State of the Snake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Herpetological Review
Herpetological Review FARANCIA ERYTROGRAMMA (Rainbow Snake). HABITAT. Submitted by STAN J. HUTCHENS (e-mail: [email protected]) and CHRISTOPHER S. DEPERNO, (e-mail: [email protected]), Fisheries and Wildlife Pro- gram, North Carolina State University, 110 Brooks Ave., Raleigh, North Carolina 27607, USA. canadensis) dams reduced what little fl ow existed in some canals to standing quagmires more representative of the habitat selected by Eastern Mudsnakes (Farancia abacura; Neill 1964, op. cit.). Interestingly, one A. rostrata was observed near BNS, but none was captured within the swamp. It is possible that Rainbow Snakes leave bordering fl uvial habitats in pursuit of young eels that wan- dered into canals and swamp habitats. Capturing such a secretive and uncommon species as F. ery- trogramma in unexpected habitat encourages consideration of their delicate ecological niche. Declining population indices for American Eels along the eastern United States are attributed to overfi shing, parasitism, habitat loss, pollution, and changes in major currents related to climate change (Hightower and Nesnow 2006. Southeast. Nat. 5:693–710). Eel declines could negatively impact population sizes and distributions of Rainbow Snakes, especially in inland areas. We believe future studies based on con- fi rmed Rainbow Snake occurrences from museum records or North Carolina GAP data could better delineate the range within North Carolina. Additionally, sampling for American Eels to determine their population status and distribution in North Carolina could augment population and distribution data for Rainbow Snakes. We thank A. Braswell, J. Jensen, and P. Moler for comments on earlier drafts of this manuscript. Submitted by STAN J. HUTCHENS (e-mail: [email protected]) and CHRISTOPHER S. -
Capacité Issue 4
CAPACITÉ Special Feature on Combating Invasive Alien Species CAPACITÉ – ISSUE 9 In this issue of Capacité, we turn our focus to invasive alien species (IAS). Several grants in the CEPF Caribbean portfolio are addressing this issue. And with good reason too. According to the CEPF Ecosystem Profile for the June 2014 Caribbean islands hotspot, the spread of invasive aliens is generally consid- ered the greatest threat to the native biodiversity of the region, especially to its endemic species, with invasive aliens recorded in a wide range of habitats throughout the hotspot. Inside this issue: An overview article by Island Conservation provides a useful context for un- Invasive Species on 2 Caribbean Islands: derstanding the threat of IAS in the Caribbean. Fauna & Flora International Extreme Threats but shares information about its work in the Eastern Caribbean along with useful Also Good News tips on using fixed-point photographs as a monitoring tool. From the Philadel- phia Zoo we learn about efforts to investigate the presence of the fungal dis- Making Pictures that 4 ease chytridiomicosis in amphibians in four key biodiversity areas in His- Speak A Thousand paniola. Words On the Case of the 6 We also feature the field-based work of the Environmental Awareness Group Highly Invasive in Antigua’s Offshore Islands, and of Island Conservation in association with Amphibian Chytrid Fun- gus in Hispaniola the Bahamas National Trust. These field-based efforts are complemented by initiatives by CAB International and Auckland Uniservices Ltd. to promote Connecting the Carib- 8 networking between and among IAS professionals and conservationists and bean KBAs via a Virtual build regional capacity to address IAS issues. -
ONEP V09.Pdf
Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern OEPP BIODIVERSITY SERIES volume nine OFFICE OF ENVIRONMENTAL POLICY AND PLANNING MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT 60/1 SOI PIBULWATTANA VII, RAMA VI RD., BANGKOK 10400 THAILAND TEL. (662) 2797180, 2714232, 2797186-9 FAX. (662) 2713226 Office of Environmental Policy and Planning 2000 NOT FOR SALE NOT FOR SALE NOT FOR SALE Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern Office of Environmental Policy and Planning 2000 First published : September 2000 by Office of Environmental Policy and Planning (OEPP), Thailand. ISBN : 974–87704–3–5 This publication is financially supported by OEPP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from OEPP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Nabhitabhata J., Chan ard T., Chuaynkern Y. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning, Bangkok, Thailand. Authors : Jarujin Nabhitabhata Tanya Chan–ard Yodchaiy Chuaynkern National Science Museum Available from : Biological Resources Section Natural Resources and Environmental Management Division Office of Environmental Policy and Planning Ministry of Science Technology and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Tel. (662) 271–3251, 279–7180, 271–4232–8 279–7186–9 ext 226, 227 Facsimile (662) 279–8088, 271–3251 Designed & Printed :Integrated Promotion Technology Co., Ltd. Tel. (662) 585–2076, 586–0837, 913–7761–2 Facsimile (662) 913–7763 2 1. -
