Determining Shell Shape Differences in the Horse Mussels Modiolus Philippinarum (Hanley 1843) and Modiolus Modulaides (Röding 1798) by Morphometric Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Determining Shell Shape Differences in the Horse Mussels Modiolus Philippinarum (Hanley 1843) and Modiolus Modulaides (Röding 1798) by Morphometric Analysis Philippine Journal of Science 150 (4): 743-752, August 2021 ISSN 0031 - 7683 Date Received: 25 Nov 2020 Determining Shell Shape Differences in the Horse Mussels Modiolus philippinarum (Hanley 1843) and Modiolus modulaides (Röding 1798) by Morphometric Analysis Kaent Immanuel N. Uba* Department of Fisheries Science and Technology School of Marine Fisheries and Technology Mindanao State University at Naawan Naawan, Misamis Oriental 9023 Philippines In the present study, shell morphological variations of the horse mussel species Modiolus philippinarum and Modiolus modulaides have been explored by the means of linear morphometrics for size and landmark-based geometric morphometrics for shape. Linear morphometrics revealed significant differences in shell length [t(298) = –6.29, p = 1.08 x 10–9), shell height [t(298) = 10.60, p = 1.74 x 10–22], shell width [t(298) = 2.13, p = 0.034], PAMS or posterior adductor muscle scar length [t(298) = 2.16, p = 0.032], hinge length [t(298) = 2.26, p = 0.025], umbo length [t(298) = –5.54, p = 6.73 x 10–8], and anterior length [t(298) = –5.59, p = 5.16 x 10–8] between species. However, upon the use of these morphometric characters to develop an index that will easily discriminate the species, only the relationships of shell length vs. shell width and hinge length were significant (ANCOVA, width/ length F = 18.45, p = 0.0001; hinge/length F = 7.76, p = 0.005) but an invariably high overlap between species was observed resulting in a 23.3% misclassification rate. Contrastingly, the analysis of shape variables through landmark-based geometric morphometrics revealed significant differences in shell shape between the two species [MANOVA, Wilk’s λ = 0.01, F(24,335) = 941.4, p = 3.47 x 10–291] with a 0.0% misclassification rate. Generally, M. modulaides were found to have an elongated shell while M. philippinarum was compressed and convex. Also, visualization through thin-plate spline expansion factor plots revealed that variability in shell shape between the species occurred mostly in the posterior and ventral region of the shell and was attributed to the species ecology. The findings of the present study encourage the use of geometric morphometric methods in species delineation, especially when ecotypes or sibling species are present. Keywords: horse mussels, morphometrics, relative warp analysis, thin-plate spline INTRODUCTION bottoms of sheltered bays while M. philippinarum is found on muddy and gravely mudflats and seagrass The horse mussels Modiolus modulaides (Röding beds (Poutiers 1998; Ozawa 2001; Uba and Monteclaro 1798) and Modiolus philippinarum (Hanley 1843) are 2020). In the Philippines, these species are commercially widespread in the Indo-West Pacific region. Both species exploited for food and aquaculture feed (i.e. freshly fed to inhabit the littoral and sublittoral up to a depth of 40 shrimps and crabs) (Napata and Andalecio 2011; Uba et al. m. However, M. modulaides are often found on muddy 2020). Specimens of M. modulaides measure up to 8 cm shell length whereas M. philippinarum is usually bigger, *Corresponding Author: [email protected] measuring up to 13.5 cm shell length (Poutiers 1998). 743 Philippine Journal of Science Uba: Determining Shell Shape Differences between Vol. 150 No. 4, August 2021 M. philippinarum and modulaides There has been confusion on the identification of these morphometrics to investigate shell morphological horse mussel species, as demonstrated by conflicting variations between species and the feasibility of these reports (Laureta 2008; Napata and Andalecio 2011; del techniques in distinguishing these species. Norte-Campos et al. 2020; Uba and Monteclaro 2020). Most morphological differences between species are only identifiable by experienced observers (e.g. a careful comparison of the anterior margin, posterodorsal margin, MATERIALS AND METHODS presence of periostracum hairs, etc.). Accurate species identification is the first and necessary step when one Collection of Specimens studies species biology and population and community A total of 300 individual horse mussels were randomly ecology. Unfortunately, such identification is not always collected from January–March 2018 at Looc, Romblon easy to perform. Obviously, molecular