Phanerozoic Ironstones: an Introduction and Review

Total Page:16

File Type:pdf, Size:1020Kb

Phanerozoic Ironstones: an Introduction and Review Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 Phanerozoic ironstones: an introduction and review T.P. Young S U M M A R Y: Ironstones, particularly ooidal ironstones, have long fascinated sedimentary geologists and have generated an enormous variety of interpretations, but have remained poorly understood. A recent upsurge in interest in this group of rocks has generated much new information derived from many different disciplines within the earth sciences. The first part of this introduction examines recent advances, and attempts to produce a synthesis of them, with particular reference to the genesis of marine ooidal ironstones. Current models for the formation of marine oolitic ironstone-formations are discussed, and a working model based on various lines of recent research is proposed. This model invokes the intrasedimentary formation of berthierine ooids in marine environments during post- oxic diagenesis. The ooids may be mechanically modified and mineralogically transformed by reworking, as well as by later diagenesis. Goethite ooids may be oxidized berthierine ooids, reworked lateritic ooids or primary grains. The formation of oolitic ironstone- formations is favoured by a break in clastic sediment supply, continued supply of iron and physical reworking. Many sedimentary environments may supply these parameters, but changes in sea level leading to the flooding of land masses and the reworking of suitable terrestrial soils may be both an important source for the iron and provide a break in clastic sediment supply. In the second part of this introduction the terminology and classification are discussed, and conventions proposed. The term berthieroid is introduced as a non-specific term for material of undetermined berthierine or chamosite composition. The term ironstone is proposed as a petrological term and as an informal lithostratigraphic term. A deposit composed of ironstones may be termed an ironstone-formation. It is recommended that a 'Dunham' style of classification is employed petrographically, with -ironstone replacing the -stone of the original carbonate classification. The nomenclature of allochems in ironstones is also discussed. A glossary of ironstone terminology is provided. This introduction to the papers presented at the Developments in the study of Geological Society International Symposium on ironstones 'Phanerozoic Ironstones', held at the University of Sheffield in April 1987 owes much to informal Recent increased interest in the genesis of oolitic discussion with colleagues and friends during the ironstone-formations is largely due to advances meeting and field excursions. in the technology available for their examination Studies of ancient ironstones are dominantly and in the framework of sedimentology and of those with an ooidal texture, deposited with diagenesis within which they can be interpreted. syndepositional iron enrichment in marine en- In most ironstones the oxide, hydroxide and vironments. Ironstones with texture and silicate phases are very fine-grained; classical mineralogy similar to those of the marine optical petrographic technique has not been able examples are also found in non-marine contexts, to resolve microstructure, and has, therefore, and examples are described in the recent litera- fallen short of providing adequate basic des- ture (e.g., Siehl & Thein 1989; Kearsley 1989). cription of the rocks. The major advances of These non-marine examples have much to offer recent years in techniques of high-resolution in the search for the conditions giving rise to imaging and chemical analysis by electron beam iron-rich sediments. instruments have provided a suite of important Ironstones without ooidal textures (e.g., tools for petrographic and mineralogical in- blackband ironstones, claystone ironstones and vestigation; high-resolution scanning electron sphaerosiderites) are currently rather better microscopy, backscattered electron imagery, understood than ooidal examples (Spears 1989). analytical transmission microscopy and electron It is the advance of the study of marine ooidal probe micronanalysis have allowed a more ironstones with which most workers in the field detailed analysis of the textures and chemical are primarily involved, and with which 12 of the composition of the mineral phases present in 13 case studies in this volume are concerned. ironstones. The extremely fine-grained nature of This review will therefore concentrate on the the phases is highlighted by Hughes (1989), who research into marine examples. was unable to obtain single-crystal energy From YOUNG, T. P. & TAYLOR, W. E. G. (eds), 1989, Phanerozoic Ironstones ix Geological Society Special Publication No. 46, pp. ix-xxv Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 x T.P. Young dispersive spectroscopic chemical analysis for temporal distribution of oolitic ironstone- berthierine, despite using the technique (analy- formations have been analysed and show tical transmission electron microscopy) which cyclicity on several scales (Van Houten & Arthur provides an analysis from the smallest volume 1989). Two major peaks of ironstone production currently possible. Clearly there is much more to in the Jurassic and Ordovician have been be obtained through these areas of research. The interpreted by Van Houten & Purucker (1984) as small particle size of the phases in ironstones has being associated with