Tsiolkovsky Rocket Equation from Wikipedia, the Free Encyclopedia
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Maneuver Detection of Space Object for Space Surveillance
MANEUVER DETECTION OF SPACE OBJECT FOR SPACE SURVEILLANCE Jian Huang*, Weidong Hu, Lefeng Zhang $756WDWH.H\/DE1DWLRQDO8QLYHUVLW\RI'HIHQVH7HFKQRORJ\&KDQJVKD+XQDQ3URYLQFH&KLQD (PDLOKXDQJMLDQ#QXGWHGXFQ ABSTRACT on the technique of a moving window curve fit. Holzinger & Scheeres presented an object correlation Maneuver detection is a very important task for and maneuver detection method using optimal control maintaining the catalog of the orbital objects and space performance metrics [5]. Kelecy & Jah focused on the situational awareness. This paper mainly focuses on the detection and reconstruction of single low thrust in- typical maneuver scenario where space objects only track maneuvers by using the orbit determination perform tangential orbital maneuvers during a relative strategies based on the batch least-squares and long gap. Particularly, only two classical and extended Kalman filter (EKF) [6]. However, these commonly applied orbital transition manners are methods are highly relevant to the presupposed considered, i.e. the twice tangential maneuvers at the maneuvering mode and a relative short observation gap. apogee and the perigee or one tangential maneuver at In this paper, to address the real observed data, we only an arbitrary time. Based on this, we preliminarily consider the common maneuvering modes and estimate the maneuvering mode and parameters by observation scenarios in practical. For an orbital analyzing the change of semi-major axis and maneuver, minimization of fuel consumption is eccentricity. Furthermore, if only one tangential essential because the weight of a payload that can be maneuver happened, we can formulate the estimation carried to the desired orbit depends on this problem of maneuvering parameters as a non-linear minimization. -
Reduction of Saturn Orbit Insertion Impulse Using Deep-Space Low Thrust
Reduction of Saturn Orbit Insertion Impulse using Deep-Space Low Thrust Elena Fantino ∗† Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates. Roberto Flores‡ International Center for Numerical Methods in Engineering, 08034 Barcelona, Spain. Jesús Peláez§ and Virginia Raposo-Pulido¶ Technical University of Madrid, 28040 Madrid, Spain. Orbit insertion at Saturn requires a large impulsive manoeuver due to the velocity difference between the spacecraft and the planet. This paper presents a strategy to reduce dramatically the hyperbolic excess speed at Saturn by means of deep-space electric propulsion. The inter- planetary trajectory includes a gravity assist at Jupiter, combined with low-thrust maneuvers. The thrust arc from Earth to Jupiter lowers the launch energy requirement, while an ad hoc steering law applied after the Jupiter flyby reduces the hyperbolic excess speed upon arrival at Saturn. This lowers the orbit insertion impulse to the point where capture is possible even with a gravity assist with Titan. The control-law algorithm, the benefits to the mass budget and the main technological aspects are presented and discussed. The simple steering law is compared with a trajectory optimizer to evaluate the quality of the results and possibilities for improvement. I. Introduction he giant planets have a special place in our quest for learning about the origins of our planetary system and Tour search for life, and robotic missions are essential tools for this scientific goal. Missions to the outer planets arXiv:2001.04357v1 [astro-ph.EP] 8 Jan 2020 have been prioritized by NASA and ESA, and this has resulted in important space projects for the exploration of the Jupiter system (NASA’s Europa Clipper [1] and ESA’s Jupiter Icy Moons Explorer [2]), and studies are underway to launch a follow-up of Cassini/Huygens called Titan Saturn System Mission (TSSM) [3], a joint ESA-NASA project. -
Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature -
Mscthesis Joseangelgutier ... Humada.Pdf
