State of the Snake

Total Page:16

File Type:pdf, Size:1020Kb

State of the Snake State of the Snake Rainbow Snake (Farancia erytrogramma) Photo Credit: J.D. Willson Partners in Amphibian and Reptile Conservation (PARC) is celebrating 2013 as the Year of the Snake! This effort aims to raise awareness about the global status of snakes and the threats and human perceptions that contribute to their decline. As the Year of the Snake unfolds, it is the goal of PARC to educate the public about the importance of these species, their importance to our ecosystems, the value of snakes to humans, and the beauty and mystique of these animals and the places they inhabit. Log on to www.yearofthesnake.org to learn more! The Wonderful, Wild World of Snakes Snakes are one of the most fascinating groups of animals on the planet. They occur in a variety of habitats everywhere around the world with the exception of Iceland, Greenland, Newfoundland, Ireland, New Zealand, the Falkland Islands, Antarctica, and some smaller islands. Snakes survive in some of the most extreme environments on Earth, including inside the Arctic Circle, high in the Himalaya Mountains, Map showing the approximate deep in Amazonian rainforests, and in some of global distribution of snakes is the driest deserts. Some snakes, such as Blind- based on: Ernst (2011) and Cogger snakes, Threadsnakes, and Wormsnakes, spend et al. (1998) for terrestrial snakes most of their time underground, while some, such and Ernst (2011), Campbell (2004), Phillips (2002), and Spawls (1995) as Paradise Tree Snakes (Chrysopelea paradisi), for sea snakes. live in the tree tops and have the ability to glide through the air, and others, such as Sea snakes, spend their entire lives swimming in the open ocean. Snakes can have a variety of diets, including mammals, birds, amphibians, fish, other reptiles (even other snakes, eggs), snails, insects and other invertebrates. In almost every aspect of their biology, snakes teach us amazing things about the natural world. Photo Credit: Marisa Ishimatsu Lined Coachwhip (Coluber flagellum) 2 The Life of a Snake Movement and Habitat Selection Movement and habitat selection vary Foraging significantly across snake species. For example, some Snakes are either active foragers, like Indigo small fossorial species (adapted for living Snakes (Drymarchon spp.), ambush predators, underground) may have very small home ranges (less such as Bushmasters (Lachesis spp.), or a than a hectare), compared to large pythons that hunt combination of the two, for example Cotton- sizeable mammalian prey (100s of hectares). Snakes mouths (Agkistrodon piscivorus). Snakes that have evolved to use a variety of approaches to are ambush predators will sit and wait, often on moving through their habitat, including burrowing, frequently used prey trails, and strike the prey as climbing, swimming, and gliding. While habitat it passes close to them. Ambush predators often selection varies across the many environments snakes spend long periods of time on the surface in inhabit, it is most often related to the availablity of foraging postures and rely on camouflage resources, like thermoregulation and prey availability, coloration (also known as cryptic coloration) to and to a lesser degree, competition and predation. hide themselves from potential predators and prey. Active foraging involves the snake Photo Credit: J.D. Willson moving regularly through an area searching for prey, and may include searching known nest sites or bedding areas. Snake species that utilize both ambush and active foraging techniques usually exhibit an ontogenetic shift in foraging strategy, with juveniles employing ambush tactics then developing an active foraging behavior as adults. Photo Credit: Manojkumar Pardeshi Indian Sand Boa (Eryx johnii) consuming prey. Eastern Kingsnake (Lampropeltis getula getula), an example of an oviparous snake. Reproduction Mating systems and seasons vary among snake species. Some snakes, such as Gartersnakes (Thamnophis spp.), breed in the spring, whereas others, such as some Rattlesnakes (Crotalus spp. and Sistrurus spp.), breed in the late summer and fall. Snake fertilization is internal. Males have paired hemipenes that they insert into the cloaca of the female. The hemipenes are often hooked or spiny to attach temporarily to the wall of the clo- aca. There are three modes of reproduction in snakes: ovoviviparity, oviparity, and viviparity. Ovoviviparity is when the embryos develop inside eggs within the mother’s body until they are close to hatching. The snakes are born live, but there is never a placental connection to the mother, and the embryos are nourished by egg yolk. Many, but not all, pit vipers are ovoviviparous. Oviparity is when the snake lays eggs, with all development occurring within the egg outside of the body of the mother. Oviparous snakes include Pythons (Python spp.), Kingsnakes (Lampropeltis spp.), Pine Snakes (Pituophis spp.), Milk Snakes (Lampropeltis spp.), and Corn Snakes (Pantherophis spp.). Finally, viviparity is the development of the embryos inside of the mother, where the mother has a connection to the young and is able to provide the embryos with nourishment and remove waste, resulting in live birth of young snakes. Viviparous snakes include Seasnakes (Pelamis spp.), Green Anacondas (Eunectes murinus), and Boa Constrictors (Boa spp.). 