high global stands of sea similarly so far limited the investigation of their level and a high degree of continental dispersion, isotopic compositions, but the imminent with large areas of peneplained terrain. These capability for ultra-fine-scale measurement of authors indicate a temporal relationship between the stable isotopes ratios of carbon, oxygen and the major periods of deposition of oolitic sulphur will be of great significance for the study ironstone-formations and periods of repeated of ironstones. transgressions. Van Houten (1985) modified his The rather unusual sedimentological con- view and indicated that 'neither dispersed ditions during the formation of most oolitic continents nor major highstand of sea level was ironstone-formations have, in the past, given rise a necessary factor'. These conditions are clearly to great problems in interpretation. The in- favourable, nevertheless, for sea-level stand and creased understanding of event stratification, sea-level change control the ability of the cyclic sequences and episodic sedimentation has continental areas to supply large amounts of iron provided a new framework within which the to the marine environment during reworking of conditions of deposition of these ironstones can terrestrial weathering products. be investigated. Within these major peaks of ironstone de- A further major influence on the investigation position, periods of a few to a few tens of of ironstones is the great advance in the study of millions of years were conducive to enduring or diagenetic processes. In the last twenty years the recurring conditions of ironstone formation. broad framework for the understanding of the This intermediate scale of temporal distribution chemical processes involved in early diagenesis has been attributed to hypothetical 32 Ma has been established. Although the study of the polytaxic oligotaxic cycles (Van Houten & authigenesis of silicate minerals is not so Arthur 1989), but the great variation in the advanced as that of carbonate or sulphide length of these events probably indicates that phases, much can now be said about the variations in local tectonic conditions, sea level chemical conditions required for the formation and sediment supply may also be very important. of the mineral phases found in ironstones The requirements for ironstone deposition may (Spears 1989). well locally be satisfied by such processes as a 'clastic trap', but only when many other parameters are also satisfied on a regional or The genesis of ooidal ironstones global level. The problems associated with the origin of Small-scale patterns, which may show a finer ooidal ironstones are threefold: why are these cyclicity on a scale of a few hundreds of rocks iron-rich, why do they have the mineralogy thousands of years, have been tentatively attri- that they do (particularly why do they have this buted to 400 000 year Milankovitch cycles (Van specific silicate mineralogy?) and why do they Houten 1986; Van Houten & Arthur 1989) or to have an ooidal texture? These problems are by local tectonic controls. The low deposition rates no means solved, but advances have been made required for the production of ironstones would in our understanding of many areas. Any model make them very sensitive to minor environ- for the origin of ironstones must simultaneously mental changes (Van Houten 1986). address the problems of the deposition of the The palaeogeographical distribution of iron- ironstone-bearing units, of mineral genesis, and stone deposits has been suggested as evidence for of the origin of the texture. Each of these areas climatic control on their formation. The asso- will be discussed before the presentation of a ciation of oolitic ironstone-formations with well working model. vegetated land masses at moderately low latitudes, which may have had lateritic soils, has been claimed for the Jurassic (Taylor 1951; The origin of oolitic ironstone-formations Bubinicek 1961; Hallam 1975; Hallam & Much can be learnt about the controls on Bradshaw 1979; Van Houten 1985), but some ironstone deposition from the study
Recommended publications
  • GEOLOGY of the ROANOKE and STEWARTSVILLE QUADRANGLES, VIRGINIA by Mervin J
    VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 34 GEOLOGY OF THE ROANOKE AND STEWARTSVI LLE OUADRANG LES, VI RG I N IA Mervin J. Bartholomew COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVI LLE, VIRGI NIA 1 981 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 34 GEOLOGY OF THE ROANOKE AND STEWARTSVI LLE OUADRANG LES, VI RG I N IA Mervin J. Bartholomew COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1 981 FRONT COVER: Fold showing slightly fanned, axial plane, slaty cleav- age in a loose block of Liberty Hall mudstone at Reference Locality 20, Deer Creek, Roanoke quadrangle. REFERENCE: Portions of this publication may be quoted if credit is given to the Virginia Division of Mineral Resources. It is recommended that referenee to this report be made in the following form: Bartholomew, M. J., 1981, Geology of the Roanoke and Stewaitsville quadrangles, Vir- ginia, Vlrginia Division of Mineral Resources Publicatio4 34,23 p. VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 34 GEOLOGY OF THE ROANOKE AND STEWARTSVI LLE OUADRANG LES, VIRG I N IA Mervin J. Bartholomew COM MONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRG INIA 1 981 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia FRED W. WALKER, Director JERALD F. MOORE, Deputy Director BOARD ARTHUR P. FLIPPO, Doswell, Chairman HENRY T.
