Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016

Total Page:16

File Type:pdf, Size:1020Kb

Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction......................................................................................................................... 1 1.1. Purpose of This Guidance............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting Organizational and Operational Accounting Boundaries ....................................... 8 2.1. Organizational Boundaries................................................................................................... 9 2.1.1. Real Property............................................................................................................... 10 2.1.2. Purchased Fuel ............................................................................................................ 13 2.1.3. All Other Activities..................................................................................................... 15 2.2. Operational Boundaries: Scopes................................................................................... 15 2.2.1. Scope 1........................................................................................................................ 16 2.2.2. Scope 2........................................................................................................................ 17 2.2.3. Scope 3........................................................................................................................ 18 2.3. de minimis ..................................................................................................................... 20 3.0 Sequestration and Emissions from Land Use, Agriculture, and Biogenic Sources .......... 21 3.1. Biofuel and Biomass Combustion ................................................................................ 21 3.2. Voluntary Land Use and Agricultural Emissions Reporting Categories ...................... 22 3.3. Reporting: Net Carbon Stock Changes on Forest Land................................................ 23 4.0 Renewable Energy and Carbon Offsets ............................................................................ 25 4.0.1. Reporting On-Site versus Off-Site Renewable Energy Use ....................................... 26 4.0.2. Retention of Renewable Energy Certificates .............................................................. 27 4.0.3. Purchase of Energy from Biomass Combustion ......................................................... 27 4.0.4. Purchase of Energy from Conversion of Landfill Gas ................................................ 28 4.0.5. Energy from Municipal Solid Waste Combustion ...................................................... 28 ii 4.1. Agency-Owned On-Site Renewable Energy ................................................................ 28 4.1.1. Consumption of Renewable Electricity Generated On Site ........................................ 28 4.1.2. On-Site Renewable Energy Systems That Don’t Generate Electricity ....................... 29 4.1.3. Agency-Owned Renewable Energy Generation Where the Agency Does Not Own Renewable Energy Certificates but Does Use Energy .......................................................... 30 4.2. Renewable Energy Purchases and Use of Renewable Energy Certificates to Meet Greenhouse Gas Reduction Targets.......................................................................................... 30 4.3. Third-Party Operated Renewable Energy Generation on Agency Land ...................... 32 4.3.1. Third-Party Operated Renewable Energy Generation Where the Agency Purchases Energy and/or Renewable Energy Certificates ..................................................................... 32 4.3.3. Third-Party Operated Renewable Energy Generation Where the Agency Does Not Own Renewable Energy Certificates but Does Use Energy .......................................................... 33 4.4. Carbon Offsets .............................................................................................................. 34 5.0 Reporting Greenhouse Gas Emissions .............................................................................. 36 5.1. Reporting Process ......................................................................................................... 36 5.1.1. Annual Date for Reporting.......................................................................................... 36 5.1.2. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report)................................................................................................................... 36 5.1.3. Reporting Approach.................................................................................................... 38 5.1.4. Other Greenhouse Gas Calculation Tools................................................................... 39 5.2. Reporting Qualitative Content ...................................................................................... 39 5.3. Quantitative Inventory Data .......................................................................................... 42 5.4. Emission and Conversion Factors ................................................................................. 49 5.5. Base Year and Subsequent Year Inventories ................................................................ 50 5.5.1. Recalculations to Amend or Normalize Baseline ....................................................... 50 6.0 Verification and Validation of Greenhouse Gas Emissions ............................................. 53 6.1. Agency Responsibilities................................................................................................ 53 6.2. Federal Energy Management Program Responsibilities ............................................... 53 Appendix A. Calculating Scope 1 Emissions ............................................................................. A-1 Appendix B. Calculating Scope 2 Emissions .............................................................................. B-1 Appendix C. Calculating Scope 3 Emissions .............................................................................. C-1 Appendix D. Emission and Conversion Factors ......................................................................... D-1 Appendix E. Definitions .............................................................................................................. E-1 iii List of Tables Table 1: Greenhouse Gases, Common Sources, and Global Warming Potential Factors .............. 4 Table 2: Emissions from Agency Property Arrangements ........................................................... 