3 Venom Quick Facts! Only one-fifth of all snake species have the ability to produce venom in order to kill or subdue prey for consumption; this includes elapid, viperid, colubrid and hydrophiid snakes. Consuming a prey item that does not struggle requires less energy than eating moving prey. In addition, some snake venom contains enzymes that aid in digestion (such as Puff Adders [Bitis arietans] and Mulga or King Brown Snakes [Pseudechis australis]). All snakes within the Viperidae (such as Fea’s Viper [Azemiops feae]) and Elapidae (such as Taipans [Oxyuranus spp.]) families produce venom, as do many colubrids (such as Black-headed Snakes [Tantilla spp.], Cat-eye Snakes [Leptodeira seqtentrionalis], and Boomslangs [Dispholidus typus]). Venom is produced in the venom glands and delivered to the fangs when the snake bites its prey. The venom is then either delivered through a closed canal in the center of the fangs, or flows through grooves on the fangs into the injection site. Some species, such as Indonesian Cobra (Naja sputatrix), can also spit venom in intricate patterns; however, this is primarily a defense mechanism and not a method of subduing prey. Photo Credit: Mark Danaher Eastern Coral Snake (Micrurus fulvius) Copperhead (Agkistrodon contortrix) No Legs?! One distinguishing trait that separates snakes from most other reptiles is the lack of legs. Snakes can slither, climb, swim, burrow….but how? Here are three of the ways snakes can move terrestrially. Lateral Undulation Sidewinding Reticular Movement Lateral undulation is the Sidewinding is similar to Reticular movement is when the movement most people think of lateral undulation, except that it snake moves straight forward by when they imagine a snake moving. relies more on muscle and less on gripping the ground or rough The snake employs muscles, scales, scales and resistance points. The surface with its belly scales and and resistance points on the ground snake contracts its muscles to form moving its body up and down in surface to move. The process starts an s-shape, then flings its body from arches to move forward. Reticular with the snake using its muscles to side to side to move forward. With movement is similar to the bend its body, and then using the the sidewinding technique, all but movement of an inch worm, but scales to push into resistance points two points of the snake’s body are without legs and much less on the ground so it can move off the ground. There is a species of exaggerated. An example of a forward. Most colubrid snakes snake named after this type of species that employs this type of employ this type of movement. movement - Sidewinders (Crotalus movement is Red-tailed Boa (Boa cerastes). constrictor constrictor). 4 Common Threats to Snakes Habitat Loss and Fragmentation Photo Credit: Abir Ahmed Like most species, snakes suffer from loss and fragmentation of habitat. This is possibly the greatest overall threat to snakes. All snakes are predators. They need to hunt for prey, and may move widely across a fragmented landscape. In the process, they come in contact with many physical barriers, such as roads with fast-moving traffic, open areas where no cover is available, and other hazards that contribute to their decline. Many species suffer from habitat loss. For example, the Southeastern Coastal Plain of the United States, 98% of historical Longleaf Pine (Pinus palustris) habitat no Burmese Python (Python molurus bivittatus) in Bangladesh. longer exists, causing declines in snake species such as Southern Hognose Snakes (Heterodon simus), Eastern Over-collection Diamondback Rattlesnakes (Crotalus adamanteus), Some snake species are so charismatic and Pinesnakes (Pituophis melanoleucus), and Eastern unique that they are heavily exploited for the Indigo Snakes (Drymarchon couperi), which are listed pet and skin trade. For example, in 1997, King as threatened under the U.S. Endangered Species Act Ratsnakes (Elaphe carinata) were one of the (ESA). most numerous reptile imports into the United States for the pet and skin trade; China alone Where rainforest once covered over 14% of the Earth’s exported 37,425 King Ratsnakes to the U.S. that surface, it now covers only 6% and is still declining, year. thereby affecting
Recommended publications
  • Herpetological Review