methods may be (M. philippinarum, n = 150) and Dumangas, Iloilo (M. of great help, but they are costly and may not be always modulaides, n = 150), respectively (Figure 1). The horse on hand. In many cases, researchers have to rely heavily mussel species were identified carefully by their gross on morphological traits. Traditionally, shell morphometric morphology, as described by Poutiers (1998). characters have been used to distinguish bivalve species. However, recent analyses showed that the use of indices (i.e. the arc of maximal convexity of the valve’s outline Linear Morphometric Analysis and the index of convexity ratio) for species delimitation For the linear morphometric analysis, seven inflates the number of species as different ecophenotypes morphometric measurements were recorded for each are identified as separate species (Bolotov et al. individual, which generally followed the description 2015; Klishko et al. 2014, 2016, 2017a and b, 2018). of Maas et al. (1999) (Table 1). Linear morphometric Furthermore, traditional morphometric measurements measurements were taken from the left valve of the (length, width, height) are rarely sufficient because of the shell and measured to the nearest 0.01 cm using a high morphological plasticity of bivalve shells and linear digital caliper. measurements tend to be autocorrelated with the size of Descriptive statistics including mean (x̄ ), range animals (Zelditch et al. 2012). (minimum and maximum value), standard deviation At present, the detection of subtle differences in shape (SD), and coefficient of variation (CV = SD/x̄ ) of each can be done through geometric morphometric analysis. morphological character were calculated using EXCEL Because no deformation of shape occurs during 2019 (Microsoft Corporation, Redmond, WA, USA). manipulation, bivalves are excellent candidates for shape The relationships between these variables were analysis using geometric morphometrics which can be obtained by regression analysis fitting the linearized easily done using landmarks. A landmark is a homologous form [log10Y = log10(a) + blog10(X)], where X is shell point in the shell, which can be identified in all specimens. length in cm and Y is the shell height, shell width, It can be further classified into anatomical landmarks PAMS length, hinge length, umbo length, or anterior (points that correspond between organisms in some length in cm of the power function (Y = aXb). In each biologically meaningful way), mathematical landmarks relationship, differences between the estimated slopes (located on an object according to some mathematical or for each species were compared through ANCOVA geometrical property, e.g. high curvature or an extreme (analysis of covariance). Whenever the results point), and pseudo-landmarks (constructed points on indicated significant differences between the slopes the an object either on the outline or between landmarks) regressions were estimated separately for each species. (Dryden and Mardia 1998). Geometric morphometrics provides statistically robust and visual methods for To test the effectiveness of these characters in predicting shape analysis as it can remove the factor of size and different group locations, which clarify the relative symmetry which enables the study of its variation and importance of such traits as discriminators between relationships (Zelditch et al. 2012). Thus, it has been a priori for groups, a linear discriminant analysis successfully used to discriminate species of aquatic was performed using morphometric measurements organisms (Kennedy and Haag 2005; Rufino et al. 2006; previously transformed with Burnaby’s method for Torres and Santos 2009; Leyva-Valencia et al. 2012; size correction. The classification success rate was Fang et al. 2018; Santos et al. 2019). evaluated based on the percentage of individuals correctly assigned into the original sample by a The present work aimed to determine differences in shape confusion matrix (Kong et al. 2007; Konan et al. 2010; between M. philippinarum and M. modulaides based Gou et al. 2017). on linear measurements and landmark-based geometric 744 Philippine Journal of Science Uba: Determining Shell Shape Differences between Vol. 150 No. 4, August 2021 M. philippinarum and modulaides Figure 1. Location of the horse mussel collection sites. Table 1. Definitions of linear morphometric characters used in a measurement reference. The images were compiled, the study. scaled, and digitized using the tpsDig version 2.12 (Rohlf Morphometric 2008a) and tpsUtil version 1.44 (Rohlf 2009) software. Description characters Twelve homologous anatomical landmarks in the inner left Shell length Widest part across the shell at 90° to the height valves were landmarked, of which seven are anatomical Shell height Distance from the hinge line to the shell margin and five are mathematical landmarks (Bookstein 1991) Shell width The thickest part of the two shell valves as illustrated in Figure 2. Landmark positions were selected according to Valladares et al. (2010) with some PAMS length Length of the posterior adductor muscle scar modifications. Landmarking per specimen was done in Hinge length Distance between the anterior and the posterior triplicates on different days to minimize measurement end