11 Table 3: Building Exclusions Comparison ................................................................................... 13 Table 4: Location- and Market-Based Reporting for Scope 2 ...................................................... 34 Table 5: Summary of Greenhouse Gas Reporting ........................................................................ 36 Table 6: Greenhouse Gas Inventory Qualitative Reporting .......................................................... 40 Table 7: Data Needed for Reporting: Scope 1 Fugitive Emissions .............................................. 43 Table 8: Data Needed for Reporting: Scope 2 Emissions ............................................................. 45 Table 9: Data Needed for Scope 3 Emissions Reporting .............................................................. 48 Table A-1: Stationary Combustion – Electricity, Heating, and Steam Default Data Sources .... A-2 Table A-2: Renewable Fuel/Technology Choices ...................................................................... A-6 Table A-3: Stationary Combustion – Biomass and Biofuel Default Data Sources .................... A-8 Table A-4: Mobile Combustion – Fossil Fuels Default Data Sources...................................... A-10 Table A-5: Mobile Combustion – Fossil Fuels Alternative Data Sources................................ A-14 Table A-6: Mobile Fuel and Vehicle Emission Factors Available in Annual GHG Data Report Workbook ................................................................................................................................. A-15 Table A-7: Mobile Combustion – Biofuels Default
Recommended publications
  • EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter
    EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter EPA 454/B-18-008 August 2018 EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Assessment Division Research Triangle Park, NC EPA Handbook: Optical and Remote Sensing for Measurement and Monitoring of Emissions Flux of Gases and Particulate Matter 9/1/2018 Informational Document This informational document describes the emerging technologies that can measure and/or identify pollutants using state of the science techniques Forward Optical Remote Sensing (ORS) technologies have been available since the late 1980s. In the early days of this technology, there were many who saw the potential of these new instruments for environmental measurements and how this technology could be integrated into emissions and ambient air monitoring for the measurement of flux. However, the monitoring community did not embrace ORS as quickly as anticipated. Several factors contributing to delayed ORS use were: • Cost: The cost of these instruments made it prohibitive to purchase, operate and maintain. • Utility: Since these instruments were perceived as “black boxes.” Many instrument specialists were wary of how they worked and how the instruments generated the values. • Ease of use: Many of the early instruments required a well-trained spectroscopist who would have to spend a large amount of time to setup, operate, collect, validate and verify the data. • Data Utilization: Results from path integrated units were different from point source data which presented challenges for data use and interpretation.
    [Show full text]
  • Emission Inventory & Calculation Methodology 2019
    Greenhouse Gas Emission Inventory & Calculation Methodology 2019 Quantification and reporting of greenhouse gas emissions in accordance with the Corporate Green- house Gas Protocol December 2020 Content Executive Summary ..................................................................................................................................................... 1 Introduction ..................................................................................................................................................................... 1 About RWE and its value chain .............................................................................................................................. 2 Organisational boundary .......................................................................................................................................... 3 Emissions Accounting and Reporting Methodology ................................................................................... 3 Scope 1 ......................................................................................................................................................................... 4 Scope 2 ......................................................................................................................................................................... 5 Scope 3 ......................................................................................................................................................................... 6 Category
    [Show full text]
  • Data and Information Committee Agenda 9 June 2021 - Agenda
    Data and Information Committee Agenda 9 June 2021 - Agenda Data and Information Committee Agenda 9 June 2021 Meeting is held in the Council Chamber, Level 2, Philip Laing House 144 Rattray Street, Dunedin Members: Hon Cr Marian Hobbs, Co-Chair Cr Michael Laws Cr Alexa Forbes, Co-Chair Cr Kevin Malcolm Cr Hilary Calvert Cr Andrew Noone Cr Michael Deaker Cr Gretchen Robertson Cr Carmen Hope Cr Bryan Scott Cr Gary Kelliher Cr Kate Wilson Senior Officer: Sarah Gardner, Chief Executive Meeting Support: Liz Spector, Committee Secretary 09 June 2021 02:00 PM Agenda Topic Page 1. APOLOGIES No apologies were received prior to publication of the agenda. 2. PUBLIC FORUM No requests to address the Committee under Public Forum were received prior to publication of the agenda. 3. CONFIRMATION OF AGENDA Note: Any additions must be approved by resolution with an explanation as to why they cannot be delayed until a future meeting. 4. CONFLICT OF INTEREST Members are reminded of the need to stand aside from decision-making when a conflict arises between their role as an elected representative and any private or other external interest they might have. 5. CONFIRMATION OF MINUTES 3 Minutes of previous meetings will be considered true and accurate records, with or without changes. 5.1 Minutes of the 10 March 2021 Data and Information Committee meeting 3 6. OUTSTANDING ACTIONS OF DATA AND INFORMATION COMMITTEE RESOLUTIONS 8 Outstanding actions from resolutions of the Committee will be reviewed. 6.1 Action Register at 9 June 2021 8 7. MATTERS FOR CONSIDERATION 9 1 Data and Information Committee Agenda 9 June 2021 - Agenda 7.1 OTAGO GREENHOUSE GAS PROFILE FY2018/19 9 This report is provided to present the Committee with the Otago Greenhouse Gas Emission Inventory FY2018/19 and report.