The Use of Fish and Herptiles in Traditional Folk Therapies in Three
Altaf et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:38 https://doi.org/10.1186/s13002-020-00379-z RESEARCH Open Access The use of fish and herptiles in traditional folk therapies in three districts of Chenab riverine area in Punjab, Pakistan Muhammad Altaf1* , Arshad Mehmood Abbasi2*, Muhammad Umair3, Muhammad Shoaib Amjad4, Kinza Irshad2 and Abdul Majid Khan5 Abstract Background: Like botanical taxa, various species of animals are also used in traditional and modern health care systems. Present study was intended with the aim to document the traditional uses of herptile and fish species among the local communities in the vicinity of the River Chenab, Punjab Pakistan. Method: Data collected by semi-structured interviews and questionnaires were subsequently analyzed using relative frequency of citation (FC), fidelity level (FL), relative popularity level (RPL), similarity index (SI), and rank order priority (ROP) indices. Results: Out of total 81 reported species, ethnomedicinal uses of eight herptiles viz. Aspideretes gangeticus, A. hurum, Eublepharis macularius, Varanus bengalensis, Python molurus, Eryx johnii, Ptyas mucosus mucosus, Daboia russelii russelii and five fish species including Hypophthalmichthys molitrix, Cirrhinus reba, Labeo dero, Mastacembelus armatus, and Pethia ticto were reported for the first time from this region. Fat, flesh, brain, and skin were among the commonly utilized body parts to treat allergy, cardiovascular, nervous and respiratory disorders, sexual impotency, skin infections, and as antidote and anti-diabetic agents. Hoplobatrachus tigerinus, Duttaphrynus stomaticus, and Ptyas mucosus mucosus (herptiles), as well as Labeo rohita, Wallago attu, and Cirrhinus reba (fish) were top ranked with maximum informant reports, frequency of citations, and rank order priority. -
Prey Records for the Eastern Indigo Snake {Drymarchon Couperi)
2010 SOUTHEASTERN NATURALIST 9(1):1-18 Prey Records for the Eastern Indigo Snake {Drymarchon couperi) Dirk J. Stevenson'*, M. Rebecca Bolt^ Daniel J. Smith', Kevin M. Enge^ Natalie L. Hyslop'^ Terry M. Norton'•^ and Karen J. Abstract - Prey items for the federally protected Easteni Indigo Snake (Drymarchort couperi) were compiled from published and gray literature, field observations, necrop- sies, dissection of museum specimens, and personal communications from reliable sources. One hundred and eighty-six records were obtained for 48 different prey spe- cies. Anurans, Gopher Tortoises, snakes, and rodents comprised ca. 85% of the prey items. Most records (n = 143) that mentioned size were from adult indigos; 17 were from juveniles. Prey records were collected from 1940-2008 and were available for all months of the year. These data confirm that Eastern Indigo Snakes eat a wide assortment of prey of varying sizes. This strategy allows D. couperi to potentially forage success- fully in many different types of habitats and under fluctuating environmental conditions, a valuable trait for a lop-level predator that requires a large home range. IatroducHon Drymarchon couperi Holbrook (Eastern Indigo Snake), with a maximum recorded total length of 2629 mm, is one of the largest snakes in North America (Conant and Collins 1991). It has been federally listed as Threat- ened since 1978 under the Endangered Species Act (US Fish and Wildlife Service 1978). Drymarchon couperi is diurnal and mostly terrestrial (Layne and Steiner 1996, US Fish and Wildlife Service 2008). Of the two main hunt- ing strategies employed by snakes (ambush predator vs. active forager; see Mushinsky 1987), D. -
Contributions of Intensively Managed Forests to the Sustainability of Wildlife Communities in the South