Recommended publications
  • Adaptation to Deep-Sea Chemosynthetic Environments As Revealed by Mussel Genomes
    ARTICLES PUBLISHED: 3 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0121 Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes Jin Sun1, 2, Yu Zhang3, Ting Xu2, Yang Zhang4, Huawei Mu2, Yanjie Zhang2, Yi Lan1, Christopher J. Fields5, Jerome Ho Lam Hui6, Weipeng Zhang1, Runsheng Li2, Wenyan Nong6, Fiona Ka Man Cheung6, Jian-Wen Qiu2* and Pei-Yuan Qian1, 7* Hydrothermal vents and methane seeps are extreme deep-sea ecosystems that support dense populations of specialized macro benthos such as mussels. But the lack of genome information hinders the understanding of the adaptation of these ani- mals to such inhospitable environments. Here we report the genomes of a deep-sea vent/seep mussel (Bathymodiolus plati- frons) and a shallow-water mussel (Modiolus philippinarum). Phylogenetic analysis shows that these mussel species diverged approximately 110.4 million years ago. Many gene families, especially those for stabilizing protein structures and removing toxic substances from cells, are highly expanded in B. platifrons, indicating adaptation to extreme environmental conditions. The innate immune system of B. platifrons is considerably more complex than that of other lophotrochozoan species, including M. philippinarum, with substantial expansion and high expression levels of gene families that are related to immune recognition, endocytosis and caspase-mediated apoptosis in the gill, revealing presumed genetic adaptation of the deep-sea mussel to the presence of its chemoautotrophic endosymbionts. A follow-up metaproteomic analysis of the gill of B. platifrons shows metha- notrophy, assimilatory sulfate reduction and ammonia metabolic pathways in the symbionts, providing energy and nutrients, which allow the host to thrive. Our study of the genomic composition allowing symbiosis in extremophile molluscs gives wider insights into the mechanisms of symbiosis in other organisms such as deep-sea tubeworms and giant clams.
    [Show full text]
  • Shallow Water Farming of Marine Organisms, in Particular Bivalves, in Quirimbas National Park, Mozambique
    SHALLOW WATER FARMING OF MARINE ORGANISMS, IN PARTICULAR BIVALVES, IN QUIRIMBAS NATIONAL PARK, MOZAMBIQUE A LITERATURE STUDY PREPARED FOR WWF DENMARK BY KATHE R. JENSEN, D.Sc., Ph.D. Copenhagen, November 2006 INTRODUCTION Shellfish collected from local intertidal and shallow subtidal areas in the coastal zone form an important dietary component in many developing countries, especially in the tropics. Increased population pressure, whether from increased birth rates or migration, usually leads to increased pressure on such open access resources. Many development projects, therefore, include support for the implementation of stock enhancement and/or aquaculture activities. Before initiating new projects, information on previous successes and/or failures should be consulted to improve the chances of success. This report summarizes some of the available literature, especially from eastern Africa and from other developing countries in the tropics. Mozambique has a long coastline, 2770 km along the tropical western Indian Ocean. Tidal range varies from less than 1 m to almost 4 m, and tides are semidiurnal. Mozambique lies within the monsoon belt and is affected by the cool, windy SE monsoon from April to October and the hot, rainy NE monsoon from November to March (Gullström et al., 2002). Average temperatures are around 26-27 °C, but diel variation may exceed 10 °C, i.e. from above 30 °C in the daytime to only 20 °C during the night. Except for river mouth areas, there is little variation in salinity, which is around 35 ‰ most of the time (Ministério das Pescas, 2003). Quirimbas National Park is located in the northern part of Mozambique where the coastal waters are dominated by coral reefs (Fernandes and Hauengue, 2000).
