Bayesian Models and Methods in Public Policy and Government

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Models and Methods in Public Policy and Government Statistical Science 2011, Vol. 26, No. 2, 212–226 DOI: 10.1214/10-STS331 c Institute of Mathematical Statistics, 2011 Bayesian Models and Methods in Public Policy and Government Settings1 Stephen E. Fienberg Abstract. Starting with the neo-Bayesian revival of the 1950s, many statisticians argued that it was inappropriate to use Bayesian meth- ods, and in particular subjective Bayesian methods in governmental and public policy settings because of their reliance upon prior distri- butions. But the Bayesian framework often provides the primary way to respond to questions raised in these settings and the numbers and diversity of Bayesian applications have grown dramatically in recent years. Through a series of examples, both historical and recent, we ar- gue that Bayesian approaches with formal and informal assessments of priors AND likelihood functions are well accepted and should become the norm in public settings. Our examples include census-taking and small area estimation, US election night forecasting, studies reported to the US Food and Drug Administration, assessing global climate change, and measuring potential declines in disability among the elderly. Key words and phrases: Census adjustment, confidentiality, disability measurement, election night forecasting, Bayesian clinical drug studies, global warming, small area estimation. 1. INTRODUCTION AND HISTORY ods in governmental settings were based primarily on descriptive statistics and there was little debate Beginning with the posthumous publication in 1763 regarding the relevance of Bayesian approaches in of the essay attributed to the Rev. Thomas Bayes, public life despite efforts at implementation, for ex- and continuing well into the twentieth century, vir- ample, Laplace’s development of ratio estimation to tually the only approach to statistical inference was estimate the size of the population of France. the method of inverse probability based on applica- arXiv:1108.2177v1 [stat.ME] 10 Aug 2011 Criticism of the method of inverse probability, as tions of Bayes’s theorem (see, e.g., Fienberg, 2006a). Bayesian methodology was known for almost Nonetheless, most applications of statistical meth- 200 years, began in the mid-19th century with the rise of a philosophical school advocating objective Stephen E. Fienberg is Maurice Falk University probability. The fundamental concern of the objec- Professor, Department of Statistics, Heinz College, tivists was the requirement for a prior distribution Machine Learning Department, and Cylab, Carnegie and they argued for a frequentist view of probabil- Mellon University, Pittsburgh, Pennsylvania 15213-3890, USA e-mail: fi[email protected]; URL: ity. Unfortunately they failed to present a method- http://www.stat.cmu.edu/fienberg/. ology for inference to counter that of inverse proba- 1Discussed in 10.1214/11-STS331A, 10.1214/11-STS331B bility and it was not until the work of R. A. Fisher and 10.1214/11-STS331C; rejoinder at and Jerzy Neyman and Egon Pearson in the 1920s 10.1214/11-STS331REJ. that serious alternative statistical procedures were This is an electronic reprint of the original article in place. Neyman’s (1934) critique of Gini’s version published by the Institute of Mathematical Statistics in of the representative method for survey taking not Statistical Science, 2011, Vol. 26, No. 2, 212–226. This only ushered the frequentist repeated sampling per- reprint differs from the original in pagination and spective into the realm of official statistics, but it typographic detail. also introduced the frequentist tool of confidence in- 1 2 S. E. FIENBERG tervals and its long-run repeated sampling interpre- use in a public context. Then in Section 3, through tation (see Fienberg and Tanur, 1996). a series of examples, both historical and recent, I ar- Bayesian tools played an important role in a num- gue that Bayesian approaches with formal and infor- ber of statistical efforts during World War II, includ- mal assessments of priors and likelihood functions ing Alan Turing’s work at Bletchley Park, England, are well accepted and should become the norm in to crack the Enigma code, but with the creation public settings. My examples include US election of such frequentist methods as sequential analysis night forecasting, census-taking and small area es- by Barnard in England and Wald in the United timation, studies reported to the US Food and Drug States and the elaboration of design-based analy- Administration, assessing global climate change, and ses in sample surveys, as statistics passed the mid- measuring declines in disability among the elderly. century mark, frequentist approaches were in the We conclude with a brief summary of challenges fac- ascendancy in the public arena. This was especially ing broader implementation of Bayesian methods in true in statistical agencies where the ideas of ran- public contexts. dom selection of samples and repeated sampling as I do not