Abundance and Diversity of Grasshoppers and Their Ectoparasitic Mites in South Dakota Erica Anderson South Dakota State University

Total Page:16

File Type:pdf, Size:1020Kb

Abundance and Diversity of Grasshoppers and Their Ectoparasitic Mites in South Dakota Erica Anderson South Dakota State University South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2019 Abundance and Diversity of Grasshoppers and their Ectoparasitic Mites in South Dakota Erica Anderson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Entomology Commons Recommended Citation Anderson, Erica, "Abundance and Diversity of Grasshoppers and their Ectoparasitic Mites in South Dakota" (2019). Electronic Theses and Dissertations. 3134. https://openprairie.sdstate.edu/etd/3134 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. ABUNDANCE AND DIVERSITY OF GRASSHOPPERS AND THEIR ECTOPARASITIC MITES IN SOUTH DAKOTA BY ERICA ANDERSON A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2019 ii ABUNDANCE AND DIVERSITY OF GRASSHOPPERS AND THEIR ECTOPARASITIC MITES IN SOUTH DAKOTA ERICA ANDERSON This thesis is approved as a creditable and independent investigation by a candidate for the Master of Science in Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. _________________________________________ Billy Fuller, Ph.D. Thesis Advisor Date _________________________________________ David Wright, Ph.D. Head, Department of Plant Science Date _________________________________________ Kinchel C. Doerner, Ph.D. Dean, Graduate School Date iii ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Billy Fuller, for his advice, stories and most of all his encouragement throughout the course of this study. His support in developing a research project that I could excel at, is greatly appreciated. I would also like to thank my committee members, Drs. Amanda Bachmann, Michael Rentz and Joy Scaria. I am grateful for my committee’s service and guidance in writing my thesis manuscript. I would like to express my special gratitude to Drs. David Wright and Adam Varenhorst for funding my stipend and research needs. Particularly Dr. Varenhorst, who encouraged me to pursue my Master’s degree, helped me develop myself as a researcher and assisted with the development of my scientific writing. Without him, I would not be where I am today. A special thanks to Philip Rozeboom for his friendship, critical review, and assisting in the collection of my research. Your quick wit helped me survive the trying years of graduate school. I also thank Dr. Michael Dunbar, Dr. Brent Turnipseed, Bradley McManus and Patrick and Tess Wagner for their assistance and support. Special appreciation is extended to Amy Mesman, United States Department of Agriculture Animal Plant Health Inspection Services (USDA-APHIS), for donating grasshoppers and material for my research, allowing me to sift through decades of grasshopper survey material and above all, sharing her years of knowledge on grasshoppers in South Dakota. It is because of your work that this project was created, and I hope future research projects continue. In addition, I would like to thank Drs. Larry iv Jech, Derek Woller, David Hirsch, and Dave Branson as well as Chris Reuter for sharing their knowledge, vast experience with grasshoppers, and additional resources that I might find helpful. I must also thank George Hammond, for sharing his ideas and expertise with grasshopper mites, as well as referring me to Drs. Ashley Dowling and Ray Fisher who identified the species of mites used in this study. Dr. Dowling was extremely helpful and generous to extend his services so that my research could have true meaning to grasshopper management. A big thank you to Dr. Hossein Moradi for his statistical assistance. I enjoyed our hours of discussing research and letting me pick your brain for news ways to examine my research. I also recognize other former and current graduate students, Brady Hauswedell, Cole Dierks, Shana Westhoff, Collins Bugingo and Jakob Hicks with whom I have studied, collaborated, and shared stories along the way. Moreover, I thank the numerous SDSU undergraduates, especially Madeline St. Clair and Aaron Hargens, who assisted me with collecting samples. Most of all, I thank my parents, family, and friends for their continuous love, support, and encouragement over the years no matter how busy my schedule. My dad was always there to give me the kick in the pants that I needed, my beloved friends Caitlyn and Nate were always cheering me on, and my mom, I thank from the bottom of my heart for raising me to be strong, never back down from a challenge and giving me the love of learning that continues to grow. “There are some who can live without wild things and some who cannot.” ― Aldo Leopold v TABLE OF CONTENTS ABSTRACT ................................................................................................................... viii CHAPTER 1: INTRODUCTION LITERATURE REVIEW Thesis Organization ............................................................................................... 1 Literature Review South Dakota Rangeland ............................................................................ 2 Grasshopper Abundance and Species Diversity ........................................ 3 Grasshopper Pests ...................................................................................... 4 General Grasshopper Biology .................................................................... 7 Grasshopper Sampling Procedures .......................................................... 11 Abiotic Factors that Influence Grasshopper Populations ......................... 13 Biotic Factors that Influence Grasshopper Populations ........................... 15 Grasshopper Management ....................................................................... 18 Nomenclature and Synonymy of Grasshopper Mites .............................. 23 Distribution of Grasshopper Mites in South Dakota ................................ 25 Grasshopper Mite Life Cycle ................................................................... 25 Grasshopper Mite Larvae Effects on Grasshoppers ................................. 29 Grasshopper Mites and Integrated Pest Management .............................. 30 References Cited .................................................................................................. 34 Tables ................................................................................................................... 