Tivoli Storage Management Product Set for System/390 Leverages New Technologies for the S/390 Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPU-Based Password Cracking on the Security of Password Hashing Schemes Regarding Advances in Graphics Processing Units
Radboud University Nijmegen Faculty of Science Kerckhoffs Institute Master of Science Thesis GPU-based Password Cracking On the Security of Password Hashing Schemes regarding Advances in Graphics Processing Units by Martijn Sprengers [email protected] Supervisors: Dr. L. Batina (Radboud University Nijmegen) Ir. S. Hegt (KPMG IT Advisory) Ir. P. Ceelen (KPMG IT Advisory) Thesis number: 646 Final Version Abstract Since users rely on passwords to authenticate themselves to computer systems, ad- versaries attempt to recover those passwords. To prevent such a recovery, various password hashing schemes can be used to store passwords securely. However, recent advances in the graphics processing unit (GPU) hardware challenge the way we have to look at secure password storage. GPU's have proven to be suitable for crypto- graphic operations and provide a significant speedup in performance compared to traditional central processing units (CPU's). This research focuses on the security requirements and properties of prevalent pass- word hashing schemes. Moreover, we present a proof of concept that launches an exhaustive search attack on the MD5-crypt password hashing scheme using modern GPU's. We show that it is possible to achieve a performance of 880 000 hashes per second, using different optimization techniques. Therefore our implementation, executed on a typical GPU, is more than 30 times faster than equally priced CPU hardware. With this performance increase, `complex' passwords with a length of 8 characters are now becoming feasible to crack. In addition, we show that between 50% and 80% of the passwords in a leaked database could be recovered within 2 months of computation time on one Nvidia GeForce 295 GTX. -
RICOH Web Enablement Solutions Suite
RICOH Web Enablement Solutions Suite Transform print centric data streams into web-optimized, user-friendly content. Let customers take their information to go. For as long as businesses have existed, there has been important information for them to Benefits communicate to their customers. • Transforms documents for optimal In today’s information-rich age, the need for businesses to web use while maintaining fidelity. accurately, quickly communicate has never been greater. In today’s on-the-go, cost and environment conscious world, • Empowers on-the-go users to paper documents – which are often looked at just once and then access crucial information where, filed or thrown away – can seem inconvenient and antiquated. when and how they need it. • Puts help desk and customers on The RICOH Web Enablement Solutions Suite, which is the same page (literally) by helping comprised of a set of complementary products, helps to to ensure both parties see the transform print-centric data streams into web-ready same document in the exact same documents with utmost fidelity. way, aiding troubleshooting. Products Include: • RICOH Line2PDF Plus • RICOH PS2PDF and RICOH PCL2PD • RICOH AFP Merge • RICOH AFP Visual Environment • RICOH AFP2PDF Plus • RICOH TIFF2PDF Plus 2 To better understand how this is accomplished, take a closer look at the component solutions. RICOH Line2PDF Plus RICOH AFP2PDF Plus Line data documents can be extremely simplistic. Paper documents still have their advantages. They However, when it comes to customer communications, can easily be handed off. They can be marked up you often want to show a little more visual acumen, without any special expertise. -
Version 7.8-Systemd
Linux From Scratch Version 7.8-systemd Created by Gerard Beekmans Edited by Douglas R. Reno Linux From Scratch: Version 7.8-systemd by Created by Gerard Beekmans and Edited by Douglas R. Reno Copyright © 1999-2015 Gerard Beekmans Copyright © 1999-2015, Gerard Beekmans All rights reserved. This book is licensed under a Creative Commons License. Computer instructions may be extracted from the book under the MIT License. Linux® is a registered trademark of Linus Torvalds. Linux From Scratch - Version 7.8-systemd Table of Contents Preface .......................................................................................................................................................................... vii i. Foreword ............................................................................................................................................................. vii ii. Audience ............................................................................................................................................................ vii iii. LFS Target Architectures ................................................................................................................................ viii iv. LFS and Standards ............................................................................................................................................ ix v. Rationale for Packages in the Book .................................................................................................................... x vi. Prerequisites -