    [Show full text]
  • Molluscan Genomics: Implications for Biology and Aquaculture
    Molluscan Genomics: Implications for Biology and Aquaculture Author Takeshi Takeuchi journal or Current Molecular Biology Reports publication title volume 3 number 4 page range 297-305 year 2017-10-23 Rights (C) Springer International Publishing AG 2017 This is a post-peer-review, pre-copyedit version of an article published in Current Molecular Biology Reports. The final authenticated version is available online at: https://dx.doi.org/10.1007/s40610-017-0077-3” . Author's flag author URL http://id.nii.ac.jp/1394/00000277/ doi: info:doi/10.1007/s40610-017-0077-3 Title Molluscan genomics: implications for biology and aquaculture Author Takeshi Takeuchi* Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan *Correspondence: [email protected] Keywords molluscan genome; genotyping; aquaculture 1 Abstract Purpose of review As a result of advances in DNA sequencing technology, molluscan genome research, which initially lagged behind that of many other animal groups, has recently seen a rapid succession of decoded genomes. Since molluscs are highly divergent, the subjects of genome projects have been highly variable, including evolution, neuroscience, and ecology. In this review, recent findings of molluscan genome projects are summarized, and their applications to aquaculture are discussed. Recent findings Recently 14 molluscan genomes have been published. All bivalve genomes show high heterozygosity rates, making genome assembly difficult. Unique gene expansions were evident in each species, corresponding to their specialized features, including shell formation, adaptation to the environment, and complex neural systems. To construct genetic maps and to explore quantitative trait loci (QTL) and genes of economic importance, genome-wide genotyping using massively parallel, targeted sequencing of cultured molluscs was employed.
    [Show full text]
  • Habitat Characteristics of the Horse Mussel Modiolus Modulaides (Röding 1798) in Iloilo, Philippines
    Philippine Journal of Science 149 (3-a): 969-979, October 2020 ISSN 0031 - 7683 Date Received: 17 Apr 2020 Habitat Characteristics of the Horse Mussel Modiolus modulaides (Röding 1798) in Iloilo, Philippines Kaent Immanuel N. Uba1* and Harold M. Monteclaro2 1Department of Fisheries Science and Technology School of Marine Fisheries and Technology Mindanao State University at Naawan Naawan, Misamis Oriental 9023 Philippines 2Institute of Marine Fisheries and Oceanology College of Fisheries and Ocean Sciences University of the Philippines Visayas Miagao, Iloilo 5023 Philippines Despite the ecological importance of horse mussels, they have not received enough attention because they are considered of less economic value than other fisheries resources and not as charismatic as other marine resources. As a result, research efforts are often limited and information on biology and ecology is scant, affecting resource management. Recognizing this, the present study investigated the habitat characteristics of a local bioengineering species in Iloilo, Philippines – the horse mussel Modiolus modulaides. Analyses of water properties, sediments, phytoplankton composition in the water column, and food items pre-ingested by M. modulaides during the wet and dry seasons in Dumangas, Iloilo, Philippines were conducted. The water temperature (27.33–27.76 °C), dissolved oxygen (4.22–5.21 mg/L), salinity (30.97– 32.63‰), pH (7.55–8.01), total dissolved solids (31736.70–33079.48 mg/L), and conductivity (50121.56–53971.26 µS/cm) favor the growth and maintenance of M. modulaides. Sediments exhibited increasing deposition of fine material and high organic matter content as a result of the deposition of feces and pseudofeces.