53 vi CHAPTER 2: GRASSHOPPER ABUNDANCE AND SPECIES DIVERSITY IN SOUTH DAKOTA Abstract ................................................................................................................ 55 Introduction .......................................................................................................... 56 Materials and Methods ......................................................................................... 59 Statistical Analysis ............................................................................................... 62 Results .................................................................................................................. 63 Discussion ............................................................................................................ 69 Acknowledgements .............................................................................................. 71 References Cited .................................................................................................. 72 Tables ................................................................................................................... 77 Figures .................................................................................................................. 87 CHAPTER 3: DENSITY AND DISTRIBUTION OF ECTOPARASITIC MITES OF GRASSHOPPERS IN SOUTH DAKOTA Abstract .............................................................................................................. 105 Introduction ........................................................................................................ 106 Materials and Methods ....................................................................................... 111 Statistical Analysis ............................................................................................. 114 Results ................................................................................................................ 115 Discussion .......................................................................................................... 120 vii Acknowledgements ............................................................................................ 123 References Cited ................................................................................................ 124 Tables ................................................................................................................. 127 Figures ...............................................................................................................
Recommended publications
  • Diet-Mixing in a Generalist Herbivore: Trade-Offs Between Nutrient And
    DIET-MIXING IN A GENERALIST HERBIVORE: TRADE-OFFS BETWEEN NUTRIENT AND ALLELOCHEMICAL REGULATION A Dissertation by MARION LE GALL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Spencer Behmer Committee Members, Micky Eubanks Keyan Zhu-Salzman Gil Rosenthal Jon Harrison Head of Department, David Ragsdale May 2014 Major Subject: Entomology Copyright 2014 Marion Le Gall ABSTRACT Despite decades of research, many key aspects related to the physiological processes and mechanisms insect herbivores use to build themselves remain poorly understood, and we especially know very little about how interactions among nutrients and allelochemicals drive insect herbivore growth processes. Understanding the physiological effects of these interactions on generalist herbivores is a critical step to a better understanding and evaluation of the different hypothesis that have been emitted regarding the benefits of polyphagy. I used both lab and field experiments to disentangle the respective effect of protein, carbohydrates and allelochemicals on a generalist herbivore, the grasshopper Melanoplus differentialis. The effect of protein and carbohydrates alone were examined using artificial diets in choice and no-choice experiments. Results were plotted using a fitness landscape approach to evaluate how protein-carbohydrate ratio and/or concentration affected performance and consumption. Growth was best near the self-selected ratio obtained from the choice experiment, most likely due to the fact that the amount of food digested was also higher on that ratio. By contrast, development time was not best near the preferred ratio most likely due to the trade-off existing between size and development time.
    [Show full text]
  • Grasshopper Strips Prove Effective in Enhancing Grasshopper Abundance in Rivenhall Churchyard, Essex, England
    Conservation Evidence (2011) 8, 31-37 www.ConservationEvidence.com Grasshopper strips prove effective in enhancing grasshopper abundance in Rivenhall Churchyard, Essex, England Tim Gardiner 1* , Michelle Gardiner 1 & Nigel Cooper 2 12 Beech Road, Rivenhall, Witham, Essex CM8 3PF, UK 2Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK *Corresponding author e-mail: [email protected] SUMMARY Grasshopper strips (alternate, 1-m wide strips of uncut and cut grassland) are a novel conservation feature in a rural churchyard in the village of Rivenhall (Essex), southeast England. The effectiveness of these strips in enhancing the abundance of grasshoppers (Acrididae) was investigated during the summer of 2010 using sweep-net surveys. Two grasshopper species were recorded. The meadow grasshopper Chorthippus parallelus was significantly more abundant in the cut grasshopper strips than in nearby short grassland (control) plots regularly mown throughout the summer. The field grasshopper Chorthippus brunneus was contrastingly more abundant in the uncut grasshopper strips than in the controls. The grasshopper strips appear to provide a mosaic of short and tall grassland in close proximity which is required for nymphs and adults of both C. parallelus and C. brunneus . BACKGROUND grasshoppers (and also butterflies and dragonflies) in Essex, southeast England There are over 20,000 churchyards in England (Gardiner & Pye 2001). For example, in All and Wales, and they can be havens for wildlife Saints Churchyard in the village of Writtle, as well as burial grounds (Greenoak 1993). five species of Orthoptera (grasshoppers and Churchyards provide wildlife habitats both in bush-crickets) were recorded in a conservation built-up and rural areas, assuming increasing area managed by a traditional hay-cut in conservation importance as urban areas August, but were absent from adjacent short expand and ‘greenspace’ is lost, and as grassland sward mown regularly (every 2-3 agricultural practices intensify (Rackham weeks) throughout the summer.
