<<

MOLECULARANDMORPHOLOGICALSYSTEMATICSOF (:ANISOPTERA)AND by

JESSICALEEWARE

ADissertationsubmittedtothe

GraduateSchoolNewBrunswick

Rutgers,TheStateUniversityofNewJersey

inpartialfulfillmentoftherequirements

forthedegreeof

DoctorofPhilosophy

GraduatePrograminEntomology

writtenunderthedirectionof

MichaelL.MayandKarlKjer

andapprovedby

______

______

______

______

NewBrunswick,NewJersey

[October,2008]

i ABSTRACTOFTHEDISSERTATION

MOLECULARANDMORPHOLOGICALSYSTEMATICSOF

LIBELLULOIDEA(ODONATA:ANISOPTERA)ANDDICTYOPTERA

ByJESSICALEEWARE

DissertationDirector:

MichaelL.MayandKarlM.Kjer

Libelluloideaarehighlysuccessfulwithuniquebehaviorandlife histories.ThesystematicsofLibelluloidea(Odonata:Anisoptera)has historicallybeeninconflict,withlittleagreementaboutthenumberof familiesthatarecomprisedinthislarge,heterogeneousgroup.FormyPhD thesis,Ihaveassembledthemostcomprehensivemolecularand morphologicallibelluloiddatasettodate,inanattempttoreviseandsimplify libelluloid,andtoanswerquestionsabouttheevolutionaryhistory ofthegroup.IranBayesianandparsimonyanalysestorecoverphylogenetic hypotheseswithwhichIexplorethesuccessofLibelluloidea.Divergence estimation,amethodbywhichnodesofatreearedated,wasfirstexplored underdifferentevolutionarymodelsforasubsetoflibelluloidtaxainorder todeterminewhethertreatmentofhydrogenbondedribosomalnucleotides affectedtheageofdivergenceestimates.Usingmethodologybasedonthese

ii results,Iwasabletoestimatedivergencedatesanddiversificationrates forthefirstlargescaledatinganalysisofdragonflies.Onasmallerscale,I alsocompletedastudyof Syncordulia ,avulnerableofendemicSouth

Africanlibelluloiddragonflieswhosesystematicswasnotyetconfirmed.

Additionalstudiesofphylogeneticmethodologywereundertakeninmy thesisworkforanotherlargeandheterogeneousgroup,theDictyoptera

(Mantodea,andIsoptera).Inthisstudy,theeffectofoutgroup selectionwasdeterminedusingabroad,comprehensivesetforwhich wehadbothmolecularandmorphologicaldata.Theseresultssuggestthat theevolutionofsociality,onwhichmuchoftherecentdiscussionin dictyopteransystematicshasfocused,cannotbereliablydeterminedwhen differentoutgroupsrecoverdramaticallyconflictingtopologies.

iii Acknowledgementand/orDedication

IwouldliketothankmyhusbandJeremy,mydaughterAeshna,mybeloved dogSpiderandmytwinSyrusfortheirunfalteringsupportthroughoutmy

PhDwork.WithoutthemIwouldhaddifficultyovercomingtheinevitable setbacks,wrongturnsandconfusionthatseemtobeanaturalpartofthe academicprocess.Iwouldalsoliketothankmybestfriendandlabmate,

DanaPrice,forherthoughtfulconversationsaboutallthingsentomological andphylogenetic(orotherwise)throughoutthelastfiveyears.Iamdeeply indebtedtoLeslieMayforherthoughtfulness,caring,compassion, encouragement,humor,andsupport,whichhavebecomesuchawelcome aspectofmyfamily’slifehereatRutgers.IwouldliketothankKarlKjer andMikeMayfortheiradvisementandencouragementregardingbothmy thesisworkandextracurricularaffairs.I’malsoverygratefultothemfor supportingmytraveltoAustraliaand,bothofwhichwere remarkableopportunitiesintermsofcollectingandpersonal growth.ThankyoutoKimBloodsworthandDanaPrice,fortheirfriendship andmaternalsupportsincethebirthoftheirgoddaughter,Aeshna.Thanks verymuchtoLashonWareforhersisterlyadviceandcheerleading.Tomy godparentsBettyandArchieMcGugan,Iamthankfulforlongdistance encouragementandallofthedragonflybooks!Caren,JessicaandLeah

iv Huff,theShawsandtheGulletteshavebeenawonderfulsourceof inspirationandenthusiasm,forwhichIamveryindebted.Iwouldliketo acknowledgetheWareIronsfamilyfortheirinsistence,fromanearlyage, thatIgotograduateschooltogetmyPh.D—whichIfinallydid!Lastbut notleast,severalfellowdragonflylovers(enthusiastsandacademicsalike) wereencouragingandsupportivethroughoutmywork,forwhichIamvery grateful.I’dliketoacknowledgesomeofthemhere(althoughIamthankful tosomanymorethanthereisroomtolist).IamespeciallygratefultoKen

&SandyTennessen,Günther&ChristineTheischinger,Stas&LenaGorb andJerryandChristineLouton,forwelcomingmeintotheirhomesand

providingspecimens,adviceanddiscussion;DennisPaulson,forhis thoroughandthoughtfulcommentaryaboutmyphylogeniesandflight

behaviorproject;SethBybeeandErikPilgrimforadvice,discussion, support,encouragement,andforbeingsuchwonderfulcolleagues.

Thefollowingchapterswerepreviouslypublishedinpeerreviewedjournals: Chapter1:Ware,J.L.,M.L.May,K.M.Kjer,2007.Phylogenyofthehigher Libelluloidea(Anisoptera:Odonata):anexplorationofthemostspeciosesuperfamilyof dragonflies. Molecular and Evolution , 45(1): 289310 Chapter2:Ware,J.L.,Ho,S.Y.W.,Kjer,K.M.2008.Divergencedatesoflibelluloid dragonflies(Odonata:Anisoptera)estimatedfromrRNAusingpairedsitesubstitution models. and Evolution , 47: 426432 Chapter5:Ware,J.L.,Litman,J.Klass,KD,Spearman,L.2008.Resolvinginternal relationshipswithintheDictyopteraposesnewquestions:difficultyintheplacementof . Systematic Entomology, 33 :429450

v ThisthesisisdedicatedtoJeremyHuff,SpiderWareHuffandAeshna

WareHuff,foralloftheirpatiencewhileIworkedonmycomputeraligning datainsteadofplayingwiththemoutside.

vi TableofContents

Abstract………………………………………………………….pagesiiiii

Acknowledgementsand/orDedication…….……………………pagesivvi

ListofTables……………………………………………………pageix

ListofIllustrations………………………………………………pagesxxi

Chapter1:PhylogenyofthehigherLibelluloidea(Anisoptera:Odonata):an explorationofthemostspeciosesuperfamilyofdragonflies.Previously

publishedin Molecular Phylogenetics and Evolution… …………..pages153

Chapter2:Divergencedatesoflibelluloiddragonflies(Odonata:Anisoptera) estimatedfromrRNAusingpairedsitesubstitutionmodels.Previously

publishedin Molecular Phylogenetics and Evolution .………….pages5478

Chapter3:BiogeographyanddivergenceestimationoftherelicCape dragonflygenusSyncordulia:globalsignificanceandimplicationsfor conservation.Submittedtothe Journal of Biogeography… …..pages79107