claim to be providing a comprehensive ac- the basis of inference were synonymous, and statis- count of Bayesian applications but have merely at- tical models and likelihood-based methods frowned tempted to illustrate their breadth. One area where upon at best. Bayesian ideas have made serious inroads, both in With the introduction of computers for statistical theory and in actual practice, but which we do not calculations in the 1960s, however, Bayesian meth- discuss here is the law (e.g., see Fienberg and Kada- ods began a slow but prolonged comeback that ac- ne, 1983; Donnelly, 2005; Taroni et al., 2006; Kadane, celerated substantially with the introduction of Mar- 2008). The present article includes a purposeful se- kov chain Monte Carlo (MCMC) methods in the lection of references to guide the reader to some of early 1990s. Today Bayesian methods are challeng- the relevant recent Bayesian literature on applica- ing the supremacy of the frequentist approaches in tions in the domains mentioned, but the list is far a wide array of areas of application. from comprehensive and tends to emphasize work How do the approaches differ? In frequentist infe- closest to my own. rence, tests of significance are performed by suppo- sing that a hypothesis is true (the null hypothesis) 2. THE ARGUMENTS FOR AND AGAINST and then computing the probability of observing THE USE OF BAYESIAN METHODS a statistic at least as extreme as the one actually ob- served during hypothetical future repeated trials con- Bayesian and frequentist inference in a nutshell: ditional on the parameters, that is, a p-value. Baye- It is especially convenient for the present purposes sian inference relies upon direct inferences about pa- to think about Bayes’s theorem in terms of density rameters or predictions conditional on the observa- functions. Let h(y|θ) denote the conditional density tions. In other words, frequentist statistics examines of the random variable Y given a parameter value θ the probability of the data given a model (hypoth- in the parameter space Θ. Then we can go from esis) and looks at repeated sampling properties of the prior distribution for θ, g(θ), to that associated a procedure, whereas Bayesian statistics examines with θ given Y = y, g(θ|y), by the probability of a model given the observed data. (1) g(θ|y)= h(y|θ)g(θ)/ h(y|θ)g(θ) Bayesian methodology relies largely upon Bayes’s θX∈Θ theorem for computing posterior probabilities and provides an internally consistent and coherent nor- if θ has a discrete distribution, mative methodology; frequentist methodology has (2) g(θ|y)= h(y|θ)g(θ)/ h(y|θ)g(θ) dθ no such consistent normative framework. Freedman ZΘ (1995) gave an overview of these philosophical posi- if θ has a continuous distribution. tions, but largely from a frequentist perspective that is critical of the Bayesian normative approach. Bayesians make inferences about the parameters by The remainder of the article has the following looking directly at the posterior distribution g(θ|y) structure. In the next section I give a summary of given the data y. Frequentists make inferences some of the most common and cogent criticisms of about θ indirectly by considering the repeated sam- the Bayesian method, especially with regard to its pling properties of the distribution of the data y BAYESIAN METHODS IN PUBLIC POLICY 3 given the parameter θ, that is, through h(y|θ). Baye- of the parameter, or those that are “information- sians integrate out quantities not of direct substan- less.” Berger (2006) and Goldstein (2006) presented tive interest and then are able to make probabilis- arguments in favor of the objective and subjective tic inferences from marginal distributions. Most fre- Bayesian approaches in a forum followed by exten- quentists use some form of conditioning argument sive discussion. For a discussion of the fruitlessness for inference purposes while others maximize like- of the search for an objective and informationless lihood functions. Frequentists distinguish between prior, see the article by Fienberg (2006b). random variables and parameters which they take to There are a number of other features associated be fixed and this leads to linear mixed models where with the subjective approach including the elicita- some of the effects are fixed, that is, are parameters, tion of information for the formulation of prior dis- and some are random variables. For a Bayesian all tributions and the use of exchangeability in the de- linear models are in essence random effects models velopment of successive layers of hierarchical mod- since parameters are themselves considered as ran- els. A number of the examples described in the sec- dom variables. Thus it is natural for a Bayesian to tions that follow utilize subjective Bayesian features consider them to be independent draws from a com- although not always with full elicitation. mon distribution, g(θ), that is, treating them as ex- One characteristic of Bayesian inference that weak- changeable following the original argument of de Fi- ens this criticism of the reliance on the prior dis- netti (1937).
