ROS and RNS in Plant Physiology: an Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Value of Our ASPB Community by JUDY CALLIS UPDATE ASPB President, University of California, Davis
March/April 2020 • Volume 47, Number 2 p. 7 p. 8 p. 12 Journal Flexibility Zachary Lippman NEW COLUMN in the Troubling Wins 2020 National Times of COVID-19 Academy of Unsung Heroes: Sciences Prize Samantha Link THE NEWSLETTER OF THE AMERICAN SOCIETY OF PLANT BIOLOGISTS President’s Letter The Value of Our ASPB Community BY JUDY CALLIS UPDATE ASPB President, University of California, Davis As the impacts of the coronavirus his is an unprecedented resources on Plantae pandemic become ever more serious, and extraordinary support profession- ASPB’s Plant Biology 2020 contin- Ttime. The fabric of our als and students gency planning efforts have gathered personal and professional worldwide without pace. Among other possibilities, as lives is changing daily, and charge and provide of early April we are exploring the it will be different as you communities with feasibility of options for online access read this message than it was a forum for discus- to meeting content—including the when I wrote it a few weeks sion and resource networking and other peer-to-peer ago. Now more than ever, we sharing. Join Twitter connections that are such a vital should value our ASPB com- if you haven’t component of Plant Biology confer- munity. Indeed, none of us is already and follow ences. Decisions are still pending; alone. ASBP (@ASPB); we will share more detailed informa- The goals of this letter are post ideas, ask for tion as soon as we are able to do so. to point you toward resourc- suggestions, and In the meantime, we thank you for es that might be particularly list resource URLs. -
Smoking Depletes Vitamin C: Should Smokers Be Recommended To
Chapter 9 Smoking Depletes Vitamin C: Should Smokers 9 Be Recommended to Take Supplements? Jens Lykkesfeldt Contents 9.1 Introduction ................................. 238 9.2 The Antioxidant Activity of Vitamin C ........... 239 9.3 Vitamin C Homeostasis in Smokers ............. 240 9.3.1 The RDA for Vitamin C in Smokers ............. 241 9.3.2 Repletion of Vitamin C in Smokers .............. 243 9.4 Prevalence and Clinical Significance of Low Vitamin C Status ..................................... 243 9.4.1 Severe Vitamin C Deficiency ................... 244 9.4.2 Marginal Vitamin C Deficiency ................. 245 9.4.3 Suboptimal Vitamin C Status ................... 246 9.5 The Pros of Vitamin C Supplementation to Smokers ..................................... 247 9.6 The Cons of Vitamin C Supplementation to Smokers ..................................... 248 9.7 Conclusion .................................. 250 References ................................... 251 238 BarryJens Lykkesfeldt Halliwell and Henrik E. Poulsen 9.1 Introduction Smoking has been identified as one of the major risk factors in human diseases such as atherosclerosis and several cancers (Doll et al. 1994; Mosca et al. 1997; Palmer 1985; Stein et al. 1993), yet approximately one third of the Western World’s adult population continues to smoke (WHO Health for All Database 2000). Among other factors, oxida- tive stress has been suggested to play an important role as initiator of the pathological conditions resulting from tobacco smoking (Colditz et al. 1987; Frei et al. 1991; Gen- kinger et al. 2004; Gey 1986; Hirvonen et al. 2000; Macfarlane et al. 1995; Poulsen et al. 1998; Pryor and Stone 1993). Because cigarette smoke has been shown to result in increased oxidative stress as measured by a variety of biochemical markers, it has been speculated that increased consumption of fruits and vegetables rich in antioxidants or even specific antioxidant supplements could perhaps be particularly beneficial to smok- ers (Ames 1998; Ames and Gold 1998; Ames and Wakimoto 2002; Ames et al. -
Oxygen-Derived Species: Their Relation to Human Disease and Environmental Stress Barry Halliwell'2 and Carroll E
Oxygen-derived Species: Their Relation to Human Disease and Environmental Stress Barry Halliwell'2 and Carroll E. Cross1 1Pulmonary-Critical Care Medicine, University of California-Davis Medical Center, Sacramento, California; 2Pharmacology Group, University of London Kings College, London, England Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body, often for useful metabolic purposes. Antioxidant defenses protect against them, but these defenses are not completely adequate, and systems that repair damage by ROS are also necessary. Mild oxidative stress often induces antioxidant defense enzymes, but severe stress can cause oxidative damage to lipids, proteins, and DNA within cells, leading to such events as DNA strand breakage and disruption of calcium ion metabolism. Oxidative stress can result from exposure to toxic agents, and by the process