Chapter4:Understandingphylogeneticrelationships,homoplasyand divergenceestimateswithinLibelluloidea(Anisoptera:Odonata):an explorationoftheusefulnessofmolecularversusadultandlarval morphologicalcharacters…………………………………………. .pages108200

vii Chapter5:ResolvinginternalrelationshipswithintheDictyopteraposes newquestions:difficultyintheplacementof Polyphaga .Previously

publishedin Systematic Entomology …………………………pages200257

CurriculumVitae……………………………………………...pages259260

viii Listoftables

Table1,Chapter1………………….Page42

Table2,Chapter1………………….Page44

Table3,Chapter1………………….Page53

Table1,Chapter2………………….Page73

Table2,Chapter2………………….Page74

TableS1,Chapter2………………...Page75

TableS2,Chapter2………………...Page77

Table1,Chapter3………………….Page97

Table2,Chapter3………………….Page101

Table3,Chapter3………………….Page102

Table1,Chapter4………………….Page158

Table2,Chapter4………………….Page185

Table3,Chapter4………………….Page187

Table4,Chapter4………………….Page189

Table5,Chapter4………………….Page189

Table6,Chapter4………………….Page190

Table7,Chapter4…………………Pages191198

Table8,Chapter4…………………Pages198200

Table1,Chapter5………………….Page254

Table2,Chapter5………………….Page256

Table3,Chapter5………………….Page258

ix Listofillustrations

Figure1,Chapter1………………….Page34

Figure2,Chapter1………………….Page35

Figure3,Chapter1………………….Page36

Figure4a,Chapter1…………………Page37

Figure4b,Chapter1………………...Page38

Figure5,Chapter1………………….Page39

Figure6,Chapter1………………….Page40

Figure7,Chapter1………………….Page41

Figure1,Chapter2………………….Page71

Figure2,Chapter2………………….Page72

Figure1,Chapter3………………….Page103

Figure2,Chapter3………………….Page104

Figure3,Chapter3………………….Page105

Figure4,Chapter3………………….Page106

Figure5,Chapter3………………….Page107

Figure1a,Chapter4…………………Page151

Figure1b,Chapter4…………………Page152

Figure2,Chapter4…………………..Page153

Figure3,Chapter4………………….Page154

x Figure4,Chapter4………………….Page155

Figure5,Chapter4………………….Page156

Figure6,Chapter4………………….Page157

Figure1,Chapter5………………….Page249

Figure2,Chapter5………………….Page250

Figure3,Chapter5………………….Page251

Figure4,Chapter5………………….Page252

Figure5,Chapter5………………….Page253

xi 1

Chapter 1:

Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): an exploration of the most speciose superfamily of dragonflies JessicaWare 1,MichaelMay 1,andKarlKjer 2 1 Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ, 08901, USA; 2 Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA

Abstract

Although libelluloiddragonfliesarediverse,numerous,andcommonlyobservedand studied,theirphylogenetichistoryisuncertain.Over150yearsoftaxonomicstudyof

LibelluloideaRambur1842,beginningwithHagen(1840),Rambur(1842),andSelys

(1850),hasfailedtoproduceaconsensusaboutfamilyandsubfamilyrelationships.The presentstudyprovidesawellsubstantiatedphylogenyoftheLibelluloideagenerated fromgenefragmentsoftwoindependentgenes,the16Sand28SribosomalRNA

(rRNA),andusingmodelsthattakeintoaccountnonindependenceofcorrelatedrRNA sites.Ninetythreeingrouptaxaandsixoutgrouptaxawereamplifiedforthe28S fragment;seventyeightingrouptaxaandfiveoutgrouptaxawereamplifiedforthe16S fragment.Bayesian,likelihoodandparsimonyanalysesofthecombineddataproduce wellresolvedphylogenetichypothesesandseveralpreviouslysuggestedmonophyletic groupsweresupportedbyeachanalysis.,Corduliinae,andare eachmonophyletic.ThecorduliidsubfamiliesSynthemistinae,Gomphomacromiinae,and

Idionychinaeformamonophyleticgroup,separatefromtheCorduliinae.Libellulidae comprises3previouslyacceptedsubfamilies(Urothemistinae,averyrestricted

Tetrathemistinae,andamodifiedLibellulinae)and5additionalconsistentlyrecovered groups.Noneofthepreviouslyproposedsubfamiliesaresupported.Bayesiananalyses

2

runwithanadditional71sequencesobtainedfromGenBankdidnotalterour conclusions.Theevolutionofadultandlarvalmorphologicalcharactersisdiscussedhere tosuggestareasforfuturefocus.Thisstudyshowstheinherentproblemsinusingpoorly definedandsometimesinaccuratelyscoredcharacters,basinggroupson symplesiomorphies,andfailuretorecognizethewidespreadeffectsofcharacter correlationandconvergence,especiallyinaspectsofwingvenation.

1. Introduction

Dragonfliesareamongthemostrecognizableof,evenhavingbecomesubjects ofextensivefolklore(Sarot,1958)and,moreover,havebeenusedinawidearrayof studiesdealingwithfunctionalmorphology,behavior,ecology,andevolution(Corbet,

1999).Odonataareconsideredtobeamongtheearliestflyinginsects.Theirrecognizable progenitorsdatetotheCarboniferous(360290millionyearsago)andareprobablythe mostwidelyknownextinctinsects.Anisoptera(intheirpresentform)aroselater,with earliestknownfromtheTriassic(250200millionyearsago;GrimaldiandEngel,

2005).WhileclearlyidentifiablelibelluloidsarenotwellknownfromtheJurassic(206

142millionyearsago),JarzembowskiandNel(1996)suggestthatlibelluloidswere alreadywellestablishedintheEarlyCretaceous(14265millionyearsago).Extant libelluloidsinclude,amongothers,thewidespreadMacromiinaeandCorduliinaeandthe mostabundantandfamiliardragonflies,Libellulidae.Libellulidaearereadily recognizable,oftenwithcoloredorpatternedwingsandabootshapedseriesofveins(the analloop)inthehindwing.Theyarecommonlyseeninterritorialflightaroundand ponds,orperchedalongthebank.

3

Amonglibelluloids,adultreproductiveandfeedingbehavior,larvalbehaviorand ecology(Corbet,1999),andbiogeography(Carle,1995)varywidelyandhavebeen investigatedintensively.Whileitisclearthatawellsupportedphylogenetichypothesisis neededinordertoreachanunderstandingoftheevolutionofthesetraits,phylogenetic relationshipsamonglibelluloidfamiliesremainhighlycontentious,withnumerous hypothesesproposed(Fig.1,Table1).Fordescriptivepurposes,weusethetaxonomyof

DaviesandTobin(1985)unlessotherwiseindicated,sinceitiswidelyusedtoday(Table

2).

Morphologicalstudiesoflibelluloidphylogenyhavereliedheavily,althoughnot exclusively,onwingveincharacters(Kirby,1890;Needham,1903;Martin,1907;

Needham,1908;Ris19091919;Tillyard,1910;NeedhamandBroughton,1927;Fraser,

1957;Gloyd,1959;Geijskes,1970;Lieftinck,1971;TheischingerandWatson,1978;

Carle,1982a;DaviesandTobin,1985;CarleandLouton,1994;Carle,1995;Bechly,

1996;Lohmann,1996;Trueman,1996;JarzembowskiandNel,1996;CarleandKjer,

2002;Rehn,2003).DespiteprogressinunderstandinghomologiesinOdonatavenation

(e.g.Carle,1982b;RiekandKukolovaPeck,1984),manywingveincharactersmay supportconvergentrelationshipswhenusedtotheexclusionofothercharacters(Hennig,

1969;Carle,1982b).The11subfamiliesofLibellulidaerecognizedinDaviesandTobin

(1985)andBridges(1994)werelargelybasedonwingveinmorphology.Bechly’s(1996) morphologicalstudyoftheOdonataalsoreliedheavilyonvenationalcharacterstobreak upthehigherLibelluloideaintonumerousfamilies:Gomphomacromiinaeand

Synthemistinaeweresplitintoeightfamiliesandtheremainingandthe

Libellulidaewereeachdividedintotwofamilies.

