinucidae). Peter K. L. Ng and Patrick K. Y. Lee ............................................................................................... 461 of Zoology Pelvic-fi n brooding in a new species of riverine ricefi sh (Atherinomorpha: Beloniformes: Adrianichthyidae) from Tana Toraja, Central Sulawesi, Indonesia. Fabian Herder, Renny Kurnia Hadiaty and Arne W. Nolte ....................................................................... 467 Nomorhamphus rex, a new species of viviparous halfbeak (Atherinomorpha: Beloniformes: Zenarchopteridae) endemic to Sulawesi Selatan, Indonesia. Jan Huylebrouck, Renny Kurnia Hadiaty and Fabian Herder .................................................................... 477 An International Journal of Southeast Asian Zoology Cyrtodactylus majulah, a new species of bent-toed gecko (Reptilia: Squamata: Gekkonidae) from Singapore and the Riau Archipelago. L. Lee Grismer, Perry L. Wood, Jr. and Kelvin K. P. Lim .......................................................................................................... -
Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come?
The University of Southern Mississippi The Aquila Digital Community Faculty Publications 4-1-2012 Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come? Gary Anderson University of Southern Mississippi, [email protected] Magdalena Blazewicz-Paszkowycz University of Łódź, [email protected] Roger Bamber Artoo Marine Biology Consultants, [email protected] Follow this and additional works at: https://aquila.usm.edu/fac_pubs Part of the Marine Biology Commons Recommended Citation Anderson, G., Blazewicz-Paszkowycz, M., Bamber, R. (2012). Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans - How Far Have We Come?. PLoS One, 7(4), 1-11. Available at: https://aquila.usm.edu/fac_pubs/160 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Diversity of Tanaidacea (Crustacea: Peracarida) in the World’s Oceans – How Far Have We Come? Magdalena Blazewicz-Paszkowycz1*, Roger Bamber2, Gary Anderson3 1 Department of Polar Biology and Oceanobiology, University of Ło´dz´,Ło´dz´, Poland, 2 Artoo Marine Biology Consultants, Ocean Quay Marina, Southampton, Hants, United Kingdom, 3 Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America Abstract Tanaidaceans are small peracarid crustaceans which occur in all marine habitats, over the full range of depths, and rarely into fresh waters. Yet they have no obligate dispersive phase in their life-cycle. Populations are thus inevitably isolated, and allopatric speciation and high regional diversity are inevitable; cosmopolitan distributions are considered to be unlikely or non-existent. -
Of the Gulf of Mexico. IV. on Nototanoides Trifurcatus Gen. Nov., Sp
Gulf and Caribbean Research Volume 8 Issue 1 January 1985 Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. IV. On Nototanoides trifurcatus Gen. Nov., Sp. Nov., with a Key to the Genera of the Nototanaidae Jurgen Sieg Universitat Osnabruck Richard W. Heard Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Sieg, J. and R. W. Heard. 1985. Tanaidacea (Crustacea: Peracardia) of the Gulf of Mexico. IV. On Nototanoides trifurcatus Gen. Nov., Sp. Nov., with a Key to the Genera of the Nototanaidae. Gulf Research Reports 8 (1): 51-62. Retrieved from https://aquila.usm.edu/gcr/vol8/iss1/8 DOI: https://doi.org/10.18785/grr.0801.08 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. GulfResearch Reports, Vol. 8, No. 1,51-62, 1985 TANAIDACEA (CRUSTACEA: PERACARIDA) OF THE GULF OF MEXICO. IV. ON NOTOTANOIDES TRIFURCATUS GEN. NOV., SP. NOV., WITH A KEY TO THE GENERA OF THE NOTOTANAIDAE JURGENSIEG’ AND RICHARD w. HEARD’ Universitiit Osnabriick, Abt. Vechta, Driverstrape 22,0-2848 Vechta, Federal Republic of Germany ’Parasitology Section, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 ABSTRACT Nototanoides trifurcatus gen. nov., sp. nov. is described and illustrated from the Gulf of Mexico. Nototan- oides differs from the other genera of the family by the male possessing a vestigial maxilliped. -
An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department. -
Benthic Field Guide 5.5.Indb
Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification. -
Crustacea: Tanaidacea) from Japan, with the Description of a New Species of Nototanoides