of tissue injury itself. Ozone, oxides of nitrogen, and cigarette smoke can cause oxidative damage; but the molecular targets that they damage may not be the same. - Environ Health Perspect 1 02(Suppl 1 0):5-12 (1994) Key words: free radical, oxygen radical, superoxide, hydroxyl, hydrogen peroxide, oxidative stress, transition metals, ozone, nitrogen dioxide, cigarette smoke Introduction technique of electron spin resonance is mental air pollutant to appear in large There is considerable current interest in the often used to measure free radicals; it quantities on the planet. role of free radicals, oxygen radicals, and records the energy changes that occur as However, even present-day aerobes suf- oxidative stress as mediators of tissue injury unpaired electrons align in response to a fer oxidative damage if they are exposed to in human disease and of the effects of air magnetic field. -
American Society of Plant Biologists
2017 Election American Society of Plant Biologists Elected Member, Council (to serve 2017–2020) Christine Foyer of agriculture. She also recognizes the need to focus greater research attention on grain legumes to increase the contri- Christine Foyer is Professor of Plant Sciences at the Univer- bution of pulses to global food production and sustainable sity of Leeds in the U.K. Christine obtained her BSc at the University of Portsmouth, and her PhD at Kings College, agriculture and so eradicate hunger and malnutrition. London. She joined the Photosynthesis Research Group at Christine is the General Secretary of the Federation of the University of Sheffield for her postdoctoral research. European Societies of Plant Biologists and a member of the Christine was appointed as Research Director with her French Academy of Agriculture. She is an Associate Editor own group at the French National Institute for Agricultural for Plant, Cell and Environment and the Biochemical Journal. Research (INRA) in Versailles, France in 1998. Christine She received the inaugural Founders Award from Plant then became Head of Department, first at the Institute of Physiology in 2011. She has worked alongside colleagues Grassland and Environmental Research in Wales and then from ASPB in the Global Plant Council and the Society of at the Institute of Arable Crops Research (Rothamsted Re- search) in Harpenden, U.K. She joined Africa College at the Experimental Biology. University of Leeds in April, 2009. Christine is enthusiastic about this opportunity to contrib- Christine has always been fascinated by plant metabolism, ute to ASPB. She believes strongly that ASPB is a flagship particularly reduction/oxidation (redox) biology and asso- organization that promotes excellence in all areas of plant ciated signaling. -
Reactive Oxygen Species Are Crucial “Pro-Life “Survival Signals in Plants
King’s Research Portal DOI: 10.1016/j.freeradbiomed.2018.04.582 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Breusegem, F. V., Foyer, C., & Mann, G. (2018). Reactive oxygen species are crucial “pro-life “survival signals in plants . Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2018.04.582 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Impairs Abscisic Acid- Responsive Signalling and Delays Leaf Senescence in Rice
Journal of Experimental Botany, Vol. 66, No. 22 pp. 7045–7059, 2015 doi:10.1093/jxb/erv401 Advance Access publication 14 August 2015 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) RESEARCH PAPER Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid- responsive signalling and delays leaf senescence in rice Seung-Hyun Wang1,*, Jung-Hyun Lim1,*, Sang-Sook Kim1, Sung-Hwan Cho1,†, Soo-Cheul Yoo2, Hee-Jong Koh1, Yasuhito Sakuraba1,‡, and Nam-Chon Paek1,3,‡ 1 Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151–921, Korea 2 Department of Plant Life and Environmental Science, Hankyong National University, Ansung 456-749, Korea 3 Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916, Korea * These authors contributed equally to this work. Downloaded from † Present address: Divisions of Biochemistry and Plant Sciences, University of Missouri, Columbia, MO 65211, USA ‡ To whom correspondence should be addressed. E-mail: [email protected]; [email protected] Received 17 June 2015; Revised 29 July 2015; Accepted 30 July 2015 http://jxb.oxfordjournals.org/ Editor: Christine Foyer Abstract Lesion mimic mutants commonly display spontaneous cell death in pre-senescent green leaves under normal conditions, without pathogen attack. Despite molecular and phenotypic characterization of several lesion mimic mutants, the mech- anisms of the spontaneous formation of cell death lesions remain largely unknown. Here, the rice lesion mimic mutant by guest on November 30, 2015 spotted leaf3 (spl3) was examined. -
Diet and Antioxidant/Oxidant Systems