    [Show full text]
  • Grasshoppers
    Grasshoppers Orthoptera: Acrididae Plains Lubber Pictured grasshoppers Great crested grasshopper Snakeweed grasshoppers Primary Pest Grasshoppers • Migratory grasshopper • Twostriped grasshopper • Differential grasshopper • Redlegged grasshopper • Clearwinged grasshopper Twostriped Grasshopper, Melanoplus bivittatus Redlegged Grasshopper, Melanoplus femurrubrum Differential Grasshopper, Melanoplus differentialis Migratory Grasshopper, Melanoplus sanguinipes Clearwinged Grasshopper Camnula pellucida Diagram courtesy of Alexandre Latchininsky, University of Wyoming Photograph courtesy of Jean-Francoise Duranton, CIRAD Grasshoppers lay pods of eggs below ground Grasshopper Egg Pods Molting is not Linedfor wimps! bird grasshopper molting to adult stage Grasshopper Nymphs Some grasshoppers found in winter and early spring Velvet-striped grasshopper – a common spring species Grasshopper Controls • Weather (rainfall mediated primarily) • Natural enemies – Predators, diseases • Treatment of breeding areas • Biological controls • Row covers Temperature and rainfall are important mortality factors Grasshoppers and Rainfall Moisture prior to egg hatch generally aids survival – Newly hatched young need succulent foliage Moisture after egg hatch generally reduces problems – Assists spread of diseases – Allows for plenty of food, reducing competition for rangeland and crops Grasshopper predators Robber Flies Larvae of many blister beetles develop on grasshopper egg pods Blister beetle larva Fungus-killed Grasshoppers Pathogen: Entomophthora grylli Mermis
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • Der Steppengrashüpfer, Chorthippus Vagans
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Göttinger Naturkundliche Schriften Jahr/Year: 1994 Band/Volume: 3 Autor(en)/Author(s): Meineke Thomas, Menge Kerstin, Grein Günter Artikel/Article: Der Steppengrashüpfer, Chorthippus vagans (Eversmann, 1848), (Insecta: Orthoptera) im und am Harz gefunden 45-53 Göttinger Naturkundliche Schriften3, 1994: 4 5 - 53 © 1994 Biologische Schutzgemeinschaft Göttingen Der Steppengrashüpfer, Chorthippus vagans (Ev ersm a n n , 1848), (Insecta: Orthoptera) im und am Harz gefunden* The Heath Grasshopper, Chorthippus vagans (E v e r s m a n n , 1848), (Insecta: Orthoptera) recorded in the Harz mountains Thomas Meineke, Kerstin Menge und Günter Grein The Heath Grasshopper, Chorthippus vagans, was recorded in and around the Harz mountains. Distribution, status and habitats are described and discussed. 1. Einleitung und Dorset) (MARSHALL & Haes 1988), Nord-Frankreich (Flandern) (Duijm & Der Steppengrashüpfer wurde in den Kruseman 1983), den Niederlanden meisten Teilen Süd- wie Mitteleuropas (Gelderland) (Hermes & Fliervoet 1987), und ostwärts bis in den Südteil der Nord-Jütland (Skagen, Dänemark) Sowjetunion nachgewiesen (Harz 1975). (Holst 1986) und Nord-Polen (Raum Aufgrund der meist kleinen und oft weit Danzig) (Zacher 1917) markiert. voneinander entfernt lebenden Popula­ In Niedersachsen wurde Chorthippus tionen gilt die Feldheuschreckenart in vagans bisher in 21 Meßtischblatt-Qua­ Mitteleuropa jedoch als relativ selten dranten beobachtet, und zwar in den (Bellmann 1985). Bereichen Lingen/Ems, Sage in Süd- Die nördliche Arealgrenze wird nach Oldenburg, Steinhuder Meer, Elbdünen den gegenwärtigen Kenntnissen durch zwischen Hitzacker und Bleckede, Göhr­ Fundorte in Süd-England (Hampshire de und Drawehn sowie um Gifhorn (vgl. *) 3.