    [Show full text]
  • Scientific Tools for Coastal Biodiversity Assessments REPORT
    Advanced course on Scientific Tools for Coastal Biodiversity Assessments a practical field-based approach for studying change in biological populations and communities using tropical intertidal habitats Course held at Inhaca Island Marine Biology Station (UEM) 2-14 December 2014 REPORT 2014 MASMA Course – Scientific Tools for Coastal Biodiversity Assessment CONTENTS 1. Institutions and Trainers ....................................................................................................... 3 2. Scope ..................................................................................................................................... 4 3. Objectives .............................................................................................................................. 5 4. Preparation and preliminary activities .................................................................................... 6 5. Travelling organisation .......................................................................................................... 6 6. Accommodation and training facilities ................................................................................... 7 6.1. Choice of Inhaca Island Marine Biology Station (EBMI) ............................................... 7 6.2. Accommodation and subsistence .................................................................................... 7 6.3. Training facilities ........................................................................................................... 8 7. Course
    [Show full text]
  • Genomics and Transcriptomics of the Green Mussel Explain the Durability
    www.nature.com/scientificreports OPEN Genomics and transcriptomics of the green mussel explain the durability of its byssus Koji Inoue1*, Yuki Yoshioka1,2, Hiroyuki Tanaka3, Azusa Kinjo1, Mieko Sassa1,2, Ikuo Ueda4,5, Chuya Shinzato1, Atsushi Toyoda6 & Takehiko Itoh3 Mussels, which occupy important positions in marine ecosystems, attach tightly to underwater substrates using a proteinaceous holdfast known as the byssus, which is tough, durable, and resistant to enzymatic degradation. Although various byssal proteins have been identifed, the mechanisms by which it achieves such durability are unknown. Here we report comprehensive identifcation of genes involved in byssus formation through whole-genome and foot-specifc transcriptomic analyses of the green mussel, Perna viridis. Interestingly, proteins encoded by highly expressed genes include proteinase inhibitors and defense proteins, including lysozyme and lectins, in addition to structural proteins and protein modifcation enzymes that probably catalyze polymerization and insolubilization. This assemblage of structural and protective molecules constitutes a multi-pronged strategy to render the byssus highly resistant to environmental insults. Mussels of the bivalve family Mytilidae occur in a variety of environments from freshwater to deep-sea. Te family incudes ecologically important taxa such as coastal species of the genera Mytilus and Perna, the freshwa- ter mussel, Limnoperna fortuneri, and deep-sea species of the genus Bathymodiolus, which constitute keystone species in their respective ecosystems 1. One of the most important characteristics of mussels is their capacity to attach to underwater substrates using a structure known as the byssus, a proteinous holdfast consisting of threads and adhesive plaques (Fig. 1)2. Using the byssus, mussels ofen form dense clusters called “mussel beds.” Te piled-up structure of mussel beds enables mussels to support large biomass per unit area, and also creates habitat for other species in these communities 3,4.
    [Show full text]
  • Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights from Mytilus Galloprovincialis
    fevo-09-698561 July 3, 2021 Time: 17:34 # 1 ORIGINAL RESEARCH published: 09 July 2021 doi: 10.3389/fevo.2021.698561 Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights From Mytilus galloprovincialis Marco Gerdol1, Claudia La Vecchia2, Maria Strazzullo2, Pasquale De Luca3, Stefania Gorbi4, Francesco Regoli4, Alberto Pallavicini1,2 and Enrico D’Aniello2* 1 Department of Life Sciences, University of Trieste, Trieste, Italy, 2 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy, 3 Research Infrastructures for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Naples, Italy, 4 Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable Edited by: and unique DNA methylation pattern that finely regulates mRNA transcription Giulia Furfaro, during development and determines tissue-specific gene expression. Currently, DNA University of Salento, Italy methylation remains poorly investigated in mollusks and completely unexplored in Reviewed by: Celine Cosseau, Mytilus galloprovincialis. To shed light on this process in this ecologically and Université de Perpignan Via Domitia, economically important bivalve, we screened its genome, detecting sequences France Ricard Albalat, homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) University of Barcelona, Spain proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously *Correspondence: described in other organisms. We characterized the gene architecture and protein Enrico D’Aniello domains of the mussel sequences and studied their phylogenetic relationships with [email protected] the ortholog sequences from other bivalve species.