CONTRIBUTIONS OF INTENSIVELY MANAGED FORESTS TO THE SUSTAINABILITY OF WILDLIFE COMMUNITIES IN THE SOUTH T. Bently Wigley1, William M. Baughman, Michael E. Dorcas, John A. Gerwin, J. Whitfield Gibbons, David C. Guynn, Jr., Richard A. Lancia, Yale A. Leiden, Michael S. Mitchell, Kevin R. Russell ABSTRACT Wildlife communities in the South are increasingly influenced by land use changes associated with human population growth and changes in forest management strategies on both public and private lands. Management of industry-owned landscapes typically results in a diverse mixture of habitat types and spatial arrangements that simultaneously offers opportunities to maintain forest cover, address concerns about fragmentation, and provide habitats for a variety of wildlife species. We report here on several recent studies of breeding bird and herpetofaunal communities in industry-managed landscapes in South Carolina. Study landscapes included the 8,100-ha GilesBay/Woodbury Tract, owned and managed by International Paper Company, and 62,363-ha of the Ashley and Edisto Districts, owned and managed by Westvaco Corporation. Breeding birds were sampled in both landscapes from 1995-1999 using point counts, mist netting, nest searching, and territory mapping. A broad survey of herpetofauna was conducted during 1996-1998 across the Giles Bay/Woodbury Tract using a variety of methods, including: searches of natural cover objects, time-constrained searches, drift fences with pitfall traps, coverboards, automated recording systems, minnow traps, and turtle traps. Herpetofaunal communities were sampled more intensively in both landscapes during 1997-1999 in isolated wetland and selected structural classes. The study landscapes supported approximately 70 bird and 72 herpetofaunal species, some of which are of conservation concern. -
WHO Guidance on Management of Snakebites
GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. -
Red Sand Boa
FACTSHEET RED SAND BOA © Raghu Ram Gowda / WARCO / Indiansnakes.org Red Sand Boa Eryx johnii, also known as the Indian Sand Boa is a non-venomous snake that is variable in colour and appears as reddish-brown, speckled-grey or yellow to black. Popularly called the double-headed snake, it has a blunt tail almost resembling a head which is wedge-shaped with narrow nostrils and tiny eyes. Taxonomically, it is placed in the class Reptilia, order Serpentes, and family Boidae. “It is the largest of the sand “ It is a nocturnal species and spends majority of boas in the world and can It is an ovoviviparous its time under the “ grow to more than 4ft species which means that ground. long.” ” the embryo that develops inside the eggs remains within the mother's body until they hatch into young ones. ” “ It feeds mainly on rodents, #DYK lizards and even other snakes. ” “It is easily recognisable due to its shovel-shaped nose and a blunt tail which appears to be chopped off. ” ECOLOGICAL ROLE: Just like other snake species, Red Sand Boa also plays a significant role in the ecosystem by maintaining a healthy population between prey and the predator. It feeds on rodents, lizards, and even other snakes and is often called the farmer’s friend. © Raghu Ram Gowda / WARCO / Indiansnakes.org SIZE, HABITAT, DISTRIBUTION AND POPULATION STATUS: AVERAGE HABITAT DISTRIBUTION POPULATION SIZE TREND Length: Agricultural lands, Andhra Pradesh, 70─120 cm grasslands, scrub Gujarat, Madhya forest, moist and Pradesh, dry deciduous Maharashtra, forests; unused Odisha, lands with sandy Rajasthan, Tamil soil and deep Nadu, Uttar cracks. -
Proquest Dissertations
Ecology and conservation of the twin- spotted rattlesnake, Crotalus pricei Item Type text; Thesis-Reproduction (electronic) Authors Prival, David Benjamin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:08:24 Link to Item http://hdl.handle.net/10150/278752 INFORMATiON TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. -
Ephemeral Pleistocene Woodlands Connect the Dots for Highland Rattlesnakes of the Crotalus Intermedius Group
Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Ephemeral Pleistocene woodlands ARTICLE connect the dots for highland rattlesnakes of the Crotalus intermedius group Robert W. Bryson Jr1*, Robert W. Murphy2,3, Matthew R. Graham1, Amy Lathrop2 and David Lazcano4 1School of Life Sciences, University of Nevada, ABSTRACT Las Vegas, 4505 Maryland Parkway, Las Aim To test how Pleistocene climatic changes affected diversification of the Vegas, NV 89154-4004, USA, 2Centre for Biodiversity and Conservation Biology, Royal Crotalus intermedius species complex. Ontario Museum, Toronto, ON M5S 2C6, Location Highlands of Mexico and the south-western United States (Arizona). Canada, 3State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Methods We synthesize the matrilineal genealogy based on 