    [Show full text]
  • Chromosome Fusion Polymorphisms in the Grasshopper, Dichroplus Fuscus (Orthoptera: Acrididae: Melanoplinae): Insights on Meiotic Effects
    Eur. J. Entomol. 112(1): 11–19, 2015 doi: 10.14411/eje.2015.010 ISSN 1210-5759 (print), 1802-8829 (online) Chromosome fusion polymorphisms in the grasshopper, Dichroplus fuscus (Orthoptera: Acrididae: Melanoplinae): Insights on meiotic effects ALBERTO TAFFAREL1, 2, 3, CLAUDIO J. BIDAU 4 and DARDO A. MARTÍ 1, 2 1 Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical, Universidad Nacional de Misiones (IBS), Félix de Azara 1552, Piso 6°, 3300 Posadas, Misiones, Argentina; e-mails: [email protected]; [email protected] 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, Argentina 3 Comité Ejecutivo de Desarrollo e Innovación Tecnológica (CEDIT), Félix de Azara 1890, Piso 5º, 3300 Posadas, Misiones, Argentina 4 Paraná y Los Claveles, 3300 Posadas, Misiones, Argentina; e-mail: [email protected] Key words. Orthoptera, Acrididae, Dichroplus fuscus, Robertsonian fusion, grasshoppers, chiasmata, trivalents, chromosomal cline Abstract. Robertsonian fusions account for many of the changes in the evolution of the orthopteran karyotype; in their origin, a centric fusion is involved between two acro-telocentric chromosomes, forming a single bi-armed chromosome. It is usual for these rearrange- ments to be associated with profound changes in meiosis, such as modification in frequency and distribution of chiasmata.Dichroplus fuscus is a South American grasshopper with a wide distribution. In this work we analyzed nine populations from Misiones Province, north-eastern Argentina. This species presents a standard karyotype of 2n = 23/24 (♂/♀) with all chromosomes acro-telocentric and an X0/XX chromosomal sex determining mechanism. This standard karyotype has been modified by the occurrence of two Robertso- nian fusions involving chromosomes 1/3 and 2/4; values of fusions per individual (fpi) show a significant increase in the presence of karyotypic polymorphisms towards southern populations.
    [Show full text]
  • The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers
    The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers Dissertation To Fulfil the Requirements for the Degree of “Doctor of Philosophy” (PhD) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena by Bachelor of Science, Master of Science, Abhijeet Shah born on 7th November 1984, Hyderabad, India 1 Academic reviewers: 1. Prof. Holger Schielzeth, Friedrich Schiller University Jena 2. Prof. Manja Marz, Friedrich Schiller University Jena 3. Prof. Rolf Beutel, Friedrich Schiller University Jena 4. Prof. Frieder Mayer, Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin 5. Prof. Steve Hoffmann, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena 6. Prof. Aletta Bonn, Friedrich Schiller University Jena Date of oral defense: 24.02.2020 2 Table of Contents Abstract ........................................................................................................................... 5 Zusammenfassung............................................................................................................ 7 Introduction ..................................................................................................................... 9 Genetic polymorphism ............................................................................................................. 9 Lewontin’s paradox ....................................................................................................................................... 9 The evolution
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • New Record of Hexamermis Dactylocercus Poinar Jr. and Linares
    Journal of Biological Control, 24 (3): 285–287, 2010 Research Note New record of Hexamermis dactylocercus Poinar Jr. and Linares (Nematoda: Mermithidae) parasitizing red hairy caterpillar, Amsacta albistriga (Walker) (Lepidoptera: Arctiidae) from India M. PRABHAKAR*, Y. G. PRASAD and B. VENKATESWARLU Central Research Institute for Dryland Agriculture, Santoshnagar, Hyderabad 500 059, Andhra Pradesh, India. *Corresponding author E-mail: [email protected] ABSTRACT: Natural parasitism of the red hairy caterpillar, Amsacta albistriga (Walker) by a mermithid nematode, Hexamermis dactylocercus Poinar Jr. and Linares is reported for the first time. Higher parasitisation by H. dactylocercus was recorded during epidemic outbreak of A. albistriga during 2007 (28.5%) and in 2008 (6.5%) when the pest incidence was relatively lower due to late onset of monsoon. The mermithid activity was associated with high rainfall in both the years. Seasonal dynamics of H. dactylocercus is discussed. KEY WORDS: Nematode, mermithid, Hexamermis dactylocercus, red hairy caterpillar, Amsacta albistriga (Article chronicle: Received: 28.05.2010; Sent for revision: 08.07.2010; Accepted: 03.08.2010) INTRODUCTION photoperiod. Observations were recorded daily from all the individual larvae for parasitisation. Red hairy caterpillar, Amsacta albistriga (Walker) (Lepidoptera: Arctiidae), is a polyphagous and devastating Thin, cream coloured nematode juveniles measuring pest of rainfed crops in Andhra Pradesh, Karnataka and 65-148 mm long and 0.08-0.28mm wide were found Tamil Nadu. Several natural biocontrol agents have been emerging from second and third instar larvae of A. albistriga nd reported to regulate its incidence under field conditions from 2 day onwards till 6 days. The number of juveniles (Manjula and Sudheer, 2004; Gunathilagaraj and Babu, emerging from each parasitized RHCP larva was 2.8 ± 0.7 1987; Veenakumari et al., 2008).