    [Show full text]
  • Download Download
    . Oolites in the Green River Formation of Central Utah, and the Problem of Oolite Growth Stuart L. Schoff, DePauw University Oolitic limestone occurs in the Green River formation, of Eocene age, at Manti, in central Utah. A microscopic study of thin sections of the rock suggests conditions under which the oolite originated. As described by Bradley (1), and others, the Green River formation was deposited in a great fresh-water lake, or several lakes—an environ- ment contrasting strongly with the highly saline environment of Great Salt Lake, where oolitic grains are now forming, and less strongly with the marine conditions under which many oolites of the geologic column probably originated. Description.—The oolites are composed of calcium carbonate, chiefly as calcite, with an admixture of silt. Some of the material has been recrystallized, and some is now silicified. The average diameter of the grains is between 0.4 and 0.5 mm. They are circular in cross-section, elongate or oval, triangular, and irregular. In general, the outline con- forms with the shape of the nucleus, if one is present, but there are grains in which the outer zones are eccentric (Fig. 1, A) Uncommonly the oolitic grains contain mineral fragments as nuclei, but, even under high magnification, the centers of most of the grains appear simply as structureless spherical bodies of the same material as the rest of the grain. Hence the nuclei suggest little as regards causes for precipitation of calcium carbonate. Figure 1, B and Figure 2 illustrate grains with two centers of growth. One grain with three centers was noted.
    [Show full text]
  • 19. Diagenesis of a Seamount Oolite from the West Pacific, Leg 20, Dsdp
    19. DIAGENESIS OF A SEAMOUNT OOLITE FROM THE WEST PACIFIC, LEG 20, DSDP Reinhard Hesse, McGill University, Montreal, Canada SAMPLES AND LOCATION of the Caroline Abyssal Plain area. The present estimate of the average subsidence rate for the last 54 million years is Leg 20 recovered the first oolite drilled during the Deep 32 BuB (32m/106y) based on the above data. This is Sea Drilling Project. The oolitic limestone was brought up somewhat less than the figure taken from Sclater et al.'s from 83 and 106 meters subbottom depth in Cores 3 and 4 (1971) general subsidence-rate curve for the north Pacific of Hole 202 on Ita Matai Seamount. Drilling of the (about 40 m/106y for crust as old as early Eocene). seamount was undertaken at the end of Leg 20, when the poor state of repair of the drilling gear prohibited further COLOR, TEXTURE, AND POROSITY drilling in deep water. Water depth at this site is 1515 The oolite is of white yellowish to pale tan color except meters. Thus Cores 3 (45 cm recovery) and 4 (35 cm for the uppermost 10 cm of Core 3, which displays shades recovery) come from a total depth of 1598 and 1621 of gray. meters, respectively. Ita Matai Seamount is located at the Individual ooids displaying a distinct nucleus range in eastern margin of the Caroline Abyssal Plain (Figure 1). The size from 0.12 to 1.45 mm in diameter. Skeletal fragments location of Site 202 is 12°40.90'N, 156°57.15'E. associated with the ooids range up to 3 mm.