2406 base pairs of Zoology, The Chinese Academy of Sciences, mitochondrial DNA sequences, fossil-calibrated molecular dating, reconstruction Kunming 650223, China, 4Laboratorio de of ancestral geographic ranges, and climate-based modelling of species Herpetologı´a, Universidad Auto´noma de distributions to evaluate the history of female dispersion. Nuevo Leo´n, San Nicolas de los Garza, Nuevo Results The presently fragmented distribution of the C. intermedius group is the Leo´n CP 66440, Mexico result of both Neogene vicariance and Pleistocene pine–oak habitat fragmentation. Most lineages appear to have a Quaternary origin. The Sierra Madre del Sur and northern Sierra Madre Oriental are likely to have been colonized during this time. Species distribution models for the Last Glacial Maximum predict expansions of suitable habitat for taxa in the southern Sierra Madre Occidental and northern Sierra Madre Oriental. Main conclusions Lineage diversification in the C. -
Venom Protein of the Haematotoxic Snakes Cryptelytrops Albolabris
S HORT REPORT ScienceAsia 37 (2011): 377–381 doi: 10.2306/scienceasia1513-1874.2011.37.377 Venom protein of the haematotoxic snakes Cryptelytrops albolabris, Calloselasma rhodostoma, and Daboia russelii siamensis Orawan Khow, Pannipa Chulasugandha∗, Narumol Pakmanee Research and Development Department, Queen Saovabha Memorial Institute, Patumwan, Bangkok 10330 Thailand ∗Corresponding author, e-mail: pannipa [email protected] Received 1 Dec 2010 Accepted 6 Sep 2011 ABSTRACT: The protein concentration and protein pattern of crude venoms of three major haematotoxic snakes of Thailand, Cryptelytrops albolabris (green pit viper), Calloselasma rhodostoma (Malayan pit viper), and Daboia russelii siamensis (Russell’s viper), were studied. The protein concentrations of all lots of venoms studied were comparable. The chromatograms, from reversed phase high performance liquid chromatography, of C. albolabris venom and C. rhodostoma venom were similar but they were different from the chromatogram of D. r. siamensis venom. C. rhodostoma venom showed the highest number of protein spots on 2-dimensional gel electrophoresis (pH gradient 3–10), followed by C. albolabris venom and D. r. siamensis venom, respectively. The protein spots of C. rhodostoma venom were used as reference proteins in matching for similar proteins of haematotoxic snakes. C. albolabris venom showed more similar protein spots to C. rhodostoma venom than D. r. siamensis venom. The minimum coagulant dose could not be determined in D. r. siamensis venom. KEYWORDS: 2-dimensional gel electrophoresis, reverse phase high performance liquid chromatography, minimum coag- ulant dose INTRODUCTION inducing defibrination 5–7. The venom of D. r. sia- mensis directly affects factor X and factor V of the In Thailand there are 163 snake species, 48 of which haemostatic system 8,9 . -
Eastern Indigo Snake (Flier)
How To Distinguish Eastern Indigo Snakes Eastern indigo snakes became federally protected as threatened under the Endangered Species Act From Other Common Species in 1978, and they are also protected as threatened by Florida and Georgia. It is illegal to harass, harm, capture, keep, or kill an eastern indigo snake without specific state and/or federal permits. Life History Eastern indigo snakes use a wide variety of habitats The historic range of the eastern ranging from very wet to very dry. They tend to stay indigo snake (shown in dark green) in a specific area known as a home range, but this extended from the southern-most tip Adult eastern indigo snakes may be area is not static and can change over time, of South Carolina west through southern confused with few other species, due Georgia, Alabama, and into eastern to the indigo’s glossy blue-black probably in response to habitat conditions and Mississippi. The current range is shown in color and large size (5–7 ft.). prey availability. Because indigo snakes are sizeable light green. The eastern indigo snake (Drymarchon predators that actively hunt for their food, they couperi) has the distinction of being the need large home ranges. Males have been shown longest snake native to the United States. to use between 50 and 800 acres, whereas females often used for shelter. The snake may share the Eastern indigos typically range from 5 to 7 occupy up to 370 acres. During the winter, home burrow with a tortoise, but most often indigos will feet long, but can reach lengths greater than range sizes are smaller, particularly in the cooler occupy an old burrow that a tortoise has deserted.