4

Somestudieshavefocusedonegg,genitalic,flightmusculature,color,andlarval characteristics(St.Quentin,1939;Gloyd,1959;Lieftinck,1971;Pfau,1971;

TheischingerandWatson,1984;Pfau,1991,2005;May,1995;Bechly,1996;Lohmann,

1996a;CarleandKjer,2002).Pfau’s(2005)studyofspermtransfermechanismslead himtoanalternatephylogenetichypothesisthatplaced,

Chlorogomphidae,andNeopetaliidaewithinPetaluroidearatherthanLibelluloidea.Much ofthecurrentconfusionoverlibelluloidtaxonomyandphylogenymaybetheresultof uncertaincharacterhomologyandindependence(reviewedinCarle,1982b).An independentmoleculardatasetmayhelpresolveconflictingphylogenetichypotheses.

Severalrecentmolecularstudies(KambhampatiandCharlton,1999;Artissetal.,

2001;Sauxetal.,2003,Hovmoller,2004)haveincludedmanylibellulinetaxa,andsome

(Misofetal.,2001;MisofandFleck,2003;Hovmolleretal.,2004;Hasegawaand

Kasuya,2006)includedabroadersamplingacrossthesuperfamily.Mostofthesestudies werebasedonasinglegene(KambhampatiandCharlton,1999;Misofetal.,2001;Artiss etal.,2001;Hovmolleretal.,2002;MisofandFleck,2003;Sauxetal.,2003).Because theirquestionfocusedonsubordinalrelationships,Sauxetal.(2003)usedLocusta migratoriaasanoutgroup,whichmayhavebeentoodistantlyrelatedtoanswerquestions abouttheinternalorderofthefamilies(Farris,1982;LyonsWeileretal.,1998;Graham etal.,2002).Themostrecentstudy(Flecketal,2006),includesalargetaxonsample, primarilyconsistingoftetrathemistineandlibellulineLibellulidae,andcombines moleculardatawithlarvalmorphology.

OurpurposehereistopresentaphylogenetichypothesisofthehigherLibelluloidea

(i.e.CorduliidaeandLibellulidaeofDaviesandTobin,1985),generatedfromtwo

5

independentgenefragments,(mitochondrialandnuclearlargeribosomalRNAsubunits;

16Sand28S),structurallyaligned,usinglibelluloidoutgroups,andthefollowing methodsthatmodelthecorrelatedrRNAsitesasnonindependent.Extensivetaxon samplinghasallowedustoassessseveralregionsofcontentioninthehigher

Libelluloideaandtoproposehistoricalrelationshipswithinthisgroup.Thephylogenetic reassessmentprovidesabasisforimprovingthetaxonomyinthehistoricallydifficult

Libelluloidea.

2. Materials and Methods

Taxon sampling

ThesuperfamilyLibelluloideaincludestheLibellulidae,with143generaand969 ,themostspeciesrichandcommonlyobservedfamilyofdragonfliesworldwide, aswellastheCorduliidaeKirby1890(43genera,406species)(DaviesandTobin,1985;

Steinmann,1997;numberofspeciesfromSchorretal.,2006).Thesearethe“higher“

Libelluloidea,whicharethemainfocusofthisstudy.Wealsoincludethebasal libelluloids(sensuCarle1995)CordulegastridaeCalvert1893(4genera,49species),

ChlorogomphidaeNeedham1903(3genera,46species),andthemonotypic

NeopetaliidaeTillyardandFraser1940.

TaxasequencedarelistedinTable2.Cordulegastridae,Chlorogomphidae,and

Neopetaliidaeservedasoutgroups,withthetreerootedusingNeopetaliapunctata(2 speciesfrom2cordulegastridgenera,2speciesfrom2chlorogomphidgeneraand1

6

speciesfromthemonotypicNeopetaliidae).Wesampledasbroadlyaswecouldacross eachofthelibelluloidfamilies,extractingfromindividualsofeverysubfamilyinevery libelluloidfamily(3speciesfrom3macromiinegenera,14speciesfrom11corduliine corduliidgenera,18speciesfrom17othernoncorduliinecorduliidgenera,and70 speciesfrom56libelullidgenera)(Table2).

Gene Selection, DNA extraction and PCR amplification

Freshlycollecteddragonflieswereusedwhenpossible;othertaxawereobtainedfrom personalandmuseumcollections(Table2).Weamplifiedthesecond,thirdandseventh hypervariable(divergent)regions(D2,D3,andD7)ofthenuclearlargesubunitrDNA

(28S)andthethirddomainofthemitochondriallargesubunitrDNA(16S).

MuscletissuewasextractedusingaQiagenDneasytissuekitovernightat55 °Cwith

180LofATLBufferand20LProteinaseK.Olderspecimens(collectedpriorto

1980)wereextractedwith40L(twicethesuggestedamount)ofProteinaseKbufferfor severaldays(asuggestionmadebyR.Caesar,pers.comm.).Allotherstepsfollowedthe manufacturer’sprotocol.PCRprimers,andtheirsources,aregiveninTable3.Programs usedforamplificationswere(a)96 °C,3min;94 °C,30s;50 °C,30s;72 °C,45sfor3540 cycles;72 °C,10minand(b)96 °C,3min;94 °C,30s;46 °C,30s,72 °C,45sfor10cycles;

94 °C,30s;48 °C,40s;72 °C,45sfor30cycles;72 °C,10min.AQiagenPCRpurification kitwasusedtopurifyamplifiedproduct,whichwasthensequencedonanABI3100 capillarysequencer.SequencesfrombothstrandswerecomparedandeditedinSequence

7

Navigator(AppliedBiosystems).Lowercaseletterswereusedtoindicatenucleotidesthat werereadablebutdifficulttointerpretwithcertaintyineitherstrand(i.e.,therewas competingbackgroundpeaks).Theselowercaseletterswerechangedtouppercaseletters onlyiftherewasagreementinthetwocomplementarystrands.Whentherewasconflict aboutasinglebasecallbetweenreadsfromcomplementarystrands,thisnucleotidewas codedwithanR(forambiguouspurines),Y(forambiguouspyrimidines)orN(forall otherambiguities).

Alignment and Phylogenetic Reconstruction

InitialsequencealignmentsweremadeusingClustal,andtheresultingfileswerethen alignedmanuallyinMicrosoftWordusingthestructuralmethodsdescribedinKjeretal.

(1994),Kjer(1995)Kjeretal.,(2007)andsecondarystructuremodelsbasedonGutellet al.(1993).Ambiguouslyalignedregionsweredefinedassinglestrandedregionswith multipleinsertionsanddeletions(indels)ofvariablelength(andthusunclearnucleotide homology),boundedbyhydrogenbondedbasepairs.Theseregionswereexcludedfrom thedataset.Forparsimonyanalyses,thesecharacterswererecodedassinglemultistate characterswiththeprogramINAASE(Lutzonietal,2000),withthestepmatrices applied.AlignmentsareavailableontheKjerlabwebsite, www.rci.rutgers.edu/~entomology/kjer.Althoughweregardmanualalignmentbasedon secondarystructuretobequitestronglysupported(e.g.,Kjer,1995,2004;Titusand

Frost,1996;Schnareetal.,1996;Hicksonetal,2000;Lutzonietal,2000;Mugridgeet

8

al.,2000;EllisandMorrison1995,MorrisonandEllis,1997,Gillespieetal.,2005)asthe mostaccuratemethodforrDNA,werecognizethatalignmentmethodologyisa contentiousissue.Forthosewhopreferadifferentalignmentprocedure,however,the originalsequencesare,ofcourse,depositedinGenBankandthuswillbeavailablefor anyreanalysisthatisdesired.

Thedatawasanalyzedusingparsimony,maximumlikelihood,andBayesiancriteria.

Fortheparsimonyreconstruction,atreebisectionreconnection(TBR)branchswapping heuristicsearchwasrunusingPAUP4.0b10(Swofford,2001)with10,000random additions.Gapsofuniformlengthwereeachtreatedaspresence/absencecharacters;other gapsweretreatedasmissingdata,exceptthoseencodedwithINAASEasdescribed above.Toestimatebranchsupport,500bootstrappseudoreplicates(Felsenstein,1985) wereperformedusing10randomadditionsearchesperpseudoreplicate.