Cuda Compiler Driver Nvcc
CUDA COMPILER DRIVER NVCC TRM-06721-001_v10.1 | August 2019 Reference Guide CHANGES FROM PREVIOUS VERSION ‣ Major update to the document to reflect recent nvcc changes. www.nvidia.com CUDA Compiler Driver NVCC TRM-06721-001_v10.1 | ii TABLE OF CONTENTS Chapter 1. Introduction.........................................................................................1 1.1. Overview................................................................................................... 1 1.1.1. CUDA Programming Model......................................................................... 1 1.1.2. CUDA Sources........................................................................................ 1 1.1.3. Purpose of NVCC.................................................................................... 2 1.2. Supported Host Compilers...............................................................................2 Chapter 2. Compilation Phases................................................................................3 2.1. NVCC Identification Macro.............................................................................. 3 2.2. NVCC Phases............................................................................................... 3 2.3. Supported Input File Suffixes...........................................................................4 2.4. Supported Phases......................................................................................... 4 Chapter 3. The CUDA Compilation Trajectory............................................................ -
Introducing Z/Os Unix System Services
Contact Us [email protected] HOME > COURSE CATALOG > IBM > IBM Z/OS > INTRODUCING Z/OS UNIX SYSTEM SERVICES Introducing z/OS UNIX System Services DURATION 20 Hours RATING COURSE OP05GFR AVAILABLE FORMATS Classroom Training, Online Training BADGES & CERTIFICATIONS LearnQuest IBM z/OS UNIX System Services Foundations Course Description Overview This course describes how open standards are implemented in a z/OS system by z/OS UNIX. UNIX System Services are introduced, and the role of z/OS as a server in the open systems environment is discussed. This is an introductory level course. It provides an overview of z/OS UNIX System Services (usually abbreviated to z/OS UNIX) as seen by the user. Details of installation and implementation for system programmers are not covered in this course. Objectives 9/26/2021 1 of 3 10:29:38 AM Discuss the role of z/OS in an open systems environment Identify the basic terms used in z/OS UNIX Define the components of z/OS UNIX Explain major functions provided in z/OS UNIX Discuss opportunities for applications in a z/OS UNIX environment Identify z/OS base elements and optional features that make up z/OS UNIX Use the two interactive interfaces available to access the services Audience This intermediate course is for all computer professionals who will use z/OS UNIX. Prerequisites You should have a basic knowledge of z/OS equivalent to the course An Introduction to the z/OS Environment (ES05G). Topics Day 1 Welcome and introduction Unit 1. z/OS UNIX overview Unit 2. Introduction to z/OS UNIX Unit 3. -
New Products Latest Releases for Open Systems
New Products Latest Releases for Open Systems Application Management Microsoft ODBC. Tivoli Systems has announced the AMS Forte Express for clients or servers Developer’s Kit and general availability supports Digital Unix, DG-UX, IBM AIX, of version 1.0 of the Applications Man- Sequent Dynix, Sun Solaris HP-UX, Digi- agement Specification (AMS). AMS defines tal OpenVMS and Windows NT. The price a standard interface for creating manage- is $20,000 for a site license. ment objects. These objects enable the Forte Software, Inc., 1800 Harrison connection of applications with client/- St., Oakland, CA 94612; (510) 869-3400. server enterprise management systems WANT MORE INFO? CIRCLE READER SERVICE NO. 205. such as Tivoli Management Environment. SOFTWARE The AMS Developer’s Kit allows users to Process Configuration develop AMS-enabled applications. Management System Management The developer’s kit