    Herpetological Review FARANCIA ERYTROGRAMMA (Rainbow Snake). HABITAT. Submitted by STAN J. HUTCHENS (e-mail: [email protected]) and CHRISTOPHER S. DEPERNO, (e-mail: [email protected]), Fisheries and Wildlife Pro- gram, North Carolina State University, 110 Brooks Ave., Raleigh, North Carolina 27607, USA. canadensis) dams reduced what little fl ow existed in some canals to standing quagmires more representative of the habitat selected by Eastern Mudsnakes (Farancia abacura; Neill 1964, op. cit.). Interestingly, one A. rostrata was observed near BNS, but none was captured within the swamp. It is possible that Rainbow Snakes leave bordering fl uvial habitats in pursuit of young eels that wan- dered into canals and swamp habitats. Capturing such a secretive and uncommon species as F. ery- trogramma in unexpected habitat encourages consideration of their delicate ecological niche. Declining population indices for American Eels along the eastern United States are attributed to overfi shing, parasitism, habitat loss, pollution, and changes in major currents related to climate change (Hightower and Nesnow 2006. Southeast. Nat. 5:693–710). Eel declines could negatively impact population sizes and distributions of Rainbow Snakes, especially in inland areas. We believe future studies based on con- fi rmed Rainbow Snake occurrences from museum records or North Carolina GAP data could better delineate the range within North Carolina. Additionally, sampling for American Eels to determine their population status and distribution in North Carolina could augment population and distribution data for Rainbow Snakes. We thank A. Braswell, J. Jensen, and P. Moler for comments on earlier drafts of this manuscript. Submitted by STAN J. HUTCHENS (e-mail: [email protected]) and CHRISTOPHER S.
    [Show full text]
  • Capacité Issue 4
    CAPACITÉ Special Feature on Combating Invasive Alien Species CAPACITÉ – ISSUE 9 In this issue of Capacité, we turn our focus to invasive alien species (IAS). Several grants in the CEPF Caribbean portfolio are addressing this issue. And with good reason too. According to the CEPF Ecosystem Profile for the June 2014 Caribbean islands hotspot, the spread of invasive aliens is generally consid- ered the greatest threat to the native biodiversity of the region, especially to its endemic species, with invasive aliens recorded in a wide range of habitats throughout the hotspot. Inside this issue: An overview article by Island Conservation provides a useful context for un- Invasive Species on 2 Caribbean Islands: derstanding the threat of IAS in the Caribbean. Fauna & Flora International Extreme Threats but shares information about its work in the Eastern Caribbean along with useful Also Good News tips on using fixed-point photographs as a monitoring tool. From the Philadel- phia Zoo we learn about efforts to investigate the presence of the fungal dis- Making Pictures that 4 ease chytridiomicosis in amphibians in four key biodiversity areas in His- Speak A Thousand paniola. Words On the Case of the 6 We also feature the field-based work of the Environmental Awareness Group Highly Invasive in Antigua’s Offshore Islands, and of Island Conservation in association with Amphibian Chytrid Fun- gus in Hispaniola the Bahamas National Trust. These field-based efforts are complemented by initiatives by CAB International and Auckland Uniservices Ltd. to promote Connecting the Carib- 8 networking between and among IAS professionals and conservationists and bean KBAs via a Virtual build regional capacity to address IAS issues.
    [Show full text]
  • ONEP V09.Pdf
    Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern OEPP BIODIVERSITY SERIES volume nine OFFICE OF ENVIRONMENTAL POLICY AND PLANNING MINISTRY OF SCIENCE TECHNOLOGY AND ENVIRONMENT 60/1 SOI PIBULWATTANA VII, RAMA VI RD., BANGKOK 10400 THAILAND TEL. (662) 2797180, 2714232, 2797186-9 FAX. (662) 2713226 Office of Environmental Policy and Planning 2000 NOT FOR SALE NOT FOR SALE NOT FOR SALE Compiled by Jarujin Nabhitabhata Tanya Chan-ard Yodchaiy Chuaynkern Office of Environmental Policy and Planning 2000 First published : September 2000 by Office of Environmental Policy and Planning (OEPP), Thailand. ISBN : 974–87704–3–5 This publication is financially supported by OEPP and may be reproduced in whole or in part and in any form for educational or non–profit purposes without special permission from OEPP, providing that acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purposes. Citation : Nabhitabhata J., Chan ard T., Chuaynkern Y. 2000. Checklist of Amphibians and Reptiles in Thailand. Office of Environmental Policy and Planning, Bangkok, Thailand. Authors : Jarujin Nabhitabhata Tanya Chan–ard Yodchaiy Chuaynkern National Science Museum Available from : Biological Resources Section Natural Resources and Environmental Management Division Office of Environmental Policy and Planning Ministry of Science Technology and Environment 60/1 Rama VI Rd. Bangkok 10400 THAILAND Tel. (662) 271–3251, 279–7180, 271–4232–8 279–7186–9 ext 226, 227 Facsimile (662) 279–8088, 271–3251 Designed & Printed :Integrated Promotion Technology Co., Ltd. Tel. (662) 585–2076, 586–0837, 913–7761–2 Facsimile (662) 913–7763 2 1.