PriortomaximumlikelihoodandBayesiananalyses,weusedMODELTEST3.06Akaike weights(PosadaandCrandall,1998;PosadaandBuckley,2004)andDTModSel(Minin etal.,2003)toselectanappropriatemodelofevolutionforeachofthetwoindependent genefragments.BothprogramssuggestedaGTR+I+Gmodelforthe28Sand16S

(Yang,1994;Yangetal.,1994;Guetal.,1995).GARLI(Zwickl,2006;availableat http://www.zo.utexas.edu/faculty/antisense/garli/Garli.html)wasusedtorunarapid maximumlikelihoodanalysis.TheGARLIbootstrapanalysiswasrunusing100 replicatesofa500,000generationsearch;theheuristicsearchran500,000generations.

DatasetswereunabletobepartitionedinGARLI,althoughfutureversionsofGARLI willbeabletodoso(DerrickZwickl,pers.comm.).Becauseitconsidersthenon

9

independenceofhydrogenbondedrRNAsites,wealsousedtheRNA7Asevenstate modelavailableinthePHASEprogram(Jowetal.,2002),torunMarkovchainMonte

Carlo(MCMC)analysesofpartitionedRNAdata(10milliongenerationseach)anda

REVmodelfortheloopregions.UnlikethecurrentversionofMr.Bayes,whichusesa

16by16ratematrix,theRNA7Asevenstatemodel(Higgs,2000)usesa7by7rate matrix(7frequencies,21rateparameters).Thisbiologicallyrealisticmodelisusefulfor studiesofrRNA.TheREVmodelisthemostgeneralloopmodelwiththetimereversible constraint(fourfrequencies,5rateparameters).

UsingourPHASEtrees,wetestedtheclassificationsofDaviesandTobin(1985)and

Bechly(1996)usingtheconstraintfunctioninPAUP.Constraintswerewrittenforeach ofDaviesandTobin’ssubfamilies,andforeachofBechly’sfamilies.Wethenfiltered ourPHASEtreefileusingtheseconstraintsandrecordedthenumberoftreesthat containedthese.

Torecheckourdataforpossiblecontaminants,andtoincorporateadditionalavailable taxa,weranaparsimonyanalysis,asdescribedabove,with71libelluloidsequences downloadedfromGenBankandalignedthemwithourdata(Table7).Mostofthe libelluloidsequencesinGenBankaremitochondrial.Someofthedataavailablein

GenBankincludedalongerfragmentofmitochondrialrRNAthatincludedafragmentof the12S.Thesecharacterswereincludedintheanalysisandcodedasmissingforourtaxa

(foradiscussionofmissingdataseeWeins,2005).

3. Results

10

3. 1 Molecular Data Collection

Ninetythreeingrouptaxaandsixoutgrouptaxawereamplifiedforthe28Sfragment; seventyeightingrouptaxaandfiveoutgrouptaxawereamplifiedforthe16S(Table7) andincludedintheanalysis.After192ambiguouslyalignedcharacterswereexcluded andcodedinINAASE,1418ntsremainedfromthenucleargenefragmentand430nts fromthemitochondrialfragment.Fivehundredandfortythreecharacterswere parsimonyinformative(nuclear=346,mitochondrial=189,INAASE=8);370were parsimonyuninformativeand943characterswereconstant.Allsequencesaredeposited inGenBankunderaccessionnumbers1234567890.

3.2 Phylogenetic Relationships

Bayesian,likelihoodandparsimonyanalysesofthecombineddataproducedwell resolvedphylogenetichypotheses(GARLIandPHASEresults:Figure2;parsimony:

Figure3).Minordifferencesoccurinareasforwhichthereislowbranchsupport(<50%).

Severalpreviouslysuggestedmonophyleticgroupsweresupportedbyallthreemethods:

(i)Libellulidae(100%supportfromallanalyses)andMacromiidae(100%supportfrom allanalyses).Theseclades,plusCorduliinae,togetherformamonophyleticgroup, hereaftertheMCLgroupinthePHASEandGARLIanalyses(similarbutnotidenticalto theMCLgroupofCarle,1995).(ii)Corduliidaes.lispolyphyletic.Corduliinaeis monophyletic(89%PHASEposteriorprobability;60%GARLIbootstrap;86%

11

parsimonybootstrap).(iii)Surprisingly,Gomphomacromiinae+Synthemistinae+

Cordulephyinae+Idionychinae(hereafter,theGSIgroup)togetherformamonophyletic group(100%PHASE;79%GARLI;71%parsimonybootstrap)that,however,isnot clearlydividedintothetraditional(sub)familiesanddoesnotnestwithinCorduliidae.

Theresultsdonotsupportmostofthe17familiesproposedbyBechly(1996)and

Lohmann(1996),orthesubfamiliesofCorduliidaesuggestedbyDaviesandTobin

(1985)andBridges(1994).Furthermore,thepuzzlingAustralianspecies pygmaea ,variouslyplacedas1)amonogenericsubfamily(Fraser,1957;Davies&

Tobin,1985),2)with Hetronaias and Libellulosoma (Bridges,1994)or3)with Neophya

(Bechly,1996),iswellnestedwithintheGSIassistertothenominal gomphomacromiine Pseudocordulia circularis ( Hetronaias , Libellulosoma ,and Neophya werenotsequenced).ThetwogeneraofIdionychinae, Macromidia and Idionyx ,forma monophyleticbutpoorlysupported(35%PHASE)subcladewithintheGSIclade.

CorduliinaeandMacromiinaeareseparatemonophyleticcladesinallanalyses.Interms oftheMCLinterfamilialrelationships,thePHASEanalysisplacedtheCorduliinaeas sistertotheLibellulidae,althoughwithsuchlowsupportthatwewouldpreferto considertherelationshipunresolved.

WithintheLibellulidae,3subfamilieswereconsistentlyrecovered:Leucorrhiniinae

Tillyard1917(99%PHASE;94%GARLI,80%parsimony),UrothemistinaeLieftinck

1954(96%PHASE;79%GARLI;85%parsimony),andLibellulinaeRambur1842(76%

PHASE;largely,thoughnotentirelyrecovered).Otherwise,membersofthesubfamilies listedinDaviesandTobin(1985)andBridges(1994)arescatteredthroughoutthe

12

Libellulidae.Conspecificsandcongenerics(withtheexceptionsof Libellula , Cordulia ,

Zyxomma and )formmonophyleticgroups.

Toassesscongruenceamongindependentdatasets,wealsoranseparatePHASE analysesofthemitochondrialandnucleargenes.ThenuclearPHASEdatalendsstrong supporttomonophylyoftheGSI(97%)butthemitochondrialdataplacetheminsteadas apolytomyatthebaseofthetree(notshown).Bothdatasetssupportthemonophylyof

MacromiidaeandofLibellulidae.The16Sdatasupportthemonophylyofthe

Corduliinae(80%16S),but28Ssupportforthisgroupwaslow(50%),probablydueto theunstablepositionofthegenera Pentathemis + Aeschnosoma .WithintheLibellulidae, onlytheLibellulinaearelargelysupportedbybothgenes.Subtledifferencesoccur betweenthe16Sand28Sinthecompositionand/orpositionofCladesBandF(CladeB includes Hydrobasileus inthe28Sanalysiswhilethereislittlesupportforthesubfamily

Urothemistinaeinthe16Sanalysis;CladeFincludes inthe28Sanalysis, whileCladeFisnotsupportedbythe16Sanalysis).Otherdifferencesbetweenthe16S and28Swerefoundonlyinareaswithlessthan50%support.