    [Show full text]
  • Comparative Genomics Reveals Evolutionary Drivers of Sessile Life And
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435778; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Comparative genomics reveals evolutionary drivers of sessile life and 2 left-right shell asymmetry in bivalves 3 4 Yang Zhang 1, 2 # , Fan Mao 1, 2 # , Shu Xiao 1, 2 # , Haiyan Yu 3 # , Zhiming Xiang 1, 2 # , Fei Xu 4, Jun 5 Li 1, 2, Lili Wang 3, Yuanyan Xiong 5, Mengqiu Chen 5, Yongbo Bao 6, Yuewen Deng 7, Quan Huo 8, 6 Lvping Zhang 1, 2, Wenguang Liu 1, 2, Xuming Li 3, Haitao Ma 1, 2, Yuehuan Zhang 1, 2, Xiyu Mu 3, 7 Min Liu 3, Hongkun Zheng 3 * , Nai-Kei Wong 1* , Ziniu Yu 1, 2 * 8 9 1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial 10 Key Laboratory of Applied Marine Biology, Innovation Academy of South China Sea Ecology and 11 Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of 12 Sciences, Guangzhou 510301, China; 13 2 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 14 511458, China; 15 3 Biomarker Technologies Corporation, Beijing 101301, China; 16 4 Key Laboratory of Experimental Marine Biology, Center for Mega-Science, Institute of 17 Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; 18 5 State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, 19 Guangzhou 510275, China; 20 6 Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and 21 Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; 22 7 College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; 23 8 Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical 24 Engineering, Yanshan University, Qinhuangdao 066044, China.
    [Show full text]
  • (Bivalvia: Mytilidae) Reveal Convergent Evolution of Siphon Traits
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–21. With 7 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa011/5802836 by Iowa State University user on 13 August 2020 Phylogeny and anatomy of marine mussels (Bivalvia: Mytilidae) reveal convergent evolution of siphon traits Jorge A. Audino1*, , Jeanne M. Serb2, , and José Eduardo A. R. Marian1, 1Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, n. 101, 05508-090 São Paulo, São Paulo, Brazil 2Department of Ecology, Evolution & Organismal Biology, Iowa State University, 2200 Osborn Dr., Ames, IA 50011, USA Received 29 November 2019; revised 22 January 2020; accepted for publication 28 January 2020 Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate.
    [Show full text]
  • Shelled Molluscs - Berthou P., Poutiers J.-M., Goulletquer P., Dao J.C
    FISHERIES AND AQUACULTURE – Vol. II - Shelled Molluscs - Berthou P., Poutiers J.-M., Goulletquer P., Dao J.C. SHELLED MOLLUSCS Berthou P. Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France Poutiers J.-M. Muséum National d’Histoire Naturelle, Paris, France Goulletquer P. Institut Français de Recherche pour l'Exploitation de la Mer, La Tremblade, France Dao J.C. Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management Contents 1. Introduction 1.1. Uses of Shellfish: An Overview 1.2. Production 2. Species and Fisheries 2.1. Diversity of Species 2.1.1. Edible Species 2.1.2. Shellfish Species Not Used as Food 2.2. Shelled Molluscs Fisheries 2.2.1. Gastropods 2.2.2. Oysters 2.2.3. Mussels 2.2.4. Scallops 2.2.5. Clams 2.3. Shelled Molluscs Cultivation 2.3.1. Gastropods 2.3.2. Oysters 2.3.3. Mussels 2.3.4. ScallopsUNESCO – EOLSS 2.3.5. Clams 3. Harvesting andSAMPLE Cultivation Techniques CHAPTERS 3.1. Harvesting 3.2. Cultivation techniques 4. Biology 4.1. General Ecology 4.2. Growth 4.3. Reproduction 4.4. Larval Stage in Relation to Dispersal and Stock Abundance 4.5. Migration 5. Stock Assessment and Management Approaches ©Encyclopedia of Life Support Systems (EOLSS) FISHERIES AND AQUACULTURE – Vol. II - Shelled Molluscs - Berthou P., Poutiers J.-M., Goulletquer P., Dao J.C. 5.1. Stock Assessment 5.2. Management Strategies 6. Issues for the Future Bibliography Biographical Sketches Summary Shelled molluscs are comprised of bivalves and gastropods.