    [Show full text]
  • Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL)
    EPA Gas STAR Program – Annual Implementation Workshop Detection and Measurement of Fugitive Emissions Using Airborne Differential Absorption Lidar (DIAL) Daniel Brake Active Imaging Solutions ITT Industries Space Systems Division Rochester, New York email: [email protected] phone: (585) 269-5070 www.ssd.itt.com/angel 25 October 2005 2 ITT Industries – Corporate Overview ITT Industries: ~$7.0 Billion (annual revenue) – ITT Defense: ~$3.0 Billion (annual revenue) – Supplier of sophisticated military defense systems and provider of advanced technical and operational services to government customers. – ITT Industries Space Systems Division – Over 50 years as a national leader providing innovation and quality in the design, production and development of Remote Sensing, Meteorological, and Navigation satellite systems. 3 Hydrocarbon Gas Detection: Active Remote Sensing Definition – A remote sensing system that can emit its own electromagnetic energy at a target and then record the interaction between the energy and the target. Application – DIAL (Differential Absorption Lidar) is an example of an active remote sensing technology. A DIAL system sends out controlled pulses of laser energy and then measures the interaction between the laser energy and the target. Advantages – The ability to obtain direct, non-point15 sourOn-ce,line measurementsTheof d iffespecificrence in gases, regardless of the time of day or season. Ability to accuratelywavelength is locate and aquantifybsorption betweareean th eemissions. two wavelengths can rption chosen close to 10 The ability to control the what, when andpeak where of the of target illuminabe usedtion. to dete rmActiveine systems are absorption the concentration of the Abso particularly advantaged when the desired5 featu wavelengtre hs are notchemical sufficient responsibllye provided by the sun, such as portions of the mid-wave infrared (IR).
    [Show full text]
  • Emission Factor Documentationfor AP42 Section 2.4 Municipal Solid
    Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills EPA/600/R-08-116 September 2008 Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills Prepared by Eastern Research Group, Inc. 1600 Perimeter Park Dr. Morrisville, NC 27560 Contract Number: EP-C-07-015 Work Assignment Number: 0-4 EPA Project Officer Susan Thorneloe Air Pollution Prevention and Control Division National Risk Management Research Laboratory Research Triangle Park, NC 27711 Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 Notice The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development performed and managed the research described in this report. It has been subjected to the Agency‘s peer and administrative review and has been approved for publication as an EPA document. Any opinions expressed in this report are those of the author and do not, necessarily, reflect the official positions and policies of the EPA. Any mention of products or trade names does not constitute recommendation for use by the EPA. ii Abstract This document was prepared for U.S. EPA’s Office of Research and Development in support of EPA’s Office of Air Quality Planning and Standards (OAQPS). The objective is to summarize available data used to update emissions factors for quantifying landfill gas emissions and combustion by-products using more up-to-date and representative data for U.S. municipal landfills. This document provides background information used in developing a draft of the AP-42 section 2.4 which provides guidance for developing estimates of landfill gas emissions for national, regional, and state emission inventories.