OurhypothesistestingrevealedthatneitherGomphomacromiinaenorSynthemistinae werepresentinanyofthe69009trees(afterburnindiscarded)createdbyourPHASE analysis.Idionychinaewasrecovered,in15736trees(23%).Bechly’s(1996)

Synthemistidae,,,andOxygastridaewerenever present.Inaddition,themonogenericPseudocorduliidaeandarenested wellwithintheGSIcladeandthusdonotformthepectinatearrangementofBechly

(Figure1g)thatwouldjustifyfamilystatus.Bechly’sHemicorduliidae( Hemicordulia

13

and Procordulia ),isrecoveredin84%ofthetrees(Figure2),butitsnestedpositiondoes notsuggestthatfamilystatusiswarranted.ThelibellulidsubfamiliesofDaviesand

Tobin(1985),withtheexceptionofLeucorrhiniinaeandLibellulinaewerenever recovered.Weconstrained Pantala and Tramea onlybutfoundthattheywerenever recoveredtogether. Dasythemis neveroccurredwithinLibellulinae.

ParsimonyandPHASEanalysesofthedatasetthatincludedGenBanksequences werelargelyconsistentwithourotheranalyses(Figure7).ThetaxonsampleinGenBank consistsmostlyoflibellulids.Inallcases,except for Erythemis, Pachydiplax, Plathemis,

Ladona, Lyriothemi s,and Libellula congenericsgrouptogether.Becausethesupport valuesaresolowwithintheLibellulinae,weconsiderrelationshipsamongPlathemis ,

Ladona , Lyriothemis ,and Libellula tobeunresolved. Erythemis and Pachydiplax

GenBanksequencesareavailableforthe12Sfragmentonly,afragmentwedidnot sequence,andsotheymaynothaveenoughinformationtoplacethemwithour congenerictaxa.Similarly,datamaybeinsufficienttocorrectlyplaceIdiataphe,for whichwehaveonlytheD3fragmentsequence:inthelargerdataset,itisplacedinClade

A,withlowsupport.TheUrothemistinae,Leucorrhiniinae,andLibellulinaeremainas monophyleticgroups,andbecausethesupportalongthebackboneofLibellulidaeislow, theothergroupings(CladesA,C,D,E,F,andG)arerandomlyarranged(andpresentas apolytomyinthebootstrapanalysis).Thecompositionofthecladesdoesnotdiffer greatly.Notsurprisingly,thedifferencesbetweenthephylogeneticreconstructionswere foundinareaswithlessthen50%bootstrapsupport.

14

4. Discussion

4.1. Taxonomic Implications

Ourresultsagreewiththoseofmostpreviousdragonflysystematistsinplacing

SynthemistinaeasbasalandLibellulidaeasterminallibelluloids(e.g.,Tillyard,1917;

Fraser,1957;Carle,1995;Bechly,1996).Pfau’s(1991,2005)innovativemorphological studyoftheodonatevesicaspermalis(penis),however,differsradicallyinplacing

CordulegastridaeandrelatedtaxainthePetaluroideaandtheSynthemistinaeassisterto theLibellulidae.Intheremainderofthissection,wecompareinmoredetailour hypothesiswithprevioussystematictreatmentofLibelluloidea.

4.1a The GSI Clade

OuranalysisplacesSynthemistinaerelativelybasallyamonghigherlibelluloids,ashave mostearlierstudies(Truemann’s(1989)studyofeggmorphologyandearlylarval characteristics;wingvenationbyTillyard(1917),Fraser(1957),DaviesandTobin

(1985),Carle(1995)Lohmann(1995)andBechly(1996)).SinceTillyardandFraser

(1940)andFraser(1957),allauthorshaveregardedGomphomacromiinaeand

IdionychinaeasdistinctfromSynthemistinae,althoughwithvariousinternalsubdivisions

(Carle,1995;Bechly,1996,andseeTable1).Ouranalysis,however,failstosupportthis distinction,withthethreegroupsmingledwithintheGSIgroup.Thisisasurprising result,sinceTheischingerandWatson(1984)identifiedseveralconvincinglarval morphologicalcharactersfavoringsuchadivision.Subsequentauthors(e.g.,Carleand

15

Louton(1994),Carle(1995),Lohmann(1996)andBechly(1996)),usingadditional characters,alsofoundsupportfortheseparationoftheseSynthemistinaeand

Gomphomacromiinae.Inourphylogeny,supportislowformanyrelationshipswithinthe

GSIclade,but,SynthemistinaeandGomphomacromiinaewereneverfoundinanyofthe nearoptimaltreesfromtheBayesiantreefile.Considerationofadditionalmorphological ormoleculardatamaysuggestamoretraditionalstructurewithintheclade.Itwouldbe verydifficult,however,toreconcileourconclusionswiththehypothesisthatthe

Gomphomacromiinae+IdionychinaeareparaphyleticwithrespecttoCorduliinaes.s.

(e.g.,MayandCook1993;Bechly,1996;Lohmann,1996).

4.1b Corduliidae and Macromiidae

Corduliidaes.s.andMacromiidaehavelongbeenconsideredcloselyrelatedand havebeenregardedasconfamilialbymanyworkers(Martin,1906,1909;Tillyard,1917;

Fraser,1957;Lieftnick,1971;Davies&Tobin,1985;Steinmann,1997).Theysharea numberofcharacters,mostofwhich,however,areeitherplesiomorphiesorarealso sharedwithLibellulidae(seebelow).Gloyd(1959)proposedthatMacromiidaeberaised tofamilystatus,butherargumentswerebasedalmostentirelyonautapomorphiesof

Macromiidae.Nevertheless,Gloyd’ssuggestionisnotinconsistentwithourresults.Our datasupportthemonophylyoftheMacromiinae;whetherthismonophyleticgroup deservesfamilystatusisamatteroftaxonomicpreference.Therelationshipofthesetwo familiestoLibellulidaeisnotstronglysupportedbyourdata,althoughmost morphologicalfeaturessuggestacorduliidlibellulidsistergrouprelationship.

16

4.1c Libellulidae

Threeputativelibellulidsubfamilies(Fraser,1957;DaviesandTobin,1985)are supported,withsomemodification,asmonophyleticbyallouranalyses(Urothemistinae, amodifiedLibellulinaeandarestrictedTetrathemistinae).Urothemistinesarerecovered asmonophyleticnearthebaseofthelibellulids(CladeB):thisgroupwasconsidereda family,Macrodiplactidae,byFraser(1957)andBechly(1996),buttheirnestedposition withintheLibellulidaeinsomeanalysessuggestscautionshouldbeusedinelevatingthe urothemistinestofamilystatus(e.g.,DaviesandTobin,1985).TheLibellulinaealsois apparentlymonophyletic(CladeH)exceptfortheexclusionof Dasythemis esmeralda , whichfallsintoCladeEinallanalyses.AmonophyleticLibellulinaeagreeswiththe resultspresentedbyFlecketal.,(2006),includingtheirplacementof Agrionoptera ,

Misagria ,andmostnotably, Neodythemis (theydidnotinclude Dasythemis intheir analysis).Inaddition,theLeucorrhiniinae( Leucorrhinia + Celithemis ,placedinCladeD) aresistertoSympetrum,whichisconsistentwithPilgrim(2006)andFlecketal.,(2006).

SubfamilystatusforLeucorrhiniinaeisprobablyunwarrantedbecausetheyareasmall distinctgroupwithinamuchlargerclade(apophyletic sensu Carle(1995),i.e.,its distinctiveautapomorphieshaveresultedinitsassignmenttoanexaggeratedtaxonomic rank).

Threewellestablishedtaxaareclearlypolyphyletic.Speciesusuallyattributedto

Tetrathemistinae,commonlyregardedasthemostplesiotypicoflibellulidsubfamilies, arescatteredthroughoutLibellulidae,with Tetrathemis and Calophlebia inCladeA,

Nannophlebia inCladeC,andNeodythemisinCladeH.Thus,averyrestricted

17

TetrathemistinaemightremainasthemostbasalLibellulidae(CladeA),butclearlyits compositionanddelimitingcharactersareverydifferentthanpreviouslydefined.As notedalreadybyDijkstraandVick(2006)andFlecketal.(2006),thevenationaltraits usedheretoforetodefineTetrathemistinaearecorrelatedwithnarrowingofthewingbase andthusareprobablysubjecttoconvergence.