Feeding from Toddlers to Adolescence: edited by Angel Ballabriga, Nestll Nutrition Workshop Series, Vol. 37. Nestec Ltd., Vevey/ Lippincott-Raven Publishers, Philadelphia, © 1996. Diet and Antioxidant/Oxidant Systems Barry Halliwell Pharmacology Group, King's College, Manresa Road, London, United Kingdom Free radicals and antioxidants are widely discussed in clinical and nutritional re- ports and even in the lay press. The assumption is that free radicals are bad and antioxidants good. By contrast, a recent clinical trial suggested that giving the alleged "antioxidant" /3-carotene to smokers accelerated the development of lung cancer (1). The purpose of this chapter is to provide some scientific background to help health professionals evaluate such claims and counterclaims. WHAT IS A FREE RADICAL? All atoms have a nucleus, containing positively charged protons and neutral neu- trons. Electrons orbit around the nucleus, usually associated in pairs. A free radical is defined as any species that contains one or more unpaired electrons (2). The pres- ence of unpaired electrons alters the chemical reactivity of an atom or molecule, usually making it more reactive than the corresponding nonradical. However, the chemical reactivities of different types of free radicals vary enormously. WHAT RADICALS ARE MADE IN THE HUMAN BODY? Humans are exposed to electromagnetic radiation from the environment, both natu- ral (e.g., radioactive radon gas and cosmic radiation) and from man-made sources. Low-wavelength electromagnetic radiation (e.g., rrays) can split water in the body to generate hydroxyl radical, OH . This viciously reactive radical, once generated, attacks whatever it is next to (2). The human body also makes the superoxide radical, O2~. -
Roles of C1A Peptidases During Barley Leaf Senescence Mediated by Abiotic Stresses
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS (CENTRO DE BIOTECNOLOGÍA Y GENÓMICA DE PLANTAS) Roles of C1A peptidases during barley leaf senescence mediated by abiotic stresses TESIS DOCTORAL BLANCA VELASCO ARROYO Licenciada en Ciencias Ambientales 2017 Departamento de Biotecnología y Biología Vegetal ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA, ALIMENTARIA Y DE BIOSISTEMAS CENTRO DE BIOTECNOLOGÍA Y GENÓMICA DE PLANTAS (CBGP, UPM-INIA) UNIVERSIDAD POLITÉCNICA DE MADRID Tesis Doctoral Roles of C1A peptidases during barley leaf senescence mediated by abiotic stresses Autor: Blanca Velasco Arroyo, Licenciada en Ciencias Ambientales Directores: Isabel Díaz Rodríguez, Catedrática de Universidad Manuel Martínez Muñoz, Profesor Titular de Universidad 2017 UNIVERSIDAD POLITÉCNICA DE MADRID Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la Universidad Politécnica de Madrid, el día de de 20 . Presidente: Secretario: Vocal: Vocal: Vocal: Suplente: Suplente: Realizado el acto de defensa y lectura de Tesis el día de de 20 en el Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). EL PRESIDENTE LOS VOCALES EL SECRETARIO ACKNOWDLEDGMENTS This Thesis has been performed in the Plant-Insect Interaction laboratory of “Centro de Biotecnología y Genómica de Plantas (CBGP UPM-INIA)”. This work has been supported by the Spanish “Ministerio de Economía y Competitividad (MINECO)” through a grant “Formación del Personal Investigador (BES- 2012-051962)” associated to the project AGL2011-23650. My stay in the Centre for Plant Sciences at the Faculty of Biology, Leeds University (United Kingdom), was possible thanks to the fellowship for short stays granted by MINECO (EEBB-I-15-09251). My stay in the “Instituto de Fisiología Vegetal (INFIVE; UNLP-CONICET)” in La Plata, (Argentina), was possible thanks to the fellowship for short stays granted by MINECO (EEBB-I-16-11230) and to the “Premio a Jóvenes Excelentes 2015” granted by “Fundación Caja Burgos”. -
The Characterisation of Low Temperature Tolerance in Legumes
The characterisation of low temperature tolerance in legumes. James William Cooper Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology Centre for Plant Sciences August 2016 Declaration and Publications The candidate confirms that the work submitted is their own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given with the thesis where reference has been made to the work of others. Chapter 1: Foyer, C. H., Lam, H-M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, K. J., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., Shi, K., Yu, J., Fodor, N., Kaiser, B. N., Wong, F. L., Valliyodan, B., Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2. DOI:10.1038/nplants.2016.112 The candidate was responsible for the generation of figure 3 and contributed to the body of the review text. Quain M. D., Makgopa, E. M., Cooper, J. W., Kunert, K. J., Foyer, C. H. (2015). Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry, 112, 179-187. DOI:10.1016/j.phytochem.2014.12.027 The candidate was responsible for the generation of the graphical abstract and contributed to the writing of the text. -