Recommended publications
  • The Bayesian Approach to Statistics
    THE BAYESIAN APPROACH TO STATISTICS ANTHONY O’HAGAN INTRODUCTION the true nature of scientific reasoning. The fi- nal section addresses various features of modern By far the most widely taught and used statisti- Bayesian methods that provide some explanation for the rapid increase in their adoption since the cal methods in practice are those of the frequen- 1980s. tist school. The ideas of frequentist inference, as set out in Chapter 5 of this book, rest on the frequency definition of probability (Chapter 2), BAYESIAN INFERENCE and were developed in the first half of the 20th century. This chapter concerns a radically differ- We first present the basic procedures of Bayesian ent approach to statistics, the Bayesian approach, inference. which depends instead on the subjective defini- tion of probability (Chapter 3). In some respects, Bayesian methods are older than frequentist ones, Bayes’s Theorem and the Nature of Learning having been the basis of very early statistical rea- Bayesian inference is a process of learning soning as far back as the 18th century. Bayesian from data. To give substance to this statement, statistics as it is now understood, however, dates we need to identify who is doing the learning and back to the 1950s, with subsequent development what they are learning about. in the second half of the 20th century. Over that time, the Bayesian approach has steadily gained Terms and Notation ground, and is now recognized as a legitimate al- ternative to the frequentist approach. The person doing the learning is an individual This chapter is organized into three sections.
    [Show full text]
  • Scalable and Robust Bayesian Inference Via the Median Posterior
    Scalable and Robust Bayesian Inference via the Median Posterior CS 584: Big Data Analytics Material adapted from David Dunson’s talk (http://bayesian.org/sites/default/files/Dunson.pdf) & Lizhen Lin’s ICML talk (http://techtalks.tv/talks/scalable-and-robust-bayesian-inference-via-the-median-posterior/61140/) Big Data Analytics • Large (big N) and complex (big P with interactions) data are collected routinely • Both speed & generality of data analysis methods are important • Bayesian approaches offer an attractive general approach for modeling the complexity of big data • Computational intractability of posterior sampling is a major impediment to application of flexible Bayesian methods CS 584 [Spring 2016] - Ho Existing Frequentist Approaches: The Positives • Optimization-based approaches, such as ADMM or glmnet, are currently most popular for analyzing big data • General and computationally efficient • Used orders of magnitude more than Bayes methods • Can exploit distributed & cloud computing platforms • Can borrow some advantages of Bayes methods through penalties and regularization CS 584 [Spring 2016] - Ho Existing Frequentist Approaches: The Drawbacks • Such optimization-based methods do not provide measure of uncertainty • Uncertainty quantification is crucial for most applications • Scalable penalization methods focus primarily on convex optimization — greatly limits scope and puts ceiling on performance • For non-convex problems and data with complex structure, existing optimization algorithms can fail badly CS 584 [Spring 2016] -
    [Show full text]
  • 1 Estimation and Beyond in the Bayes Universe
    ISyE8843A, Brani Vidakovic Handout 7 1 Estimation and Beyond in the Bayes Universe. 1.1 Estimation No Bayes estimate can be unbiased but Bayesians are not upset! No Bayes estimate with respect to the squared error loss can be unbiased, except in a trivial case when its Bayes’ risk is 0. Suppose that for a proper prior ¼ the Bayes estimator ±¼(X) is unbiased, Xjθ (8θ)E ±¼(X) = θ: This implies that the Bayes risk is 0. The Bayes risk of ±¼(X) can be calculated as repeated expectation in two ways, θ Xjθ 2 X θjX 2 r(¼; ±¼) = E E (θ ¡ ±¼(X)) = E E (θ ¡ ±¼(X)) : Thus, conveniently choosing either EθEXjθ or EX EθjX and using the properties of conditional expectation we have, θ Xjθ 2 θ Xjθ X θjX X θjX 2 r(¼; ±¼) = E E θ ¡ E E θ±¼(X) ¡ E E θ±¼(X) + E E ±¼(X) θ Xjθ 2 θ Xjθ X θjX X θjX 2 = E E θ ¡ E θ[E ±¼(X)] ¡ E ±¼(X)E θ + E E ±¼(X) θ Xjθ 2 θ X X θjX 2 = E E θ ¡ E θ ¢ θ ¡ E ±¼(X)±¼(X) + E E ±¼(X) = 0: Bayesians are not upset. To check for its unbiasedness, the Bayes estimator is averaged with respect to the model measure (Xjθ), and one of the Bayesian commandments is: Thou shall not average with respect to sample space, unless you have Bayesian design in mind. Even frequentist agree that insisting on unbiasedness can lead to bad estimators, and that in their quest to minimize the risk by trading off between variance and bias-squared a small dosage of bias can help.