    [Show full text]
  • The Use of Fish and Herptiles in Traditional Folk Therapies in Three
    Altaf et al. Journal of Ethnobiology and Ethnomedicine (2020) 16:38 https://doi.org/10.1186/s13002-020-00379-z RESEARCH Open Access The use of fish and herptiles in traditional folk therapies in three districts of Chenab riverine area in Punjab, Pakistan Muhammad Altaf1* , Arshad Mehmood Abbasi2*, Muhammad Umair3, Muhammad Shoaib Amjad4, Kinza Irshad2 and Abdul Majid Khan5 Abstract Background: Like botanical taxa, various species of animals are also used in traditional and modern health care systems. Present study was intended with the aim to document the traditional uses of herptile and fish species among the local communities in the vicinity of the River Chenab, Punjab Pakistan. Method: Data collected by semi-structured interviews and questionnaires were subsequently analyzed using relative frequency of citation (FC), fidelity level (FL), relative popularity level (RPL), similarity index (SI), and rank order priority (ROP) indices. Results: Out of total 81 reported species, ethnomedicinal uses of eight herptiles viz. Aspideretes gangeticus, A. hurum, Eublepharis macularius, Varanus bengalensis, Python molurus, Eryx johnii, Ptyas mucosus mucosus, Daboia russelii russelii and five fish species including Hypophthalmichthys molitrix, Cirrhinus reba, Labeo dero, Mastacembelus armatus, and Pethia ticto were reported for the first time from this region. Fat, flesh, brain, and skin were among the commonly utilized body parts to treat allergy, cardiovascular, nervous and respiratory disorders, sexual impotency, skin infections, and as antidote and anti-diabetic agents. Hoplobatrachus tigerinus, Duttaphrynus stomaticus, and Ptyas mucosus mucosus (herptiles), as well as Labeo rohita, Wallago attu, and Cirrhinus reba (fish) were top ranked with maximum informant reports, frequency of citations, and rank order priority.
    [Show full text]
  • Prey Records for the Eastern Indigo Snake {Drymarchon Couperi)
    2010 SOUTHEASTERN NATURALIST 9(1):1-18 Prey Records for the Eastern Indigo Snake {Drymarchon couperi) Dirk J. Stevenson'*, M. Rebecca Bolt^ Daniel J. Smith', Kevin M. Enge^ Natalie L. Hyslop'^ Terry M. Norton'•^ and Karen J. Abstract - Prey items for the federally protected Easteni Indigo Snake (Drymarchort couperi) were compiled from published and gray literature, field observations, necrop- sies, dissection of museum specimens, and personal communications from reliable sources. One hundred and eighty-six records were obtained for 48 different prey spe- cies. Anurans, Gopher Tortoises, snakes, and rodents comprised ca. 85% of the prey items. Most records (n = 143) that mentioned size were from adult indigos; 17 were from juveniles. Prey records were collected from 1940-2008 and were available for all months of the year. These data confirm that Eastern Indigo Snakes eat a wide assortment of prey of varying sizes. This strategy allows D. couperi to potentially forage success- fully in many different types of habitats and under fluctuating environmental conditions, a valuable trait for a lop-level predator that requires a large home range. IatroducHon Drymarchon couperi Holbrook (Eastern Indigo Snake), with a maximum recorded total length of 2629 mm, is one of the largest snakes in North America (Conant and Collins 1991). It has been federally listed as Threat- ened since 1978 under the Endangered Species Act (US Fish and Wildlife Service 1978). Drymarchon couperi is diurnal and mostly terrestrial (Layne and Steiner 1996, US Fish and Wildlife Service 2008). Of the two main hunt- ing strategies employed by snakes (ambush predator vs. active forager; see Mushinsky 1987), D.