supports AMS SQL Software has introduced PCMS 4.3, Innovative Software has announced applications for IBM AIX, AT&T SVR4, a process configuration management tool Power Center, an operations automa- Digital Unix, DG-UX, HP-UX, Motorola for concurrent and distributed application tion and system management applica- Unix, SunOS and Sun Solaris. Prices for systems development. Version 4.3 tion. The product detects and works to the developer’s kit start at $250. includes a worksets feature that allows correct problems with computer sys- Tivoli Systems, Inc., 9442 Capital of management to separate individual-team tems, networks, peripherals and appli- Texas Hwy. N, Austin, TX, 78759; (512) work for parallel development and par- cations. Power Center interoperates with 794-9070. allel builds on multiple platforms. -
Unix System Software
Unix system software Unix is a family of multitasking, multiuser computer operating systems that derive from the . modifiable source code for all of these components, in addition to the kernel of an operating system, Unix was a self-contained software n in: C and assembly language. This sets Unix apart from proprietary operating systems like Microsoft Windows. system Solaris 10 integrates the most popular open source software and. UNIX is a multitasking operating system developed at Bell Labs in the early s. It was designed to be a small, flexible system used by programmers. APIs are changing more than just software architectures. From planning through. Today, without UNIX systems, the Internet would come to a screeching halt. Their new organization was called the Open Software Foundation (OSF). By operating system, we mean the suite of programs which make the computer UNIX systems also have a graphical user interface (GUI) similar to Microsoft. Unix also was developed as a self-contained software system, comprising the operating system, development environment, utilities. An operating system is the program that controls all the other parts of a computer system, both the hardware and the software. It allocates the computer's. Unix. In , Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began developing a small operating system on a little-used PDP By the most simple definition, UNIX is a computer operating system - the base software that controls a computer system and its peripherals. The Difference Between UNIX and LINUX Operating Systems With Examples You may have Unix is a proprietary software operating system. -
Oracle Database Administrator's Reference for UNIX-Based Operating Systems
Oracle® Database Administrator’s Reference 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 March 2009 Oracle Database Administrator's Reference, 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved. Primary Author: Brintha Bennet Contributing Authors: Kevin Flood, Pat Huey, Clara Jaeckel, Emily Murphy, Terri Winters, Ashmita Bose Contributors: David Austin, Subhranshu Banerjee, Mark Bauer, Robert Chang, Jonathan Creighton, Sudip Datta, Padmanabhan Ganapathy, Thirumaleshwara Hasandka, Joel Kallman, George Kotsovolos, Richard Long, Rolly Lv, Padmanabhan Manavazhi, Matthew Mckerley, Sreejith Minnanghat, Krishna Mohan, Rajendra Pingte, Hanlin Qian, Janelle Simmons, Roy Swonger, Lyju Vadassery, Douglas Williams This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. -
Cuda C Programming Guide
CUDA C PROGRAMMING GUIDE PG-02829-001_v7.5 | September 2015 Design Guide CHANGES FROM VERSION 7.0 ‣ Updated C/C++ Language Support to: ‣ Added new section C++11 Language Features, ‣ Clarified that values of const-qualified variables with builtin floating-point types cannot be used directly in device code when the Microsoft compiler is used as the host compiler, ‣ Documented the extended lambda feature, ‣ Documented that typeid, std::type_info, and dynamic_cast are only supported in host code, ‣ Documented the restrictions on trigraphs and digraphs, ‣ Clarified the conditions under which layout mismatch can occur on Windows. ‣ Updated Table 12 to mention support of half-precision floating-point operations on devices of compute capabilities 5.3. ‣ Updated Table 2 with throughput for half-precision floating-point instructions. ‣ Added compute capability 5.3 to Table 13. ‣ Added the maximum number of resident grids per device to Table 13. ‣ Clarified the definition of __threadfence() in Memory Fence Functions. ‣ Mentioned in Atomic Functions that atomic functions do not act as memory fences. www.nvidia.com CUDA C Programming Guide PG-02829-001_v7.5 | ii TABLE OF CONTENTS Chapter 1. Introduction.........................................................................................1 1.1. From Graphics Processing to General Purpose Parallel Computing............................... 1 1.2. CUDA®: A General-Purpose Parallel Computing Platform and Programming Model.............4 1.3. A Scalable Programming Model.........................................................................5 -