Second,theTrameinaeisalsopolyphyletic,althoughmostspeciesclusterlooselyin cladeE.Thiscladealsoincludessomegeneragenerallythoughttobecloselyrelatedto trameinesbutplacedbyFraser(1957)andothersintheZyxommatinae( Tholymis ,and

Zyxomma ).TheplacementofIdiatapheinCladeEisambiguous.Morphological evidenceisinconclusiveaboutitsposition.AlthoughDaviesandTobin(1985)placeitin

Trameinae,itspositionisinstableinouranalyses,quitepossiblybecauseonlytheD3 fragmentwassequencedforthisspecies.Inaddition,itsbranchissuspiciously,long comparedtoothernearbytaxa. Rhyothemis ,alsopreviouslythoughttobecloselyrelated totrameines,isplacedbyPHASE(withlowsupport)incladeD.Themostsurprising resultwithrespecttothepolyphylyofthetrameinesisthat Pantala isverydistantly relatedtotheothertrameines,fallingtothebaseofCladeHinthesmallerdataset,and nestedwithinCladeCinthelargerdataset.Again,convergentmodificationofthe hindwingbase,inthiscaseexpansionasanadaptationtoextendedperiodsofgliding, couldexplainthemorphologicalsimilaritythathascaused Pantala and Trameatobe placedtogetherpreviously(Figure4).

Finally,DiastatopidinaeisdistributedamongCladesF(Zenithoptera),G

( ),andH( Perithemis ,althoughwithconsiderableuncertainty).Several

18

authors(e.g.,Fraser,1957)havenotedthatmembersofthesegenerahaveunusually patternedwingsandmaymimicHymenoptera.Possiblythisconvergenceonwasplike colorandbehaviorhasresultedinsimilaritiesofmorphologythatmisledprevious workers.Thelarvaeofthesegeneradiffermarkedlyinlateralanddorsalabdominalspine development,abdomenshape,andepiproctlength(Zenithoptera,Costaetal.,2004;

Palpopleura ,Fraser,1955; Perithemis ,Needhametal.,2000). Palpopleura +

Hemistigma ,placedtogetherinourphylogenywithhighsupport,shareseverallarval characteristics.Theybothlackdorsalspines,haveprominenteyesandshareastriking paledorsalstripe(Whiteleyetal.,1999).Adultsofthesetwogeneraalsosharemarkedly bicoloredpterostigma.Noneofthesecharactersisdefinitive,butthecombinationtendsto supportseparationofthediastatopidinesandthegroupingofPalpopleuraand

Hemistigma.

MostsubcladesofLibellulidaerecoveredinourphylogenycompriseamixtureof taxafromvariouspreviouslyrecognizedsubfamilies.MembersofSympetrinae,

Trithemistinae,andBrachydiplacinaearescatteredthroughoutLibellulidaeandnoneof thesesubfamilieswerepresentamongourPHASEtrees.

4.2 Character Evolution

4.2a Adult characters

Asinmanytaxa,traditionalsystematictreatmentofLibelluloideahastypically emphasizedanessentiallylineartransformationofcharacters,especiallyofwingveins,

19

leadingfroman“archaic”toa“modern”state.AsFraser(1957)expressedit,the superfamily“…exhibitsanalmostunbrokenchainofevolution…”.Suchaprogression wouldonlybeexpectedifallphylogenieswereperfectlypectinateandwithout homoplasy.Thesituationisalmostcertaintobelessclearcutintherealworld,andsuch appearstobethecasebasedonourphylogeny.

Forexample,theelongationoftheanalloopandthedevelopmentofamidrib

(Figure4)canbeconsideredtoprogressfromits“absence”inmostnonlibelluloidstoits extreme(abootshapedstructure,witha“toe”andamidrib)inLibellulidae,although withnotablegenericexceptions(Needham,1903;Tillyard,1910; Tetrathemis ,

Nannothemis , Misagria ,and Fylgia forexample,arelibellulidswithreducedanalloops).

Ourreconstruction,however,suggeststhateitherelongationoftheanalloopand developmentofamidriboccurredinparallel,perhapsmultipletimes,intheGSIandthe

MCLcladesorthisconditionwasreplacedbyashortbroadloopindependentlyin

SynthemistinaeandMacromiinae.Moreover,theloopprobablyhasbeensecondarilylost severaltimesindependentlyinLibellulidaeandpossiblyinmembersofGSI.Acharacter oftencorrelatedwiththelossoftheanalloopisthepresenceofa“broken”costalsideof thetriangle,makingthetriangle,infact,quadrangular;this,too,seemstohaveevolved multipletimes.Severalothercharactersshowaconsiderabledegreeofhomoplasy betweentheGSIandMCLclades.Thesupposedlyincreasingalignmentoftheantenodal crossveins(thesearecrossveinsattheleadingedgeofthewings,anteriortothenodus), forexample,andtheproximityoftheHWtriangletothearculus(aflexionpoint),both emphasizedbyFraser(1957),andtosomeextent,byBechly(1996),varyacrosstheGSI

20

andMCL(althoughtheyaremoststronglyexpressedintheLibellulidaeandCorduliidae, respectively).Itappearspossiblethatallofthesechangesarepartiallycorrelated.They mayhavetheeffectofreducing,oratleastreconfiguring,chordwiseflexibilityofthe wingbase,especiallyinthehindwing,andperhapsconsequentlyincreasingtwistingand camberofthedistalportionofthewings.Understandingofthedetailsofwingkinematics andaerodynamicsduringflappingflight,however,isasyettoorudimentarytomake confidentpredictionsoftheseeffects(WootonandKukalovaPeck,2000;Combesand

Daniel,2003a,b;2005).

Reductionintheovipositor,convergentlysharedwiththe(Carle,1995), isaprominentfeatureofLibelluloidea(andconsideredasynapomorphyofGomphidae+

LibelluloideabyBechly,1996andLohmann,1996;Figure5).Theovipositorof

Aeshnoideaand(andZygoptera)comprisesthreepairsofventralprocesses.

Thefirstandsecondpairs(anteriorandposteriorgonapophyses)areenclosedbythethird

(gonoplacs).Inlibelluloids,includingCordulegastridae,theovipositorismodifiedfor exophyticoviposition(Tillyard,1917;Carle,1995).InCordulegastridae,thethird processes(gonoplacs)arevestigial.IntheGSIclade,thethirdprocessesareabsentandat leastthesecondprocessesarereduced,althoughinsometaxathefirstpairispresentand nearlyaslongasinCordulegastridae.Ourresultsdonotallowustoconcludewhetherthe latterGSIconditionisplesiomorphicorsecondarily(re)developed.IntheMCL,thefirst processesarereducedtosmallflapsandtheotherstructuresareapparentlyabsentexcept fortheprobablevestigeofthestyliemergingdirectlyfromthe9thsternite(Tillyard,

21

1917).Inafewinstances,the8th(e.g.,some Somatochlora )or8thand9thsternites

( )aresecondarilyproducedtoformanovipositorinMCLspecies.

Pfau’s(2005)detailedmorphologicalstudyofthevesicaspermalis(v.s.;Figure6), andespeciallyofthedistal“spermpump”impliesaverydifferentphylogenythanthat foundhereorbymostotherworkers.Mostradically,Pfausuggeststhatcordulegastrids aremembersofalargergroupthatincludespetalurids,andgomphids(Fig.1).Hereasons thatbecauseitappearsimpossibletoderivethecomplexspermpumpapparatusof libelluloidsdirectlyfromthecordulegastridspermpump,themultiplesimilaritiesof

Cordulegastridaeandlibelluloidsaretheresultofconvergence.Moreover,hemaintains thatCorduliinaes.s.arethemostplesiomorphiclibelluloidgroup,withsynthemistidsas thesistertaxontoLibellulidaeattheapexofthelibelluloids.DespitePfau’s(1971,1991,

2005)conclusion,ouranalysisisrootedwithCordulegastridae.Givenother,independent support,bothmorphological(Bechly,1996;Gorb,1999;CarleandKjer,2002),and molecular(Misofetal,2001;CarleandKjer,unpublisheddata),wefeelsomeconfidence thatCordulegastridae+Neopetaliidae+Chlorogomphidaearetheclosestrelativesto otherLibelluloidea,andappropriateoutgroups.