Species Diversity 18: 245–254 Nototanaids from Japan 245 25 November 2013 DOI: 10.12782/sd.18.2.245 Nototanaids (Crustacea: Tanaidacea) from Japan, with the Description of a New Species of Nototanoides Keiichi Kakui1,3 and Hiroshi Yamasaki2 1 Department of Natural History Sciences, Faculty of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan E-mail: [email protected] 2 Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 3 Corresponding author (Received 10 July 2013; Accepted 30 October 2013) We describe a new nototanaid, Nototanoides ohtsukai sp. nov., based on specimens from the Yaku-Shin-Sone Bank, Nansei Archipelago, southern Japan (North Pacific Ocean). This species differs from its only congener, N. trifurcatus Sieg and Heard, 1985, in having a short distal article in the antennule and in the position of a row of aesthetascs on that article. We also present a partial redescription of the nototanaid Paranesotanais longicephalus Larsen and Shimomura, 2008 and a key to the genera of the families Nototanaidae and Tanaissuidae. Key Words: Nototanaidae, Nototanoides, Paranesotanais, Tanaissuidae, new species, key, Japan. been collected from Iriomote and Amami-Oshima Islands Introduction (Fig. 1B; Kakui et al. 2010; Kakui unpubl. data). The other is Paranesotanais longicephalus Larsen and Shimomura, 2008 The family Nototanaidae consists of seven genera and (the only species in its genus), which was described from a eleven species (Anderson 2013). Except for the species of shallow subtidal bottom around Aka Island, Kerama Islands Stachyops and Nototanais, nototanaids have generally been (Fig. 1B; see Larsen and Shimomura 2008). reported from tropical and subtropical regions (Fig. -
Diversity of Tanaidacea (Crustacea: Peracarida) in the World’S Oceans – How Far Have We Come?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Diversity of Tanaidacea (Crustacea: Peracarida) in the World’s Oceans – How Far Have We Come? Magdalena Blazewicz-Paszkowycz1*, Roger Bamber2, Gary Anderson3 1 Department of Polar Biology and Oceanobiology, University of Ło´dz´,Ło´dz´, Poland, 2 Artoo Marine Biology Consultants, Ocean Quay Marina, Southampton, Hants, United Kingdom, 3 Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America Abstract Tanaidaceans are small peracarid crustaceans which occur in all marine habitats, over the full range of depths, and rarely into fresh waters. Yet they have no obligate dispersive phase in their life-cycle. Populations are thus inevitably isolated, and allopatric speciation and high regional diversity are inevitable; cosmopolitan distributions are considered to be unlikely or non-existent. Options for passive dispersion are discussed. Tanaidaceans appear to have first evolved in shallow waters, the region of greatest diversification of the Apseudomorpha and some tanaidomorph families, while in deeper waters the apseudomorphs have subsequently evolved two or three distinct phyletic lines. The Neotanaidomorpha has evolved separately and diversified globally in deep waters, and the Tanaidomorpha has undergone the greatest evolution, diversification and adaptation, to the point where some of the deep-water taxa are recolonizing shallow waters. Analysis of their geographic distribution shows some level of regional isolation, but suffers from inclusion of polyphyletic taxa and a general lack of data, particularly for deep waters. It is concluded that the diversity of the tanaidomorphs in deeper waters and in certain ocean regions remains to be discovered; that the smaller taxa are largely understudied; and that numerous cryptic species remain to be distinguished. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
Tube-Constructing Paratanaoidean Tanaidaceans (Crustacea: Peracarida): a Brief Review
⽔⽣動物 第 2021 巻 令和 3 年 2 ⽉ Tube-constructing paratanaoidean tanaidaceans (Crustacea: Peracarida): a brief review Keiichi Kakui Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. e-mail: [email protected], Tel: +81-11-706-2750. Abstract This study summarizes previous reports of tubes constructed with thread or mucus by paratanaoidean tanaidaceans. A literature survey found 34 genera in 14 extant families to contain species with for which information exists on tubes, whereas five families (Akanthophoreidae, Heterotanoididae, Paranarthrurellidae, Pseudozeuxidae, and Teleotanaidae) lacked any records of tube-use. Key words: benthos; Paratanaoidea; Tanaidacea; Tanaidomorpha; thread; tube dweller Tanaidacea is an order of benthic crustaceans 2015), but actual observations of their tubes have that contains about 1500 described species been restricted to a few groups. Hassack and worldwide (Anderson 2020) and comprises five Holdich (1987), in a review that included previous superfamilies (Apseudoidea, Cretitanaoidea, records