    [Show full text]
  • Introduction to Bayesian Inference and Modeling Edps 590BAY
    Introduction to Bayesian Inference and Modeling Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2019 Introduction What Why Probability Steps Example History Practice Overview ◮ What is Bayes theorem ◮ Why Bayesian analysis ◮ What is probability? ◮ Basic Steps ◮ An little example ◮ History (not all of the 705+ people that influenced development of Bayesian approach) ◮ In class work with probabilities Depending on the book that you select for this course, read either Gelman et al. Chapter 1 or Kruschke Chapters 1 & 2. C.J. Anderson (Illinois) Introduction Fall 2019 2.2/ 29 Introduction What Why Probability Steps Example History Practice Main References for Course Throughout the coures, I will take material from ◮ Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (20114). Bayesian Data Analysis, 3rd Edition. Boco Raton, FL, CRC/Taylor & Francis.** ◮ Hoff, P.D., (2009). A First Course in Bayesian Statistical Methods. NY: Sringer.** ◮ McElreath, R.M. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boco Raton, FL, CRC/Taylor & Francis. ◮ Kruschke, J.K. (2015). Doing Bayesian Data Analysis: A Tutorial with JAGS and Stan. NY: Academic Press.** ** There are e-versions these of from the UofI library. There is a verson of McElreath, but I couldn’t get if from UofI e-collection. C.J. Anderson (Illinois) Introduction Fall 2019 3.3/ 29 Introduction What Why Probability Steps Example History Practice Bayes Theorem A whole semester on this? p(y|θ)p(θ) p(θ|y)= p(y) where ◮ y is data, sample from some population.
    [Show full text]
  • Statistical Inference: Paradigms and Controversies in Historic Perspective
    Jostein Lillestøl, NHH 2014 Statistical inference: Paradigms and controversies in historic perspective 1. Five paradigms We will cover the following five lines of thought: 1. Early Bayesian inference and its revival Inverse probability – Non-informative priors – “Objective” Bayes (1763), Laplace (1774), Jeffreys (1931), Bernardo (1975) 2. Fisherian inference Evidence oriented – Likelihood – Fisher information - Necessity Fisher (1921 and later) 3. Neyman- Pearson inference Action oriented – Frequentist/Sample space – Objective Neyman (1933, 1937), Pearson (1933), Wald (1939), Lehmann (1950 and later) 4. Neo - Bayesian inference Coherent decisions - Subjective/personal De Finetti (1937), Savage (1951), Lindley (1953) 5. Likelihood inference Evidence based – likelihood profiles – likelihood ratios Barnard (1949), Birnbaum (1962), Edwards (1972) Classical inference as it has been practiced since the 1950’s is really none of these in its pure form. It is more like a pragmatic mix of 2 and 3, in particular with respect to testing of significance, pretending to be both action and evidence oriented, which is hard to fulfill in a consistent manner. To keep our minds on track we do not single out this as a separate paradigm, but will discuss this at the end. A main concern through the history of statistical inference has been to establish a sound scientific framework for the analysis of sampled data. Concepts were initially often vague and disputed, but even after their clarification, various schools of thought have at times been in strong opposition to each other. When we try to describe the approaches here, we will use the notions of today. All five paradigms of statistical inference are based on modeling the observed data x given some parameter or “state of the world” , which essentially corresponds to stating the conditional distribution f(x|(or making some assumptions about it).