UNIX System Services Z/OS Version 1 Release 7 Implementation
Front cover UNIX System Services z/OS Version 1 Release 7 Implementation z/OS UNIX overview z/OS UNIX setup z/OS UNIX usage Paul Rogers Theodore Antoff Patrick Bruinsma Paul-Robert Hering Lutz Kühner Neil O’Connor Lívio Sousa ibm.com/redbooks International Technical Support Organization UNIX System Services z/OS Version 1 Release 7 Implementation March 2006 SG24-7035-01 Note: Before using this information and the product it supports, read the information in “Notices” on page xiii. Second Edition (March 2006) This edition applies to Version 1 Release 7 of z/OS (5637-A01), and Version 1, Release 7 of z/OS.e (5655-G52), and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2003, 2006. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . xiii Trademarks . xiv Preface . .xv The team that wrote this redbook. .xv Become a published author . xvi Comments welcome. xvii Chapter 1. UNIX overview. 1 1.1 UNIX fundamentals . 2 1.1.1 UNIX objectives . 2 1.1.2 What people like about UNIX . 2 1.1.3 What people don’t like about UNIX . 3 1.1.4 UNIX operating system . 3 1.1.5 UNIX file system . 4 1.1.6 Parameter files . 6 1.1.7 Daemons. 6 1.1.8 Accessing UNIX . 6 1.1.9 UNIX standards. 7 1.1.10 MVS and UNIX functional comparison . 8 1.2 z/OS UNIX System Services fundamentals . -
MTS on Wikipedia Snapshot Taken 9 January 2011
MTS on Wikipedia Snapshot taken 9 January 2011 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 09 Jan 2011 13:08:01 UTC Contents Articles Michigan Terminal System 1 MTS system architecture 17 IBM System/360 Model 67 40 MAD programming language 46 UBC PLUS 55 Micro DBMS 57 Bruce Arden 58 Bernard Galler 59 TSS/360 60 References Article Sources and Contributors 64 Image Sources, Licenses and Contributors 65 Article Licenses License 66 Michigan Terminal System 1 Michigan Terminal System The MTS welcome screen as seen through a 3270 terminal emulator. Company / developer University of Michigan and 7 other universities in the U.S., Canada, and the UK Programmed in various languages, mostly 360/370 Assembler Working state Historic Initial release 1967 Latest stable release 6.0 / 1988 (final) Available language(s) English Available programming Assembler, FORTRAN, PL/I, PLUS, ALGOL W, Pascal, C, LISP, SNOBOL4, COBOL, PL360, languages(s) MAD/I, GOM (Good Old Mad), APL, and many more Supported platforms IBM S/360-67, IBM S/370 and successors History of IBM mainframe operating systems On early mainframe computers: • GM OS & GM-NAA I/O 1955 • BESYS 1957 • UMES 1958 • SOS 1959 • IBSYS 1960 • CTSS 1961 On S/360 and successors: • BOS/360 1965 • TOS/360 1965 • TSS/360 1967 • MTS 1967 • ORVYL 1967 • MUSIC 1972 • MUSIC/SP 1985 • DOS/360 and successors 1966 • DOS/VS 1972 • DOS/VSE 1980s • VSE/SP late 1980s • VSE/ESA 1991 • z/VSE 2005 Michigan Terminal System 2 • OS/360 and successors -
NVIDIA CUDA Installation Guide for Linux
NVIDIA CUDA Installation Guide for Linux Installation and Verification on Linux Systems DU-05347-001_v11.4 | September 2021 Table of Contents Chapter 1. Introduction........................................................................................................ 1 1.1. System Requirements...............................................................................................................1 1.2. About This Document............................................................................................................... 3 Chapter 2. Pre-installation Actions..................................................................................... 4 2.1. Verify You Have a CUDA-Capable GPU....................................................................................4 2.2. Verify You Have a Supported Version of Linux........................................................................ 5 2.3. Verify the System Has gcc Installed........................................................................................5 2.4. Verify the System has the Correct Kernel Headers and Development Packages Installed........................................................................................................................................5 2.5. Install MLNX_OFED.................................................................................................................. 7 2.6. Choose an Installation Method................................................................................................ 7 2.7. Download