    [Show full text]
  • Contributions of Intensively Managed Forests to the Sustainability of Wildlife Communities in the South
    CONTRIBUTIONS OF INTENSIVELY MANAGED FORESTS TO THE SUSTAINABILITY OF WILDLIFE COMMUNITIES IN THE SOUTH T. Bently Wigley1, William M. Baughman, Michael E. Dorcas, John A. Gerwin, J. Whitfield Gibbons, David C. Guynn, Jr., Richard A. Lancia, Yale A. Leiden, Michael S. Mitchell, Kevin R. Russell ABSTRACT Wildlife communities in the South are increasingly influenced by land use changes associated with human population growth and changes in forest management strategies on both public and private lands. Management of industry-owned landscapes typically results in a diverse mixture of habitat types and spatial arrangements that simultaneously offers opportunities to maintain forest cover, address concerns about fragmentation, and provide habitats for a variety of wildlife species. We report here on several recent studies of breeding bird and herpetofaunal communities in industry-managed landscapes in South Carolina. Study landscapes included the 8,100-ha GilesBay/Woodbury Tract, owned and managed by International Paper Company, and 62,363-ha of the Ashley and Edisto Districts, owned and managed by Westvaco Corporation. Breeding birds were sampled in both landscapes from 1995-1999 using point counts, mist netting, nest searching, and territory mapping. A broad survey of herpetofauna was conducted during 1996-1998 across the Giles Bay/Woodbury Tract using a variety of methods, including: searches of natural cover objects, time-constrained searches, drift fences with pitfall traps, coverboards, automated recording systems, minnow traps, and turtle traps. Herpetofaunal communities were sampled more intensively in both landscapes during 1997-1999 in isolated wetland and selected structural classes. The study landscapes supported approximately 70 bird and 72 herpetofaunal species, some of which are of conservation concern.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Red Sand Boa
    FACTSHEET RED SAND BOA © Raghu Ram Gowda / WARCO / Indiansnakes.org Red Sand Boa Eryx johnii, also known as the Indian Sand Boa is a non-venomous snake that is variable in colour and appears as reddish-brown, speckled-grey or yellow to black. Popularly called the double-headed snake, it has a blunt tail almost resembling a head which is wedge-shaped with narrow nostrils and tiny eyes. Taxonomically, it is placed in the class Reptilia, order Serpentes, and family Boidae. “It is the largest of the sand “ It is a nocturnal species and spends majority of boas in the world and can It is an ovoviviparous its time under the “ grow to more than 4ft species which means that ground. long.” ” the embryo that develops inside the eggs remains within the mother's body until they hatch into young ones. ” “ It feeds mainly on rodents, #DYK lizards and even other snakes. ” “It is easily recognisable due to its shovel-shaped nose and a blunt tail which appears to be chopped off. ” ECOLOGICAL ROLE: Just like other snake species, Red Sand Boa also plays a significant role in the ecosystem by maintaining a healthy population between prey and the predator. It feeds on rodents, lizards, and even other snakes and is often called the farmer’s friend. © Raghu Ram Gowda / WARCO / Indiansnakes.org SIZE, HABITAT, DISTRIBUTION AND POPULATION STATUS: AVERAGE HABITAT DISTRIBUTION POPULATION SIZE TREND Length: Agricultural lands, Andhra Pradesh, 70─120 cm grasslands, scrub Gujarat, Madhya forest, moist and Pradesh, dry deciduous Maharashtra, forests; unused Odisha, lands with sandy Rajasthan, Tamil soil and deep Nadu, Uttar cracks.
    [Show full text]
  • Proquest Dissertations
    Ecology and conservation of the twin- spotted rattlesnake, Crotalus pricei Item Type text; Thesis-Reproduction (electronic) Authors Prival, David Benjamin Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 01:08:24 Link to Item http://hdl.handle.net/10150/278752 INFORMATiON TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge.