    [Show full text]
  • Bayesian Inference for Median of the Lognormal Distribution K
    Journal of Modern Applied Statistical Methods Volume 15 | Issue 2 Article 32 11-1-2016 Bayesian Inference for Median of the Lognormal Distribution K. Aruna Rao SDM Degree College, Ujire, India, [email protected] Juliet Gratia D'Cunha Mangalore University, Mangalagangothri, India, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Rao, K. Aruna and D'Cunha, Juliet Gratia (2016) "Bayesian Inference for Median of the Lognormal Distribution," Journal of Modern Applied Statistical Methods: Vol. 15 : Iss. 2 , Article 32. DOI: 10.22237/jmasm/1478003400 Available at: http://digitalcommons.wayne.edu/jmasm/vol15/iss2/32 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Bayesian Inference for Median of the Lognormal Distribution Cover Page Footnote Acknowledgements The es cond author would like to thank Government of India, Ministry of Science and Technology, Department of Science and Technology, New Delhi, for sponsoring her with an INSPIRE fellowship, which enables her to carry out the research program which she has undertaken. She is much honored to be the recipient of this award. This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol15/ iss2/32 Journal of Modern Applied Statistical Methods Copyright © 2016 JMASM, Inc. November 2016, Vol. 15, No. 2, 526-535.
    [Show full text]
  • 9 Bayesian Inference
    9 Bayesian inference 1702 - 1761 9.1 Subjective probability This is probability regarded as degree of belief. A subjective probability of an event A is assessed as p if you are prepared to stake £pM to win £M and equally prepared to accept a stake of £pM to win £M. In other words ... ... the bet is fair and you are assumed to behave rationally. 9.1.1 Kolmogorov’s axioms How does subjective probability fit in with the fundamental axioms? Let A be the set of all subsets of a countable sample space Ω. Then (i) P(A) ≥ 0 for every A ∈A; (ii) P(Ω)=1; 83 (iii) If {Aλ : λ ∈ Λ} is a countable set of mutually exclusive events belonging to A,then P Aλ = P (Aλ) . λ∈Λ λ∈Λ Obviously the subjective interpretation has no difficulty in conforming with (i) and (ii). (iii) is slightly less obvious. Suppose we have 2 events A and B such that A ∩ B = ∅. Consider a stake of £pAM to win £M if A occurs and a stake £pB M to win £M if B occurs. The total stake for bets on A or B occurring is £pAM+ £pBM to win £M if A or B occurs. Thus we have £(pA + pB)M to win £M and so P (A ∪ B)=P(A)+P(B) 9.1.2 Conditional probability Define pB , pAB , pA|B such that £pBM is the fair stake for £M if B occurs; £pABM is the fair stake for £M if A and B occur; £pA|BM is the fair stake for £M if A occurs given B has occurred − other- wise the bet is off.