    [Show full text]
  • GHG Emissions in King County: a 2017 Update
    GHG Emissions in King County: A 2017 Update GHG Emissions in King County: 2017 Inventory Update, Contribution Analysis, and Wedge Analysis July 2019 Prepared for King County, Washington By ICLEI USA 1 GHG Emissions in King County: A 2017 Update ICLEI Team Hoi-Fei Mok Michael Steinhoff Eli Yewdall King County Staff Matt Kuharic The inventory portion of this report draws extensively on King County Greenhouse Gas Emissions Inventory: A 2015 Update, produced by Cascadia Consulting Group and Hammerschlag & Co, LLC. 2 GHG Emissions in King County: A 2017 Update Table of Contents Acronyms ................................................................................................................................................................................................. 4 Introduction and Context .................................................................................................................................................................. 5 Inventory update approach ......................................................................................................................................................... 5 2017 Inventory Update ...................................................................................................................................................................... 7 Results .................................................................................................................................................................................................. 7 Supplemental
    [Show full text]
  • Analysis of Upstream Sustainability Trends Within the Food Production Industry. Case Study: a Food Manufacturer
    P a g e | 1 Analysis of Upstream Sustainability Trends within the Food Production Industry. Case Study: A food manufacturer Sarah Dallas, Jessica Lam, Nora Stabert Academic Advisor: Deborah Gallagher Spring 2013 P a g e | 2 Table of Contents Executive Summary ......................................................................................................................................... 3 Guide to Reading the Report ........................................................................................................................ 4 Literature Review ............................................................................................................................................ 5 Motivation ........................................................................................................................................................ 20 The Food Manufacturer Case .................................................................................................................... 25 Supply Chain.................................................................................................................................................... 26 Customer Analysis ........................................................................................................................................ 28 Climate Change ............................................................................................................................................... 34 Competitor Analysis ....................................................................................................................................
    [Show full text]
  • Copernic Agent Search Results
    Copernic Agent Search Results Search: volatile organic compounds in the air Gulf of Mexico Oil (All the words) Found: 1131 result(s) on _Full.Search Date: 7/17/2010 6:10:34 AM 1. Oil Spill Effects on Kids Jun 6, 2010 ... stay indoors to limit your exposure to the Volatile Organic Compounds or VOCs, which causes ... and turn on your central air conditioner or set your window air conditioner ... Related: CDC - 2010 Gulf of Mexico Oil Spill ... http://pediatrics.about.com/b/2010/06/06/oil-spill-effects-on-kids.htm 99% 2. Air Monitoring on Gulf Coastline | EPA Response to BP Spill in the Air monitoring reports below are on Particulate Matter, Total Volatile Organic Compounds (VOCs), Hydrogen Sulfide (H2S) and Air Toxics ... Since the BP Oil Spill in the Gulf of Mexico on April 22, 2010, EPA has provided full support to the U.S. Coast Guard http://www.epa.gov/bpspill/air.html 96% 3. BP Oil Spill Causing Serious Air Quality Concerns ... Due to the BP Oil Spill, the EPA Department of Air Quality is carefully tracking air quality along the Gulf of Mexico. Cases of bad odors, dizziness, nausea, and ... http://www.associatedcontent.com/article/5505474/bp_oil_spill_causing_serious_ air_quality.html 93% 4. NASA - Gulf of Mexico Initiative Targets Oil Spills and Other ... May 19, 2010 ... Viewing the Gulf of Mexico oil spill from 438 miles (705 km) away can be ... perspective of the layers of volatile organic compounds (VOCs, an oil ... of the water it comes into contact with the air and releases VOCs. ... http://www.nasa.gov/topics/earth/features/oilspill/oilspill-calipso-caliop.html 93% 5.