Targeting a Mars science orbit from Earth using Dual Chemical-Electric Propulsion and Ballistic Capture Jose Angel Gutierrez Ahumada Delft University of Technology TARGETING A MARS SCIENCE ORBIT FROM EARTH USING DUAL CHEMICAL-ELECTRIC PROPULSION AND BALLISTIC CAPTURE by Jose Angel Gutierrez Ahumada MSc Thesis in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering at the Delft University of Technology, to be defended publicly on Wednesday May 8, 2019. Supervisor: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Dr. Ryan Russell, The University of Texas at Austin Thesis committee: Dr. Francesco Topputo, TU Delft/Politecnico di Milano Prof. dr. ir. Pieter N.A.M. Visser, TU Delft ir. Ron Noomen, TU Delft Dr. Angelo Cervone, TU Delft This thesis is confidential and cannot be made public until December 31, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Cover picture adapted from https://steemitimages.com/p/2gs...QbQvi EXECUTIVE SUMMARY Ballistic capture is a relatively novel concept in interplanetary mission design with the potential to make Mars and other targets in the Solar System more accessible. A complete end-to-end interplanetary mission from an Earth-bound orbit to a stable science orbit around Mars (in this case, an areostationary orbit) has been conducted using this concept. Sets of initial conditions leading to ballistic capture are generated for different epochs. The influence of the dynamical model on the capture is also explored briefly. Specific capture trajectories are then selected based on a study of their stabilization into an areostationary orbit. -
Orbital Fueling Architectures Leveraging Commercial Launch Vehicles for More Affordable Human Exploration
ORBITAL FUELING ARCHITECTURES LEVERAGING COMMERCIAL LAUNCH VEHICLES FOR MORE AFFORDABLE HUMAN EXPLORATION by DANIEL J TIFFIN Submitted in partial fulfillment of the requirements for the degree of: Master of Science Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY January, 2020 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis of DANIEL JOSEPH TIFFIN Candidate for the degree of Master of Science*. Committee Chair Paul Barnhart, PhD Committee Member Sunniva Collins, PhD Committee Member Yasuhiro Kamotani, PhD Date of Defense 21 November, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein. 2 Table of Contents List of Tables................................................................................................................... 5 List of Figures ................................................................................................................. 6 List of Abbreviations ....................................................................................................... 8 1. Introduction and Background.................................................................................. 14 1.1 Human Exploration Campaigns ....................................................................... 21 1.1.1. Previous Mars Architectures ..................................................................... 21 1.1.2. Latest Mars Architecture ......................................................................... -
Conceptual Design and Optimization of Hybrid Rockets
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-14 Conceptual Design and Optimization of Hybrid Rockets Messinger, Troy Leonard Messinger, T. L. (2021). Conceptual Design and Optimization of Hybrid Rockets (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113011 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Conceptual Design and Optimization of Hybrid Rockets by Troy Leonard Messinger A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN MECHANICAL ENGINEERING CALGARY, ALBERTA JANUARY, 2021 © Troy Leonard Messinger 2021 Abstract A framework was developed to perform conceptual multi-disciplinary design parametric and optimization studies of single-stage sub-orbital flight vehicles, and two-stage-to-orbit flight vehicles, that employ hybrid rocket engines as the principal means of propulsion. The framework was written in the Python programming language and incorporates many sub- disciplines to generate vehicle designs, model the relevant physics, and analyze flight perfor- mance. The relative performance (payload fraction capability) of different vehicle masses and feed system/propellant configurations was found. The major findings include conceptually viable pressure-fed and electric pump-fed two-stage-to-orbit configurations taking advan- tage of relatively low combustion pressures in increasing overall performance. -
Determination of Optimal Earth-Mars Trajectories to Target the Moons Of