    [Show full text]
  • Bayesian Inference
    Bayesian Inference Thomas Nichols With thanks Lee Harrison Bayesian segmentation Spatial priors Posterior probability Dynamic Causal and normalisation on activation extent maps (PPMs) Modelling Attention to Motion Paradigm Results SPC V3A V5+ Attention – No attention Büchel & Friston 1997, Cereb. Cortex Büchel et al. 1998, Brain - fixation only - observe static dots + photic V1 - observe moving dots + motion V5 - task on moving dots + attention V5 + parietal cortex Attention to Motion Paradigm Dynamic Causal Models Model 1 (forward): Model 2 (backward): attentional modulation attentional modulation of V1→V5: forward of SPC→V5: backward Photic SPC Attention Photic SPC V1 V1 - fixation only V5 - observe static dots V5 - observe moving dots Motion Motion - task on moving dots Attention Bayesian model selection: Which model is optimal? Responses to Uncertainty Long term memory Short term memory Responses to Uncertainty Paradigm Stimuli sequence of randomly sampled discrete events Model simple computational model of an observers response to uncertainty based on the number of past events (extent of memory) 1 2 3 4 Question which regions are best explained by short / long term memory model? … 1 2 40 trials ? ? Overview • Introductory remarks • Some probability densities/distributions • Probabilistic (generative) models • Bayesian inference • A simple example – Bayesian linear regression • SPM applications – Segmentation – Dynamic causal modeling – Spatial models of fMRI time series Probability distributions and densities k=2 Probability distributions
    [Show full text]
  • Bayesian Inference and Bayesian Model Selection
    Bayesian inference and Bayesian model selection Klaas Enno Stephan Lecture as part of "Methods & Models for fMRI data analysis", University of Zurich & ETH Zurich, 27 November 2018 With slides from and many thanks to: Kay Brodersen, Will Penny, Sudhir Shankar Raman Why should I know about Bayesian inference? Because Bayesian principles are fundamental for • statistical inference in general • system identification • translational neuromodeling ("computational assays") – computational psychiatry – computational neurology – computational psychosomatics • contemporary theories of brain function (the "Bayesian brain") – predictive coding – free energy principle – active inference Why should I know about Bayesian inference? Because Bayesian principles are fundamental for • statistical inference in general • system identification • translational neuromodeling ("computational assays") – computational psychiatry – computational neurology – computational psychosomatics • contemporary theories of brain function (the "Bayesian brain") – predictive coding – free energy principle – active inference Bayes' theorem The Reverend Thomas Bayes (1702-1761) p( y | ) p ( ) “... the theorem expresses py( | ) how a ... degree of belief should rationally change to py() account for availability of related evidence." posterior = likelihood ∙ prior / evidence Wikipedia Bayes' theorem The Reverend Thomas Bayes (1702-1761) p( y | ) p ( ) “... the theorem expresses py( | ) how a ... degree of belief p( y | ) p ( ) should rationally change to account for availability of related evidence." posterior = likelihood ∙ prior / evidence Wikipedia Bayesian inference: an animation The evidence term continuous p( y | ) p ( ) p( y | ) p ( ) pydiscrete( | ) py( | ) p( y | ) p ( ) p( y | ) p ( ) Bayesian inference: An example (with fictitious probabilities) • symptom: y 1: ebola 0: AOD y=1: fever y=0: no fever 1: fever 99.99% 20% • disease: p(y|) =1: Ebola 0: no fever 0.01% 80% =0: any other disease (AOD) • A priori: p(Ebola) =10-6 p(AOD) = (1-10-6) • A patient presents with fever.
    [Show full text]
  • Bayesian Inference in the Linear Regression Model
    Bayesian Inference in the Linear Regression Model Econ 690 Purdue University Justin L. Tobias (Purdue) Bayesian Regression 1 / 35 Outline 1 The Model and Likelihood 2 Results Under a Non-Informative Prior 3 Example With Real Data 4 Results With a Conjugate Prior 5 Marginal likelihood in the LRM Justin L. Tobias (Purdue) Bayesian Regression 2 / 35 The inverse Gamma distribution (again!) We denote the inverted Gamma density as Y ∼ IG (α; β). Though different parameterizations exist (particularly for how β enters the density), we utilize the following form here: Y ∼ IG(α; β) ) p(y) = [Γ(α)βα]−1y −(α+1) exp(−1=[yβ]); y > 0: The mean of this inverse Gamma is E(Y ) = [β(α − 1)]−1. Jump to Prior 1, σ2 posterior Jump to Prior 1, β posterior Justin L. Tobias (Purdue) Bayesian Regression 3 / 35 The student-t distribution (again) 0 A continuous k−dimensional random vector, Y = (Y1; ::; Yk ) , has a t distribution with mean µ (a k−vector), scale matrix Σ (a k × k positive definite matrix) and ν (a positive scalar referred to as a degrees of freedom parameter), denoted Y ∼ t (µ, Σ; ν), if its p.d.f. is given by: 1 ν+k 1 − 0 −1 − 2 ft (yjµ, Σ; ν) = jΣj 2 ν + (y − µ) Σ (y − µ) ; ct Jump to Prior 1, β posterior Justin L. Tobias (Purdue) Bayesian Regression 4 / 35 The Linear Regression Model The linear regression model is the workhorse of econometrics. We will describe Bayesian inference in this model under 2 different priors.