Evenifourtreeweretobererooted,however,Pfau’shypothesisclearlycannot bereconciledwithoursforhigherlibelluloids.Nopreviousmoleculardatasetapplies broadlytothehigherLibelluloidea,butbasedonourresultswemustconcludethatthev. s.morphologyof Gomphomacromia +synthemistidsisconvergenttothatoflibellulids.

Itisunclearwhetherthesynthemistidtypeorthecorduliidtypev.s.isplesiomorphicfor higherlibelluloids.AlthoughtheGSIisstronglysupported,thereissuchlowinternal

22

supportthatitishardtomakeanyconclusionsabouttheevolutionofcharacterswithin thisgroup.Tobegintounderstandtheevolutionofthev.s.inlibelluloids,amore extensivetaxonsamplingintheGSIandMCLmustbeexaminedtouncoveranyintra andinterfamilialdifferencesthatmayshedlightonv.s.development.Studiesofthe ontogenyofthespermpumpwithinlibelluloidsmighthelpclarifyitspatternof evolution.Pfau(1971)describeditslastlarvalinstarform,butonlyin Cordulegaster and

Libellula ).

Severalauthorshavenotedthetendencytowardreductionoftheanteriorhamule(a malesecondarygenetalicstructure;Figure6)inhigherlibelluloids.Pfau(1971)showeda lossofhamularmuscle9ainCordulia;once9aislost,acorrelatedlossof9boccursin

Libellulidae.Heretoo,however,homoplasticlossof9aoccursinSynthemiseustalacta; othersynthemistids,aswellasgomphomacromiinesandmacromiidsthathavebeen investigatedretain9a,andlossof9bisauniquesynapomorphyofLibellulidae,asfaras weknow(May,unpublished).

4.2.b Larval characters

Thevalueoflarvalcharactersinunderstandingodonatephylogenyhaslongbeen recognized(e.g.,Fraser1957)andoftenrevealsrelationshipsthatareunclearfromadult morphology(CarleandLouton,1994;NoveloGutierrez,1995;Flecketal.,2006).

SeverallarvalapomorphiesunitetheLibelluloideaincludingthescooplikeprementum

(lowermouthparts)withnumeroussetae,andanasymmetricalproventriculus(foregut) withlargetoothlikelobes(Tillyard,1917[Libellulidae+Cordulegastridae];Carle,1995;

23

Bechly,1996[Cavilabiata]).Dentitionofthedistalborderofthelabialpalpsdiffers amongthelibelluloids,however,againformingwhathasbeeninterpretedasalinear transformationfromplesiomorphictoapomorphic:fromlarge,irregularteeththatlack setaeinCordulegastridaetomoreorlessstraightdistalbordersandshallowcrenulations withsetaltuftsorsinglesetaeineachconcavityinLibellulinae,withintermediatesin

MacromiidaeandCorduliinaes.s.(Tillyard,1917).TheischingerandWatson(1984) notedthatsynthemistidlarvae,plusthoseof Gomphomacromia, Archeophya and

Pseudocordulia (GSI)havemorecordulegastridlikedentition.Cordulegastridand synthemistidlarvaealsosharewingsheathsthatextendapartfromoneanother,whilein otherhigherlibelluloidsthewingsheathslieparallel(Tillyard,1910,1917).Ouranalyses shownoevidenceofthisdivide.Furthermore,themolecularevidenceunitingtheGSI clade,whichhasstrongsupport(Fig.2),arguesthatthesecharactersinthe gomphomacromiines(otherthanthethreegeneralistedabove)areconvergentwiththose oftheCorduliidaes.s.

4.3 Conclusions

BasedonourphylogenywesuggestthathigherLibelluloideacomprisesfour families:theGomphomacromiidae(includingGomphomacromiinae,Idionychinae,

CordulephyinaeandSynthemistinaeofFraser,1957,andDaviesandTobin,1985),the

Macromiidae,theCorduliidae,andtheLibellulidae.The“Corduliidae”s.l.are polyphyletic.WeincludeinCorduliidaeonlythetaxadefinedasCorduliinaeinFraser

(1957),andDaviesandTobin(1985),althoughplacementofseveralothergeneranot

24

studiedherecertainlyshouldbeexaminedinthefuture(e.g ., Idomacromia, Neophya,

Heteronias, Libellulosoma, Metaphy aand Williamsonia ;theSouthAmerican

Navicordulia , Santosia , Schizocordulia ,and Rialla ;andthegeographicallydisjunct

Antipodochlora ofNewZealand).

Libellulidaeprobablycomprises3previouslyacceptedsubfamilies,(i.e.,

Urothemistinae,averyrestrictedTetrathemistinae,similartothatsuggestedbyDijkstra andVick(2006),and,withsomemodification,Libellulinae)aswellas5additional groupsthatareconsistentlyrecovered(oneoftheseincludinganapophyletic

Leucorrhiniinae).Closerexaminationofthemorphologicalbasisofthesegroupingsis neededbeforeadefinitivetaxonomyofthefamilycanbeproposed.Itwasbeyondthe scopeofthisstudytosequenceeverygenusinLibellulidae,butclearlytheplacementof nearlyalltheremaininggeneraremainsuncertain.

Biogeographicalstudiesmayhelptodetermineapatternoforiginwiththelibellulid groupsandclarifytherelationshipsamongmajortaxawithinGSIandMCL.Inourtaxon sampleseveralbroadgeographicalpatternssuggested.TheGSI,forexample,are virtuallyconfinedtothesouthernHemisphere,especiallyAustralia(exceptforthe

Indomalayan Idionyx and Macromidia andthePalaearctic Oxygastra ).Corduliinaeand

MacromiinaearepredominantlyHolarcticandIndomalayan,withsubstantialradiations and/orexpansionsintoSouthAmericabytheformerandbythelatter.

Libellulidae,asawhole,iscosmopolitan.

Futuremorphologicalworkshouldbecautiousaboutcreatingfamiliesorsubfamilies basedoncharacterspronetoconvergence.Whilesomeofthedetailsofourtreeare

25

weaklysupportedandmaychangewithfurtherdataandanalysis,mostoftheframework appearssound.Onamuchbroaderscale,thisreinforcessuggestionsthatprevious phylogenetichypotheseshavesufferedfrom:1)useofpoorlydefinedandsometimes inaccuratelyscoredcharacters(O’GradyandMay,2003);2)groupsbasedon symplesiomorphies;and3)failuretorecognizethewidespreadeffectsofcharacter correlationandconvergence,especiallyinaspectsofvenation(Carle,1982b;Dijkstraand

Vick,2006;Flecketal.,2006).Anincreaseintheuseoflarvalandgenitaliccharacter informationisapromisingstepforward.Futureworkshouldusethisphylogenyasatool tofocusinonphylogeneticallyproblematicareaswithintheLibelluloidea.Although

Libelluloideaishighlyspeciose,oftencollected,andfamiliar,ourunderstandingofits phylogenetichistoryisonlyjustbeginning.

Acknowledgments WewouldliketothankJeremyHuff,KennethS.MacdonaldIII,andDanaPrice forcarefulreviewofthemanuscript.ThanksalsotoFrankCarleformanydiscussionsof phylogenyandcharacterevolution.ThankstoDennisPaulsonforthoughtfulcomments onourphylogeneticreconstructions.Wearegreatlyindebtedtothosewhocollectedor loanedusspecimensforDNA:F.L.Carle,C.Chaboo,T.W.Donnelly,S.Dunkle,P.