    [Show full text]
  • Geology of the Shepton Mallet Area (Somerset)
    Geology of the Shepton Mallet area (Somerset) Integrated Geological Surveys (South) Internal Report IR/03/94 BRITISH GEOLOGICAL SURVEY INTERNAL REPORT IR/03/00 Geology of the Shepton Mallet area (Somerset) C R Bristow and D T Donovan Contributor H C Ivimey-Cook (Jurassic biostratigraphy) The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Ordnance Survey licence number GD 272191/1999 Key words Somerset, Jurassic. Subject index Bibliographical reference BRISTOW, C R and DONOVAN, D T. 2003. Geology of the Shepton Mallet area (Somerset). British Geological Survey Internal Report, IR/03/00. 52pp. © NERC 2003 Keyworth, Nottingham British Geological Survey 2003 BRITISH GEOLOGICAL SURVEY The full range of Survey publications is available from the BGS Keyworth, Nottingham NG12 5GG Sales Desks at Nottingham and Edinburgh; see contact details 0115-936 3241 Fax 0115-936 3488 below or shop online at www.thebgs.co.uk e-mail: [email protected] The London Information Office maintains a reference collection www.bgs.ac.uk of BGS publications including maps for consultation. Shop online at: www.thebgs.co.uk The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Murchison House, West Mains Road, Edinburgh EH9 3LA Desks. 0131-667 1000 Fax 0131-668 2683 The British Geological Survey carries out the geological survey of e-mail: [email protected] Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the London Information Office at the Natural History Museum surrounding continental shelf, as well as its basic research (Earth Galleries), Exhibition Road, South Kensington, London projects.
    [Show full text]
  • LATEMAR CARBONATE BUILDUP, DOLOMITES, NORTHERN ITALY by S
    FORMATION OF REPLACEMENT DOLOMITE BY INFILTRATION OF DIFFUSE EFFLUENT: LATEMAR CARBONATE BUILDUP, DOLOMITES, NORTHERN ITALY by Sarah Katherine Carmichael A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2006 © 2006 Sarah Carmichael All rights reserved Abstract Massive dolomite typically forms at depth and elevated temperature through replacement of limestone by its reaction with flowing dolomitizing fluid. Analysis of the spatial distribution of elements, isotopes, and heat with transport theory leads to insights into the flow system that produced dolomite in the Latemar carbonate buildup. Dolomitization was arrested, and both dolomite and unreacted limestone well-exposed in three dimensions. Boundaries between the dolomitized and undolomitized regions were mapped on meter to kilometer-scales. The distribution of dolomite directly images an orthogonal lattice of interconnected vertical tube-like and bedding-parallel sheet-like fluid flow channels. The 87Sr/86Sr of Latemar dolomite and the salinity of fluid inclusions in dolomite, previously measured by others, imply that a seawater-derived fluid was the dolomitizing fluid. Dolomite has δ18O = 21.5-27.4‰ (VSMOW), corresponding to temperatures of 50-90°C (assuming equilibration with fluid of δ18O = 0). Electron microprobe and LA- ICPMS data for the dolomite show enrichment in Fe (1,600-19,000 ppm), Mn (66-430 ppm), and Zn (1.7-16 ppm) relative to unreacted limestone. The concentrations of Fe and Zn in dolomite display a positive linear correlation with that of Mn; concentrations of other transition metals show no correlation with Mn. These data suggest that the dolomitizing fluid is analogous to modern diffuse effluent at mid-ocean ridges, and was a mixture of seawater and hydrothermal fluid produced by reaction between seawater and rocks of the adjacent Predazzo igneous complex that was the driving mechanism for ii dolomitization.