    [Show full text]
  • Air Quality Assessment Tools: a Guide for Public Health Practitioners
    Air Quality Assessment Tools: A Guide for Public Health Practitioners Prabjit Barn, Peter Jackson, Natalie Suzuki, Tom Kosatsky, Derek Jennejohn, Sarah Henderson, Warren McCormick, Gail Millar, Earle Plain, Karla Poplawski, Eleanor Setton Summary • Several tools exist to assess local air quality, including the impact of specific sources, emissions, and meteorological conditions. • Information generated from the use of air quality assessment tools can inform decisions on permitting of emissions, industrial siting, and land use; all can impact local air quality, which in turn can influence air pollution related health effects of a population. • The five tools discussed in this guide (highlighted with case examples) address different components of air quality: o Emissions inventories are databases of air pollution sources and their emissions, which allow for the monitoring of pollution releases to the air; emissions inventories can feed into other tools, such as dispersion models. o Dispersion modeling uses data on emissions, meteorology, and topography to provide estimates of ambient pollutant concentrations at specific receptor sites. o Source apportionment helps to identify important sources in an area by using information on ambient pollutant levels. o Mobile monitoring, in contrast to traditional fixed site monitoring, allows for a better understanding of pollutant concentrations and their sources, both temporally and, very importantly, spatially; Data collected by mobile monitoring projects can feed into models, such as land-use regression. o Land use regression uses a combination of local information to provide the best estimates of ambient pollution in a specific area. • Health impact assessment is an example of direct application of information generated by air quality assessment tools, to understand the air quality related health impacts of a population.
    [Show full text]
  • Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
    Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting
    [Show full text]
  • How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
    DYNA ISSN: 0012-7353 ISSN: 2346-2183 Universidad Nacional de Colombia Mariño-Martínez, Jorge Eliecer; Chanci-Bedoya, Rubén Darío; González-Preciado, Angélica Julieth Methane emissions from coal open pits in Colombia DYNA, vol. 87, no. 214, 2020, July-September, pp. 139-145 Universidad Nacional de Colombia DOI: https://doi.org/10.15446/dyna.v87n214.84298 Available in: https://www.redalyc.org/articulo.oa?id=49666177016 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative • Methane emissions from coal open pits in Colombia Jorge Eliecer Mariño-Martínez a, Rubén Darío Chanci-Bedoya b & Angélica Julieth González-Preciado a a Escuela de Ingeniería Geológica, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Colombia. [email protected], [email protected] b Unidad de Planeación Minero Energética, Colombia. [email protected] Received: December 21th, 2019. Received in revised form: May 25th, 2020. Accepted: June 16th, 2020. Abstract From the agreements on climate change Colombia is committed to measuring and reporting emissions of greenhouse gases (GHG), and among these, the coal mining fugitive emissions. The country has been reporting emissions from international tables-Level 1 of the IPCC, but this proposal is suggesting doing so from exploration of CBM-Level 2 using canisters desorption systems. For the Colombia open pit mining (provinces of Guajira and Cesar) the analyses from international tables and from CBM studies found that emissions from tables- Level 1 (106.02 Gg of methane) exceed the content found in direct measurements-Level 2 (75.92 Gg of methane) in 40%.
    [Show full text]
  • 2017 Emission Inventory Conference
    U.S. Environmental Protection Agency 2017 International Emission Inventory Conference “Applying Science and Streamlining Processes to Improve Inventories” Training - August 14 - 15, 2017 Plenary - August 15, 2017 Technical Sessions - August 16 - 18, 2017 Hyatt Regency Baltimore on the Inner Harbor 300 Light Street Baltimore, Maryland 21202 Sponsored by: Emission Inventory and Analysis Group Air Quality Assessment Division Office of Air Quality Planning and Standards In Memoriam Raymond Kevin Forde (November 29, 1962 – July 28, 2017) We mourn the passing of our dear friend Raymond Forde who died unexpectedly in July 2017. Raymond began his career in the emissions inventory field in 1989 with the EPA Region 3 Office in Philadelphia. After several years there he moved to the EPA Region 2 office in New York City where he was the key emissions inventory lead for most of his career, diligently supporting the program needs and concerns of the Region's states and territories. Raymond was more than just a colleague. He greeted everyone with a smile on his face and was a friend to all who knew him. Always a true gentleman, he treated everyone with respect, great kindness, and compassion. Raymond was a steady and long- standing member of the emissions inventory community and regularly attended the Emissions Inventory conferences. His many contributions to this community made him a well-respected and natural leader among his peers, and he will be greatly missed. Welcome to the 2017 Emissions Inventory Conference This year’s conference will focus on improving the science and streamlining processes to build robust, sound and timely inventories.
    [Show full text]