    [Show full text]
  • The Life Cycle of a Horsehair Worm, Gordius Robustus (Nematomorpha: Gordioidea)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln John Janovy Publications Papers in the Biological Sciences 2-1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt University of New Mexico, [email protected] John J. Janovy Jr. University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscijanovy Part of the Parasitology Commons Hanelt, Ben and Janovy, John J. Jr., "The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea)" (1999). John Janovy Publications. 9. https://digitalcommons.unl.edu/bioscijanovy/9 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in John Janovy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Hanelt & Janovy, Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordoidea) Journal of Parasitology (1999) 85. Copyright 1999, American Society of Parasitologists. Used by permission. RESEARCH NOTES 139 J. Parasitol., 85(1), 1999 p. 139-141 @ American Society of Parasitologists 1999 The Life Cycle of a Horsehair Worm, Gordius robustus (Nematomorpha: Gordioidea) Ben Hanelt and John Janovy, Jr., School of Biological Sciences, University of Nebraska-lincoln, Lincoln, Nebraska 68588-0118 ABSTRACf: Aspects of the life cycle of the nematomorph Gordius ro­ Nematomorphs are a poorly studied phylum of pseudocoe­ bustus were investigated. Gordius robustus larvae fed to Tenebrio mol­ lomates. As adults they are free living, but their ontogeny is itor (Coleoptera: Tenebrionidae) readily penetrated and subsequently completed as obligate parasites.
    [Show full text]
  • Influence of Juvenile Hormone on Territorial and Aggressive Behavior in the Painted Lady (Vanessa Cardui) and Eastern Black Swallowtail (Papilio Polyxenes)
    Colby College Digital Commons @ Colby Honors Theses Student Research 2007 Influence of juvenile hormone on territorial and aggressive behavior in the Painted Lady (Vanessa cardui) and Eastern Black Swallowtail (Papilio polyxenes) Tara Bergin Colby College Follow this and additional works at: https://digitalcommons.colby.edu/honorstheses Part of the Biology Commons Colby College theses are protected by copyright. They may be viewed or downloaded from this site for the purposes of research and scholarship. Reproduction or distribution for commercial purposes is prohibited without written permission of the author. Recommended Citation Bergin, Tara, "Influence of juvenile hormone on territorial and aggressive behavior in the Painted Lady (Vanessa cardui) and Eastern Black Swallowtail (Papilio polyxenes)" (2007). Honors Theses. Paper 29. https://digitalcommons.colby.edu/honorstheses/29 This Honors Thesis (Open Access) is brought to you for free and open access by the Student Research at Digital Commons @ Colby. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Colby. The Influence of Juvenile Hormone on Territorial and Aggressive Behavior in the Painted Lady (Vanessa cardui)and Eastern Black Swallowtail (Papilio polyxenes) An Honors Thesis Presented to ` The Faculty of The Department of Biology Colby College in partial fulfillment of the requirements for the Degree of Bachelor of Arts with Honors by Tara Bergin Waterville, ME May 16, 2007 Advisor: Catherine Bevier _______________________________________ Reader: W. Herbert Wilson ________________________________________ Reader: Andrea Tilden ________________________________________ -1- -2- Abstract Competition is important in environments with limited resources. Males of many insect species are territorial and will defend resources, such as a food source or egg-laying site, against intruders, or even compete to attract a mate.
    [Show full text]