    [Show full text]
  • Ironstone Occurrences in the Northern Part of the Bahariya Depression, Western Desert, Egypt: Geology, Mineralogy, Geochemistry and Origin
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS GEOLÓGICAS DEPARTAMENTO DE PETROLOGÍA Y GEOQUÍMICA TESIS DOCTORAL Ironstone occurrences in the northern part of the Bahariya Depression, Western Desert, Egypt: Geology, mineralogy, geochemistry and origin Depósitos de hierro al norte de la Depresión de Bahariya, Desierto Occidental, Egipto: Geología, mineralogía, geoquímica y génesis MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Adel Mady Afify Mohammed DIRECTORES María Esther Sanz-Montero José Pedro Calvo Sorando Madrid, 2017 © Adel Mady Afify Mohammed, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS GEOLÓGICAS DEPARTAMENTO DE PETROLOGÍA Y GEOQUÍMICA PhD Thesis Ironstone occurrences in the northern part of the Bahariya Depression, Western Desert, Egypt: Geology, mineralogy, geochemistry and origin Depósitos de hierro al norte de la Depresión de Bahariya, Desierto Occidental, Egipto: Geología, mineralogía, geoquímica y génesis Dissertation submitted for the degree of Doctor of Philosophy in Geological Sciences Adel Mady Afify Mohammed Supervisors: Dr. María Esther Sanz-Montero Dr. José Pedro Calvo Sorando Madrid, 2016 Acknowledgements The PhD thesis presented here is a result of an intense and long work, which has come to fruition thanks to several people who have supported me over the years. In the following paragraphs I want to thank in a special way to those without whom this thesis would not have been. Firstly, thanks to God destiny that grants me the opportunity to reach the end of this work and inspire me how to finish it. Secondly, I want to express my deep thanks and gratitude to my supervisors; Prof. Dr. Jose Pedro Calvo and Prof. Dr. Maria Esther Sanz-Montero, who taught me how to think freely and critically.
    [Show full text]
  • Somerset Geology-A Good Rock Guide
    SOMERSET GEOLOGY-A GOOD ROCK GUIDE Hugh Prudden The great unconformity figured by De la Beche WELCOME TO SOMERSET Welcome to green fields, wild flower meadows, farm cider, Cheddar cheese, picturesque villages, wild moorland, peat moors, a spectacular coastline, quiet country lanes…… To which we can add a wealth of geological features. The gorge and caves at Cheddar are well-known. Further east near Frome there are Silurian volcanics, Carboniferous Limestone outcrops, Variscan thrust tectonics, Permo-Triassic conglomerates, sediment-filled fissures, a classic unconformity, Jurassic clays and limestones, Cretaceous Greensand and Chalk topped with Tertiary remnants including sarsen stones-a veritable geological park! Elsewhere in Mendip are reminders of coal and lead mining both in the field and museums. Today the Mendips are a major source of aggregates. The Mesozoic formations curve in an arc through southwest and southeast Somerset creating vales and escarpments that define the landscape and clearly have influenced the patterns of soils, land use and settlement as at Porlock. The church building stones mark the outcrops. Wilder country can be found in the Quantocks, Brendon Hills and Exmoor which are underlain by rocks of Devonian age and within which lie sunken blocks (half-grabens) containing Permo-Triassic sediments. The coastline contains exposures of Devonian sediments and tectonics west of Minehead adjoining the classic exposures of Mesozoic sediments and structural features which extend eastward to the Parrett estuary. The predominance of wave energy from the west and the large tidal range of the Bristol Channel has resulted in rapid cliff erosion and longshore drift to the east where there is a full suite of accretionary landforms: sandy beaches, storm ridges, salt marsh, and sand dunes popular with summer visitors.