of tube construction in Tanaidacea as well Neotanaoidea, Paratanaoidea, and Tanaidoidea) in as new observations from fixed samples, found that three suborders (Anthracocaridomorpha, twelve paratanaoidean genera included tube- Apseudomorpha, and Tanaidomorpha) (Kakui et al. constructing species. Several papers subsequently 2011; Heard et al. 2020). Many tanaidaceans reported additional paratanaoideans having tubes. construct tubes with thread or mucus in bottom My literature survey detected 34 genera in 14 sediments and on biotic or abiotic substrata extant families that contain species for which (Larsen 2005; Kakui 2016; hereafter ‘tube- information exists on tubes (Table 1); Fig. 1 shows dwellers’); in some groups, one or both ends of two examples of paratanaoidean tubes. Several tubes can be sealed (Hassack and Holdich 1987). -
Diversity of Subantarctic Tanaidacea (Crustacea, Malacostraca) in and Off the Beagle Channel
POLISH POLAR RESEARCH 22 3-4 213-226 2001 Anja SCHMIDT and Angelika BRANDT Zoological Institute and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, GERMANY e-mail: [email protected] Diversity of Subantarctic Tanaidacea (Crustacea, Malacostraca) in and off the Beagle Channel ABSTRACT: In November 1994 a first inventory of Tanaidacea from the Beagle Channel and at some stations of the Atlantic continental shelfwas obtained using epibenthic sledge samples. In total, 2175 specimens from 27 species of eight families of Tanaidomorpha and two families of Apseudomorpha were collected. Two species, Allotanais hirstutus (Beddard, 1886) and Apseudes heroae Sieg, 1986, strongly dominated this area. Generally low diversity and abun dances were recorded for the western area of the Beagle Channel, while substantially higher val ues were reported at the eastern entrance on the Atlantic side of the Beagle Channel. Abundances slightly varied with depths, but not significantly. Key words: Beagle Channel, Tanaidacea, Peracarida, species numbers, abundances. Introduction The Beagle Channel is the southernmost South American fjord and belongs to the Magellanic area. Due to its relative proximity to the Antarctic Peninsula and the geological history of Tierra del Fuego, the Scotia Arc and the Antarctic Penin sula, the Beagle Channel is an interesting geographic area for faunistic compari sons of South America and Antarctica. Tanaidacea are an almost exclusively marine order with increasing diversity in the deep sea. The small size of these animals (2-3 mm length) is probably one rea son why this taxon was often neglected or overlooked in the past; other sources of error might have been due to too large mesh sizes of trawled gear used. -
Zootaxa,Family Incertae Cedis
Zootaxa 1599: 121–149 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Family incertae cedis * GRAHAM J BIRD Valley View, 8 Shotover Grove, Waikanae, Kapiti Coast, 5036, New Zealand. E-mail: [email protected] * In: Larsen, K. & Shimomura, M. (Eds.) (2007) Tanaidacea (Crustacea: Peracarida) from Japan III. The deep trenches; the Kurile- Kamchatka Trench and Japan Trench. Zootaxa, 1599, 1–149. Abstract A heterogeneous collection of tanaidomorphan species that are no longer assigned to existing families is recorded in the Kurile-Kamchatka Trench and the Japan Trench, belonging to six genera: Akanthophoreus, Chauliopleona, Exspina, Leptognathia sensu lato, Leptognathioides and Robustochelia. Three new species of Akanthophoreus Sieg, 1986 are described, and four putative taxa are outlined to facilitate consistent identification in future studies. Key words: Tanaidacea, Akanthophoreus, Chauliopleona, Exspina, Leptognathia, Leptognathioides, Robustochelia, Kurile-Kamchatka Trench, the Japan Trench Introduction Complexity, instability and seemingly irreducible inconsistency have characterized the taxonomy of tanaido- morphan tanaidaceans for many years, especially at family level (Larsen & Wilson 2002). The longest period of stability existed for about thirteen years, between the writings of Sieg (1973 - or 1976 for published date) and Sieg (1986a), after which a new classification was established. For the family Leptognathiidae sensu Sieg, 1973, this was largely, although not solely, based on an analysis of pereopod setation, in particular the pres- ence or absence of spiniform setae, or ’spines’, on the carpus of pereopod 1 (Sieg 1986a); this resulted in the establishment of two subfamilies (Akanthophoreinae Sieg, 1986a and Leptognathiinae Sieg, 1973) within a greatly expanded Anarthruridae Lang, 1971.