    [Show full text]
  • Larval Recruitment of the Tropical Mussel Modiolus Philippinarum (Bivalvia: Mytilidae) in Seagrass Beds
    VENUS 65 (3): 203-220, 2006 Larval Recruitment of the Tropical Mussel Modiolus philippinarum (Bivalvia: Mytilidae) in Seagrass Beds Hiroyuki Ozawa*, Taeko Kimura** and Hideo Sekiguchi Faculty of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; **[email protected] Abstract: The tropical mussel Modiolus philippinarum is common and abundant in seagrass beds in Okinawa Island, southernmost Japan, and is commercially important to local fishermen. In order to elucidate the mechanisms that maintain the difference in density between benthic populations of the mussel within and outside seagrass beds, we monitored temporal variations in densities of the mussel at different developmental stages (planktonic larvae; new settlers; small and large individuals) within and outside seagrass beds in Okinawa Island over one year. Based on these data, the difference in larval density was not significant, but there were significant differences between densities of new settlers (shell length<250 μm), small individuals (250 μm≦shell length<1.0 mm) and large individuals (shell length≧1.0 mm), within and outside seagrass beds. Cohort separation was applied to data for shell length distributions of new settlers and small and large individuals, and revealed that larvae mainly settled in July to August. New settlers grew up to about 20 mm in shell length in their first year; their mortality was constant and/or low once individuals had attained shell lengths of about 300 μm. These facts indicates that the much higher density of benthic populations of the mussel within seagrass beds may be determined at and/or shortly following larval settlement, though details of the mechanisms driving the above difference are not yet identified.
    [Show full text]
  • Benthic Habitats and Biodiversity of the Dampier and Montebello Australian Marine Parks
    CSIRO OCEANS & ATMOSPHERE Benthic habitats and biodiversity of the Dampier and Montebello Australian Marine Parks Edited by: John Keesing, CSIRO Oceans and Atmosphere Research March 2019 ISBN 978-1-4863-1225-2 Print 978-1-4863-1226-9 On-line Contributors The following people contributed to this study. Affiliation is CSIRO unless otherwise stated. WAM = Western Australia Museum, MV = Museum of Victoria, DPIRD = Department of Primary Industries and Regional Development Study design and operational execution: John Keesing, Nick Mortimer, Stephen Newman (DPIRD), Roland Pitcher, Keith Sainsbury (SainsSolutions), Joanna Strzelecki, Corey Wakefield (DPIRD), John Wakeford (Fishing Untangled), Alan Williams Field work: Belinda Alvarez, Dion Boddington (DPIRD), Monika Bryce, Susan Cheers, Brett Chrisafulli (DPIRD), Frances Cooke, Frank Coman, Christopher Dowling (DPIRD), Gary Fry, Cristiano Giordani (Universidad de Antioquia, Medellín, Colombia), Alastair Graham, Mark Green, Qingxi Han (Ningbo University, China), John Keesing, Peter Karuso (Macquarie University), Matt Lansdell, Maylene Loo, Hector Lozano‐Montes, Huabin Mao (Chinese Academy of Sciences), Margaret Miller, Nick Mortimer, James McLaughlin, Amy Nau, Kate Naughton (MV), Tracee Nguyen, Camilla Novaglio, John Pogonoski, Keith Sainsbury (SainsSolutions), Craig Skepper (DPIRD), Joanna Strzelecki, Tonya Van Der Velde, Alan Williams Taxonomy and contributions to Chapter 4: Belinda Alvarez, Sharon Appleyard, Monika Bryce, Alastair Graham, Qingxi Han (Ningbo University, China), Glad Hansen (WAM),
    [Show full text]