    [Show full text]
  • 3D GPR of the Miami Oolite: Resorvoir Scale Internal Anatomy
    3D GPR of the Miami Oolite: Resorvoir Scale Internal Anatomy RALF WEGER AND MARK GRASMUECK Active oolitic sand shoals like the modern ones in the Bahamas as well as those in the ancient exhibit a complex internal architecture with a multitude of stacked sedimentary structures. As a result, the anatomy of these shoals is usually too complex to be captured with two-dimensional outcrop and one-dimensional well information. In order to avoid imprecise interpolations and speculations knowledge of three-dimensional (3-D) sedimentary structures is necessary for accurate reservoir flow modeling. This is especially important for units where production of fluids and gases is bedding controlled. In order to improve our understanding of ooid sand shoal anatomy we collected a 3D ground-penetrating radar (GPR) dataset in the Miami Limestone. The data cube consists of a 48x24 m data grid with 10 cm in-line spacing, 20 cm cross-line spacing, and 7 m average penetration depth. This study shows that: o 3D GPR provides a high-resolution volume image of ooid sand shoal architecture o 3D GPR images overcome the limitations of 2D outcrop and 1D core information on a sub-meter scale o 3D GPR resulted in a revision of previously derived paleocurrent and sandwave migration directions based on local nearby outcrops. This study combines outcrop information about the Miami Oolite, a Pleistocene Limestone formation that forms the bedrock of the greater Miami area (Fig. 1), and a 48x24 m 3-D 100 Mhz ground-penetrating radar (GPR) data cube (Fig. 2). The Miami Oolite was accumulated during the last sea-level highstand (approx.
    [Show full text]
  • Mississippian Oolites and Petroleum Reservoirs in the United States—An Overview
    Chapter 1 • Mississippian Oolites and Petroleum Reservoirs in the United States—An Overview Brian D. Keith Indiana Geological Survey and Indiana University Bloomington, Indiana, USA Charles W. Zuppann Indiana Geological Survey Bloomington, Indiana, USA • ABSTRACT A coincidence of tectonic, eustatic, and geochemical conditions resulted in substantial deposits of oolitic limestone during later Mississippian time in the continental United States. These oolitic limestones have formed petrole­ um reservoirs with favorable primary and secondary recovery characteris­ tics. Significant potential reserves in stratigraphic traps remain to be discovered and developed in these reservoirs. INTRODUCTION oolitic limestone deposition on the North American continent was during the Mississippian. Mississippian rocks of the continental U.S. have With the recent emphasis on global-scale geologic been the subject of two previous compilation vol­ processes, we recognize that attention must be given umes by the USGS (Craig and Connor, 1979; U.S. to Mississippian oolitic deposition on a broader scale, Geological Survey, 1979), both concentrating on the seeking to understand the factors that influenced and Mississippian system as a whole, the former on controlled oolitic deposition at that time. A prerequi­ Mississippian and Pennsylvanian stratigraphy and site to interpreting worldwide depositional patterns the latter on the paleotectonic history of the of Mississippian oolitic rocks is to study these Mississippian. However, there has not been a publi­ deposits at both the regional and the continental cation specifically emphasizing Mississippian oolitic scales. The abundant occurrence and widespread dis­ rocks. Geologists have reported oolitic limestones in tribution of Mississippian oolitic rocks, and the Mississippian rocks in many areas of the United wealth of available subsurface information, make the States for years, but Wilson (1975, p.