    [Show full text]
  • Ephemeral Pleistocene Woodlands Connect the Dots for Highland Rattlesnakes of the Crotalus Intermedius Group
    Journal of Biogeography (J. Biogeogr.) (2011) ORIGINAL Ephemeral Pleistocene woodlands ARTICLE connect the dots for highland rattlesnakes of the Crotalus intermedius group Robert W. Bryson Jr1*, Robert W. Murphy2,3, Matthew R. Graham1, Amy Lathrop2 and David Lazcano4 1School of Life Sciences, University of Nevada, ABSTRACT Las Vegas, 4505 Maryland Parkway, Las Aim To test how Pleistocene climatic changes affected diversification of the Vegas, NV 89154-4004, USA, 2Centre for Biodiversity and Conservation Biology, Royal Crotalus intermedius species complex. Ontario Museum, Toronto, ON M5S 2C6, Location Highlands of Mexico and the south-western United States (Arizona). Canada, 3State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Methods We synthesize the matrilineal genealogy based on 2406 base pairs of Zoology, The Chinese Academy of Sciences, mitochondrial DNA sequences, fossil-calibrated molecular dating, reconstruction Kunming 650223, China, 4Laboratorio de of ancestral geographic ranges, and climate-based modelling of species Herpetologı´a, Universidad Auto´noma de distributions to evaluate the history of female dispersion. Nuevo Leo´n, San Nicolas de los Garza, Nuevo Results The presently fragmented distribution of the C. intermedius group is the Leo´n CP 66440, Mexico result of both Neogene vicariance and Pleistocene pine–oak habitat fragmentation. Most lineages appear to have a Quaternary origin. The Sierra Madre del Sur and northern Sierra Madre Oriental are likely to have been colonized during this time. Species distribution models for the Last Glacial Maximum predict expansions of suitable habitat for taxa in the southern Sierra Madre Occidental and northern Sierra Madre Oriental. Main conclusions Lineage diversification in the C.
    [Show full text]
  • Venom Protein of the Haematotoxic Snakes Cryptelytrops Albolabris
    S HORT REPORT ScienceAsia 37 (2011): 377–381 doi: 10.2306/scienceasia1513-1874.2011.37.377 Venom protein of the haematotoxic snakes Cryptelytrops albolabris, Calloselasma rhodostoma, and Daboia russelii siamensis Orawan Khow, Pannipa Chulasugandha∗, Narumol Pakmanee Research and Development Department, Queen Saovabha Memorial Institute, Patumwan, Bangkok 10330 Thailand ∗Corresponding author, e-mail: pannipa [email protected] Received 1 Dec 2010 Accepted 6 Sep 2011 ABSTRACT: The protein concentration and protein pattern of crude venoms of three major haematotoxic snakes of Thailand, Cryptelytrops albolabris (green pit viper), Calloselasma rhodostoma (Malayan pit viper), and Daboia russelii siamensis (Russell’s viper), were studied. The protein concentrations of all lots of venoms studied were comparable. The chromatograms, from reversed phase high performance liquid chromatography, of C. albolabris venom and C. rhodostoma venom were similar but they were different from the chromatogram of D. r. siamensis venom. C. rhodostoma venom showed the highest number of protein spots on 2-dimensional gel electrophoresis (pH gradient 3–10), followed by C. albolabris venom and D. r. siamensis venom, respectively. The protein spots of C. rhodostoma venom were used as reference proteins in matching for similar proteins of haematotoxic snakes. C. albolabris venom showed more similar protein spots to C. rhodostoma venom than D. r. siamensis venom. The minimum coagulant dose could not be determined in D. r. siamensis venom. KEYWORDS: 2-dimensional gel electrophoresis, reverse phase high performance liquid chromatography, minimum coag- ulant dose INTRODUCTION inducing defibrination 5–7. The venom of D. r. sia- mensis directly affects factor X and factor V of the In Thailand there are 163 snake species, 48 of which haemostatic system 8,9 .
    [Show full text]
  • Eastern Indigo Snake (Flier)
    How To Distinguish Eastern Indigo Snakes Eastern indigo snakes became federally protected as threatened under the Endangered Species Act From Other Common Species in 1978, and they are also protected as threatened by Florida and Georgia. It is illegal to harass, harm, capture, keep, or kill an eastern indigo snake without specific state and/or federal permits. Life History Eastern indigo snakes use a wide variety of habitats The historic range of the eastern ranging from very wet to very dry. They tend to stay indigo snake (shown in dark green) in a specific area known as a home range, but this extended from the southern-most tip Adult eastern indigo snakes may be area is not static and can change over time, of South Carolina west through southern confused with few other species, due Georgia, Alabama, and into eastern to the indigo’s glossy blue-black probably in response to habitat conditions and Mississippi. The current range is shown in color and large size (5–7 ft.). prey availability. Because indigo snakes are sizeable light green. The eastern indigo snake (Drymarchon predators that actively hunt for their food, they couperi) has the distinction of being the need large home ranges. Males have been shown longest snake native to the United States. to use between 50 and 800 acres, whereas females often used for shelter. The snake may share the Eastern indigos typically range from 5 to 7 occupy up to 370 acres. During the winter, home burrow with a tortoise, but most often indigos will feet long, but can reach lengths greater than range sizes are smaller, particularly in the cooler occupy an old burrow that a tortoise has deserted.
    [Show full text]