January 27Th and 28Th 2021 Fifth Annual Bifor Community Meeting - a Focus on Pests, Diseases and Their Impacts Day One 27Th January 2021
January 27th and 28th 2021 fifth annual BIFoR Community Meeting - a focus on pests, diseases and their impacts Day One 27th January 2021 12:00 Welcome – BIFoR Directors, Prof Rob Jackson and Prof Nicola Spence Impact of pests, unravelling plant responses to aphids, Prof Christine Foyer, University of Birmingham Phage biocontrol to combat bacterial pathogens causing disease in trees, Mojgan Rabiey, University of Birmingham Near complete genomes give new insight into old stories of horizontal gene transfer, Megan McDonald, University of Birmingham Tree diseases: wider ecological impacts and policy implications, Dr Ruth Mitchell, James Hutton Institute, Action Oak Processing of emotional faces after forest versus city exposure, Eszter Toth, University of Birmingham Exploring land manager perceptions and preferences and the impact on designing treescapes for wider benefits, focusing on Natural Flood Management, Jenny Knight Wooden hurdles and policy jams – a brief guide to forestry, Anthony Geddes, National Manager for Wales, Confor (Confederation of Forest Industries) 15:00 Poster session Our research team have prepared posters which will be available to read on our website. The team will stay on the zoom call to answer any questions 16:00 Conference closes Day Two 28th January 2021 9:00 Welcome – BIFoR Directors, Prof Rob Jackson and Prof Nicola Spence Insect-Plant interactions (and beyond) under climate change, Dr Scott Hayward, University of Birmingham The effect of elevated CO2 in tree defence responses against diseases: what do we know -
Cratoxylum Cochinchinense ANTIOXIDANT but CYTOTOXIC
FOLK MEDICINE- Cratoxylum cochinchinense ANTIOXIDANT BUT CYTOTOXIC TANG SOON YEW (BSc (Hons), UNSW, Australia) A thesis submitted for the degree of Doctor of Philosophy Department of Biochemistry NATIONAL UNIVERSITY OF SINGAPORE 2005 ACKNOWLEDGEMENTS Firstly, special thanks to my Family for their support throughout this study. I also wish to thank my supervisors, Professor Barry Halliwell and A/P Matthew Whiteman, for their invaluable guidance and advice as well as patience throughout this study. Special thanks to Professor Yong Eu Leong and Dr. Yap Sook Peng from the Department of Obstetrics and Gynecology, Faculty of Medicine, National University of Singapore for supplying us the Chinese medicinal extracts. This project would not be possible without these extracts, especially Cratoxylum cochinchinense which was harvested from Sook Peng’s garden in Malaysia. My sincere thanks to Professor Sit Kim Ping, Department of Biochemistry, Faculty of Medicine, National University of Singapore for her generous gifts of a number of cell lines used in this study. My sincere thanks also extend to members of the Antioxidants and Oxidants Research Group, in one way or the other, they have been a part of making this thesis possible. Members of the group include Dr. Peng Zhao Feng, Siau Jia Ling, Dr. Andrew Jenner, Lim Kok Seong, Wang Huang Song, Sherry Huang, Long Lee Hua, Chua Siew Hwa, Dr. Wong Boon Seng and Dr. Jetty Lee. Last but not least, many thanks to my friends Chai Phing Chian, Ng Kian Hong, Dr. Mirjam Nordling, members of the Flow Cytometry and Confocal Units and …… ii List of journal publications Tang, S. -
Free Radicals and Antioxidants in Food and in Vivo: What They Do and How They Work
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Free radicals and antioxidants in food and in vivo: What they do and how they work Barry Halliwell , M. Antonia Murcia , Susanna Chirico & Okezie I. Aruoma To cite this article: Barry Halliwell , M. Antonia Murcia , Susanna Chirico & Okezie I. Aruoma (1995) Free radicals and antioxidants in food and in vivo: What they do and how they work, Critical Reviews in Food Science and Nutrition, 35:1-2, 7-20, DOI: 10.1080/10408399509527682 To link to this article: https://doi.org/10.1080/10408399509527682 Published online: 29 Sep 2009. Submit your article to this journal Article views: 287 View related articles Citing articles: 321 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Texas A&M University Libraries] Date: 09 January 2018, At: 11:07 Section II The Role of Free Radicals and Antioxidants Downloaded by [Texas A&M University Libraries] at 11:07 09 January 2018 Critical Reviews in Food Science and Nutrition, 35(l&2):7-20 (1995) Free Radicals and Antioxidants in Food and In Vivo: What They Do and How They Work Barry Halliwell,1,2 M. Antonia Murcia,3 Susanna Chirico,1 and Okezie I. Aruoma1 'Pharmacology Group, University of London Kings Colleqe, Manresa Road, London SW3 6LX, UK; 2Pulmonary and Critical Care Medicine, University of California - Davis Medical Center, 4301 X Street Sacramento, CA 95817; 3U.D.