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry ' * Chapter W. Chemistry of the Iron-rich Sedimentary Rocks GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Data of Geochemistry MICHAEL FLEISCHER, Technical Editor Chapter W. Chemistry of the Iron-rich Sedimentary Rocks By HAROLD L. JAMES GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-W Chemical composition and occurrence of iron-bearing minerals of sedimentary rocks, and composition, distribution, and geochemistry of ironstones and iron-formations UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Page Face Abstract. _ _______________________________ Wl Chemistry of iron-rich rocks, etc. Continued Introduction. _________ ___________________ 1 Oxide facies Continued Iron minerals of sedimentary rocks __ ______ 2 Hematitic iron-formation of Precambrian age__ W18 Iron oxides __ _______________________ 2 Magnetite-rich rocks of Mesozoic and Paleozoic Goethite (a-FeO (OH) ) and limonite _ 2 age___________-__-._____________ 19 Lepidocrocite (y-FeO(OH) )________ 3 Magnetite-rich iron-formation of Precambrian Hematite (a-Fe2O3) _ _ _ __ ___. _ _ 3 age._____-__---____--_---_-------------_ 21 Maghemite (7-Fe203) __ __________ 3 Silicate facies_________________________________ 21 Magnetite (Fe3O4) ________ _ ___ 3 Chamositic ironstone____--_-_-__----_-_---_- 21 3 Silicate iron-formation of Precambrian age_____ 22 Iron silicates 4 Glauconitic rocks__-_-____--------__-------- 23 4 Carbonate facies______-_-_-___-------_---------- 23 Greenalite. ________________________________ 6 Sideritic rocks of post-Precambrian age._______ 24 Glauconite____ _____________________________ 6 Sideritic iron-formation of Precambrian age____ 24 Chlorite (excluding chamosite) _______________ 7 Sulfide facies___________________________ 25 Minnesotaite.
    [Show full text]
  • Transgressive Oversized Radial Ooid Facies in the Late Jurassic Adriatic Platform Interior: Low-Energy Precipitates from Highly Supersaturated Hypersaline Waters
    Transgressive oversized radial ooid facies in the Late Jurassic Adriatic Platform interior: Low-energy precipitates from highly supersaturated hypersaline waters Antun Husinec† Croatian Geological Survey, Sachsova 2, HR-10000 Zagreb, Croatia J. Fred Read† Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, Virginia 24061, USA ABSTRACT Keywords: radial ooids, low energy, plat- (Fig. 1). This huge Mesozoic, Bahamas-like form-interior parasequences, Late Jurassic, platform is characterized by a 6-km-thick pile of Dark-gray oolitic units characterized by Adriatic Platform. predominantly shallow-water carbonate depos- oversized ooids with primary radial cal- its, punctuated by periods of subaerial exposure, cite fabrics occur in the interior of the Late INTRODUCTION paleokarst and bauxites, and by several pelagic Jurassic Late Tithonian, Adriatic Platform, a (incipient drowning) episodes (e.g., Veli´c et al., large Mesozoic, Tethyan isolated platform in Distinctive oolite units on the Late Jurassic 2002; Jelaska, 2003; Vlahovi´c et al., 2005). The Croatia. They differ from open-marine, plat- (Tithonian) Adriatic Platform, Croatia (Tišljar, Lastovo Island section is ~25 km inboard from form-margin ooid grainstones in their dark 1985), are characterized by oversized ooids the platform margin (Grandi´c et al., 1999) and color, cerebroid outlines, broken and recoated with radial primary calcite fabrics. Many have grains, abundant inclusions, highly restricted cerebroid outlines, are broken and recoated, and biota, and lack of cross-stratifi cation. They are poorly sorted. The oolite units have super- have been interpreted as being of vadose ori- imposed vadose fabrics, lack marine biotas, and 10°E AUSTRIA 20°E gin (“vadoids”) at tops of upward-shallowing do not have high-energy sedimentary structures.
    [Show full text]
  • The Iron-Ore Resources of Europe
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 706 THE IRON-ORE RESOURCES OF EUROPE BY MAX ROESLER WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. Page. Preface, by J. B. Umpleby................................................. 9 Introduction.............................................................. 11 Object and scope of report............................................. 11 Limitations of the work............................................... 11 Definitions.........................:................................. 12 Geology of iron-ore deposits............................................ 13 The utilization of iron ores............................................ 15 Acknowledgments...................................................... 16 Summary................................................................ 17 Geographic distribution of iron-ore deposits within the countries of new E urope............................................................. 17 Geologic distribution................................................... 22 Production and consumption.......................................... 25 Comparison of continents.............................................. 29 Spain..................................................................... 31 Distribution, character, and extent of the deposits....................... 31 Cantabrian Cordillera............................................. 31 The Pyrenees....................................................
    [Show full text]