    [Show full text]
  • On the Derivation of the Bayesian Information Criterion
    On the derivation of the Bayesian Information Criterion H. S. Bhat∗† N. Kumar∗ November 8, 2010 Abstract We present a careful derivation of the Bayesian Inference Criterion (BIC) for model selection. The BIC is viewed here as an approximation to the Bayes Factor. One of the main ingredients in the approximation, the use of Laplace’s method for approximating integrals, is explained well in the literature. Our derivation sheds light on this and other steps in the derivation, such as the use of a flat prior and the invocation of the weak law of large numbers, that are not often discussed in detail. 1 Notation Let us define the notation that we will use: y : observed data y1,...,yn Mi : candidate model P (y|Mi) : marginal likelihood of the model Mi given the data θi : vector of parameters in the model Mi gi(θi) : the prior density of the parameters θi f(y|θi) : the density of the data given the parameters θi L(θi|y) : the likelihood of y given the model Mi θˆi : the MLE of θi that maximizes L(θi|y) 2 Bayes Factor The Bayesian approach to model selection [1] is to maximize the posterior probability of n a model (Mi) given the data {yj}j=1. Applying Bayes theorem to calculate the posterior ∗School of Natural Sciences, University of California, Merced, 5200 N. Lake Rd., Merced, CA 95343 †Corresponding author, email: [email protected] 1 probability of a model given the data, we get P (y1,...,yn|Mi)P (Mi) P (Mi|y1,...,yn)= , (1) P (y1,...,yn) where P (y1,...,yn|Mi) is called the marginal likelihood of the model Mi.
    [Show full text]
  • Bayesian Alternatives for Common Null-Hypothesis Significance Tests
    Quintana and Eriksen Bayesian alternatives for common null-hypothesis significance tests in psychiatry: A non-technical guide using JASP Daniel S Quintana* and Jon Alm Eriksen *Correspondence: [email protected] Abstract NORMENT, KG Jebsen Centre for Psychosis Research, Division of Despite its popularity, null hypothesis significance testing (NHST) has several Mental Health and Addiction, limitations that restrict statistical inference. Bayesian analysis can address many University of Oslo and Oslo of these limitations, however, this approach has been underutilized largely due to University Hospital, Oslo, Norway Full list of author information is a dearth of accessible software options. JASP is a new open-source statistical available at the end of the article package that facilitates both Bayesian and NHST analysis using a graphical interface. The aim of this article is to provide an applied introduction to Bayesian inference using JASP. First, we will provide a brief background outlining the benefits of Bayesian inference. We will then use JASP to demonstrate Bayesian alternatives for several common null hypothesis significance tests. While Bayesian analysis is by no means a new method, this type of statistical inference has been largely inaccessible for most psychiatry researchers. JASP provides a straightforward means of performing Bayesian analysis using a graphical “point and click” environment that will be familiar to researchers conversant with other graphical statistical packages, such as SPSS. Keywords: Bayesian statistics; null hypothesis significance tests; p-values; statistics; software Consider the development of a new drug to treat social dysfunction. Before reaching the public, scientists need to demonstrate drug efficacy by performing a randomized- controlled trial (RCT) whereby participants are randomized to receive the drug or placebo.
    [Show full text]