The Pennsylvania State University The Graduate School Department of Aerospace Engineering DETERMINATION OF OPTIMAL EARTH-MARS TRAJECTORIES TO TARGET THE MOONS OF MARS A Thesis in Aerospace Engineering by Davide Conte 2014 Davide Conte Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2014 ii The thesis of Davide Conte was reviewed and approved* by the following: David B. Spencer Professor of Aerospace Engineering Thesis Advisor Robert G. Melton Professor of Aerospace Engineering Director of Undergraduate Studies George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT The focus of this thesis is to analyze interplanetary transfer maneuvers from Earth to Mars in order to target the Martian moons, Phobos and Deimos. Such analysis is done by solving Lambert’s Problem and investigating the necessary targeting upon Mars arrival. Additionally, the orbital parameters of the arrival trajectory as well as the relative required ΔVs and times of flights were determined in order to define the optimal departure and arrival windows for a given range of date. The first step in solving Lambert’s Problem consists in finding the positions and velocities of the departure (Earth) and arrival (Mars) planets for a given range of dates. Then, by solving Lambert’s problem for various combinations of departure and arrival dates, porkchop plots can be created and examined. Some of the key parameters that are plotted on porkchop plots and used to investigate possible transfer orbits are the departure characteristic energy, C3, and the arrival v∞. -
Analysis of Transfer Maneuvers from Initial
Revista Mexicana de Astronom´ıa y Astrof´ısica, 52, 283–295 (2016) ANALYSIS OF TRANSFER MANEUVERS FROM INITIAL CIRCULAR ORBIT TO A FINAL CIRCULAR OR ELLIPTIC ORBIT M. A. Sharaf1 and A. S. Saad2,3 Received March 14 2016; accepted May 16 2016 RESUMEN Presentamos un an´alisis de las maniobras de transferencia de una ´orbita circu- lar a una ´orbita final el´ıptica o circular. Desarrollamos este an´alisis para estudiar el problema de las transferencias impulsivas en las misiones espaciales. Consideramos maniobras planas usando ecuaciones reci´enobtenidas; con estas ecuaciones se com- paran las maniobras circulares y el´ıpticas. Esta comparaci´on es importante para el dise˜no´optimo de misiones espaciales, y permite obtener mapeos ´utiles para mostrar cu´al es la mejor maniobra. Al respecto, desarrollamos este tipo de comparaciones mediante 10 resultados, y los mostramos gr´aficamente. ABSTRACT In the present paper an analysis of the transfer maneuvers from initial circu- lar orbit to a final circular or elliptic orbit was developed to study the problem of impulsive transfers for space missions. It considers planar maneuvers using newly derived equations. With these equations, comparisons of circular and elliptic ma- neuvers are made. This comparison is important for the mission designers to obtain useful mappings showing where one maneuver is better than the other. In this as- pect, we developed this comparison throughout ten results, together with some graphs to show their meaning. Key Words: celestial mechanics — methods: analytical — space vehicles 1. INTRODUCTION The large amount of information from interplanetary missions, such as Pioneer (Dyer et al. -
Interplanetary Cruising
Interplanetary Cruising 1. Foreword The following material is intended to supplement NASA-JSC's High School Aerospace Scholars (HAS) instructional reading. The author, a retired veteran of 60 Space Shuttle flights at Mission Control's Flight Dynamics Officer (FDO) Console, first served as HAS mentor in association with a June 2008 workshop. On that occasion, he noticed students were generally unfamiliar with the nature and design of spacecraft trajectories facilitating travel between Earth and Mars. Much of the specific trajectory design data appearing herein was developed during that and subsequent workshops as reference material for students integrating it into Mars mission timeline, spacecraft mass, landing site selection, and cost estimates. Interplanetary Cruising is therefore submitted to HAS for student use both before and during Mars or other interplanetary mission planning workshops. Notation in this document distinguishes vectors from scalars using bold characters in a vector's variable name. The "•" operator denotes a scalar product between two vectors. If vectors a and b are represented with scalar coordinates such that a = (a1, a2, a3) and b = (b1, b2, b3) in some 3- dimensional Cartesian system, a • b = a1 b1 + a2 b2 + a3 b3 = a b cos γ, where γ is the angle between a and b. 2. Introduction Material in this reference will help us understand the pedigree and limitations applying to paths (trajectories) followed by spacecraft about the Sun as they "cruise" through interplanetary space. Although cruise between Earth and Mars is used in specific examples, this lesson's physics would apply to travel between any two reasonably isolated objects in our solar system. -
Performance Modelling and Simulation of a 100 Km Hybrid Sounding Rocket
PERFORMANCE MODELLING AND SIMULATION OF A 100 KM HYBRID SOUNDING ROCKET Fiona Kay Leverone Submitted in fulfilment of the academic requirements for the degree of Master of Science in Mechanical Engineering, College of Agriculture, Engineering and Science, University of KwaZulu-Natal Supervisor: Mr Michael Brooks Co-Supervisor: Mr Jean-François Pitot de la Beaujardiere Co-Supervisor: Prof Lance Roberts December 2013 2. DECLARATION 1 - PLAGIARISM I, Fiona Leverone, declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced b. Where their exact words have been used, then their writing has been placed inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections. Signed ________________________ Date ___________ Miss Fiona Leverone As the candidate’s supervisor I have approved this dissertation for submission. Signed ________________________ Date ___________ Mr. Michael Brooks As the candidates co-supervisor I have approved this dissertation for submission. Signed ________________________ Date ___________ Mr. -
NEP Paper World Space Congress
IAC-02-S.4.02 PERFORMANCE REQUIREMENTS FOR A NUCLEAR ELECTRIC PROPULSION SYSTEM Larry Kos In-Space Technical Lead Engineer NASA Marshall Space Flight Center MSFC, Alabama, 35812 (USA) E-mail: [email protected] Les Johnson In-Space Transportation Technology Manager Advanced Space Transportation Program/TD15 NASA Marshall Space Flight Center MSFC, Alabama, 35812, (USA) E-mail: [email protected] Jonathan Jones Aerospace Engineer NASA Marshall Space Flight Center MSFC, Alabama, 35812 (USA) E-mail: [email protected] Ann Trausch Mission and System Analysis Lead NASA Marshall Space Flight Center MSFC, Alabama 35812 (USA) E-mail: [email protected] Bill Eberle Aerospace Engineer Gray Research Inc. Huntsville, Alabama 35806 (USA) E-mail: [email protected] Gordon Woodcock Technical Consultant Gray Research Inc. Huntsville, Alabama 35806 (USA) E-mail: [email protected] NASA is developing propulsion technologies potentially leading to the implementation of a nuclear electric propulsion system supporting robotic exploration of the solar system. The mission limitations imposed by the use of today’s predominantly chemical propulsion systems are many: long trip times, minimal science payload mass, minimal power at the destination for science, and the near-impossibility of encountering multiple targets or even orbiting distant destinations. Performance-based mission analysis, comparing a first generation nuclear electric propulsion system with chemical and solar electric propulsion was performed and will be described in the paper. Mission Characteristics and Challenges ________________ Copyright © 2002 by the American Institute of Aeronautics and Europa Lander Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.S. -
ORBIT MANOUVERS • Orbital Plane Change (Inclination) It Is an Orbital
UNIVERSITY OF ANBAR ADVANCED COMMUNICATIONS SYSTEMS FOR 4th CLASS STUDENTS COLLEGE OF ENGINEERING by: Dr. Naser Al-Falahy ELECTRICAL ENGINEERING WE EK 4 ORBIT MANOUVERS Orbital plane change (inclination) It is an orbital maneuver aimed at changing the inclination of an orbiting body's orbit. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector (delta v) at the orbital nodes (i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes). In general, inclination changes can take a very large amount of delta v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize any inclination change required over the duration of the spacecraft life. When both orbits are circular (i.e. e = 0) and have the same radius the Delta-v (Δvi) required for an inclination change (Δvi) can be calculated using: where: v is the orbital velocity and has the same units as Δvi (Δi ) inclination change required. Example Calculate the velocity change required to transfer a satellite from a circular 600 km orbit with an inclination of 28 degrees to an orbit of equal size with an inclination of 20 degrees. SOLUTION, r = (6,378.14 + 600) × 1,000 = 6,978,140 m , ϑ = 28 - 20 = 8 degrees Vi = SQRT[ GM / r ] Vi = SQRT[ 3.986005×1014 / 6,978,140 ] Vi = 7,558 m/s Δvi = 2 × Vi × sin(ϑ/2) Δvi = 2 × 7,558 × sin(8/2) Δvi = 1,054 m/s 18 UNIVERSITY OF ANBAR ADVANCED COMMUNICATIONS SYSTEMS FOR 4th CLASS STUDENTS COLLEGE OF ENGINEERING by: Dr.