Grant,J.Huff,B.Mauffray,M.Mbida,J.Michalski,D.Paulson,D.L.Price,A.Rowat,

R.Rowe,K.Tennessen,G.Theischinger,R.West,theAmericanMuseumofNatural

HistoryandtheCaliforniaAcademyofSciences.ManythankstoDaveBrittonand

GünterTheischingerforassistancewithAustraliancollectingpermits(permitnumbers

WT200410767,andWITK02489604;loannumber1914).Wearealsoverythankfulto

26

GeorgeBaskinger,MaryMcLaughlin,andWlodekLapkiewiczfortheirassistanceinthe lab.ThisworkwassupportedbyNSFDEB0423834.

References Artiss,T.,Schultz,R.T.,Polhemus,D.A.,Simon,C.2001.MolecularPhylogenetic AnalysisoftheDragonflyGeneraLibellula,Ladona,andPlathemis(Odonata: Libellulidae)BasedonMitochondrialCytochromeOxidaseIand16SrRNASequence Data. Molecular Phylogenetics and Evolution, 18(3): 348–361. Bechly,G.,1996.MorphologischeUntersuchungenamFlügelgeäderderrezenten LibellenundderenStammgruppenvertreter(Insecta;;Odonata)unter besondererBerücksichtigungderPhylogenetischenSystematikunddesGrundplanesder Odonata. Petalura , special vol. 2 :402pp. Bridges,C.A.,1994.Catalogueofthefamilygroup,genusgroupandspeciesgroup namesoftheOdonataoftheworld(ThirdEdition).C.A.Bridges,Urbana,Illinois. Carle,F.L.,1982a.AcontributiontotheknowledgeoftheOdonata.Unpublished Ph.D.thesis,VirginiaPolytechnicInstituteandStateUniversity,Blacksburg,Virginia. 1095pp. Carle,F.L.,1982b.ThewingveinhomologiesandphylogenyoftheOdonata:a continuingdebate. Societas Internationalis Odonatologica Rapid Communications, Rapid Communication, 4 :x+66pp. Carle,F.L.,1995.Evolution,taxonomy,andbiogeographyofancientGondwanian libelluloides,withcommentsonanisopteroidevolutionandphylogeneticsystematics (Anisoptera:Libelluloidea). Odonatologica , 24(4): 383506. Carle,F.L.,Louton,J.A.,1994.ThelarvaofNeopetaliapunctataandestablishmentof fam.nov.(Odonata). Proceedings of the Entomological Society of Washington , 96(1): 147155. Carle,F.L.,Kjer,K.M.,2002.PhylogenyofLibellulaLinnaeus(Odonata:Insecta). Zootaxa , 87 :118. Carpenter,F.M.,1992.Superclass.InR.L.Kaesler(Ed.),Treatiseon InvertebratePaleontologyPartRArthropoda4.TheGeologicalSocietyofAmerica, Boulder,Colorado.143153pp. Combes,S.A.andDaniel,T.L.,2003a.Flexuralstiffnessinwings.I.Scalingand

27

theinfluenceofwingvenation.Journal of Experimental Biology, 206(17): 2979 2987. Combes,S.A.andDaniel,T.L.,2003b.Flexuralstiffnessininsectwings.II.Spatial distributionanddynamicwingbending.Journal of Experimental Biology, 206(17): 29892997. Combes,S.andDaniel,T.L.,2005.Flexuralstiffnessininsectwings:effectsofwing venationandstiffnessdistributiononpassivebending.American Entomotologist , 51(1) : 4245. Corbet,P.S.,1999.Dragonflies:BehaviorandEcologyofOdonata.CornellUniversity Press,Ithaca,NY.829pp. Costa,J.M.,PujolLuz,J.,Regis,P.B.,2004.Descricaodelarvade Zenithoptera anceps (Odonata,Libellulidae). Iheringia, Series Zooloical, Prto Alegre , 94(4) :421424. Davies,D.A.L.,TobinP.,1985.Thedragonfliesoftheworld:asystematiclistofextant speciesofOdonata.Vol.2.Anisoptera. Societas Internationalis Odonatologica Rapid Communications , Rapid Communication (Suppl.) No. 5 .,Utrecht.151pp. DijkstraK.D.D.,Vick,G.S.,2006.Inflationbyvenationandthebankruptcyof traditionalgenera:thecaseof Neodythemis and Micromacromia ,withkeysto thecontinentalAfricanspeciesandthedescriptionoftwonew Neodythemis speciesfrom theAlbertineRift(Odonata:Libellulidae). International Journal of Odonatology, 9:51 70. Ellis,J.,Morrison,D.,1995.Effectsofsequencealignmentonthephylogenyof Sarcocystis deducedfrom18SrDNAsequences. Parasitology Research, 81(8): 696699 .

Farris,J.S.,1982.Outgroupsandparsimony. Systematic Zoolology, 31 :328334. Fleck,G.,Brenk,M.,Misof,B.,2006.Larvalandmolecularcharactershelptosolve phylogeneticpuzzlesinthehighlydiversedragonflyfamilyLibellulidae(Insecta: Odonata:Anisoptera):theTetrathemistinaeareapolyphyleticgroup.In press . Fraser,F.C.,1955.Descriptionofthenymphof Palpopleura lucia Drury. Revue francaise d’Entomologie , 22 :5152. Fraser,F.C.,1957.A reclassificationoftheorderOdonata.RoyalZoologicalSocietyof NewSouthWales:Sydney.133pp. Geijskes,D.C.,1970.GenericcharactersofthesouthamericanCorduliidaewith descriptionsofthespeciesfoundintheGuyanas. Notes on Odonata of Surinam 11. Stud. Fauna Suriname, 12(60) :142.

28

Gillespie,J.J.,McKenna,C.H.,Yoder,M.J.,Gutell,R.R.,Johnston,J.S.,Kathirithamby, J.,Cognato,A.I.,2005.Assessingtheoddsecondarystructuralpropertiesofnuclear smallsubunitribosomalRNAsequences(18S)ofthetwistedwingparasites(Insecta: Strepsiptera). Insect Molecular Biology , 14 ,625643. Gloyd,L.K.,1959.Elevationofthe grouptofamilystatus(Odonata). Entomological News, 70 :197205. Gorb,S.N.,1999.Evolutionofthedragonflyheadarrestingsystem. Proceedings of the Royal Society of London B, 266 :525535. Graham,S.W.,Olmstead,R.G.,Barrett,S.C.H.,2002.Rootingphylogenetictreeswith distantoutgroups:AcasestudyfromtheCommelinoidmonocots Molecular Biology & Evolution, 19 :17691781. Grimaldi,D.,Engel,M.S.,2005.EvolutionoftheInsects.CambridgeUniversityPress, NewYork,NY. Gu,X.,Fu,Y.X.,Li,W.H.,1995.Maximumlikelihoodestimationoftheheterogeneity ofsubstitutionrateamongnucleotidesites. Molecular Biology & Evolution, 12 :546557. Guttell,R.R.,Gray,M.W.,Schinare,M.N.,1993.Acompilationoflargesubunit(23S and23Slike)ribosomalRNAstructures. Nulcleic Acids Research, 21 :30553074. Hagen,H.,1861.SynopsisoftheNeuropteraofNorthAmerica,withalistoftheSouth Americanspecies.Washington,D.C.,SmithsonianInst. Hasegawa,E.,&Kasuya,E.,2006.PhylogeneticanalysisoftheinsectorderOdonata using28Sand16SrDNAsequences:acomparisonbetweendatasetswithdifferent evolutionaryrates. Entomological Science, 9(1):5566. Hennig,W.,1969.DieStammesgeschichtederInsekten.Kramer:FrankfurtA.M.436pp. Hickson,R.E.,C.Simon,S.W.Perrey.2000.Theperformanceofseveralmultiple sequencealignmentprogramsinrelationtosecondarystructurefeaturesforanrRNA sequence.Mol.Biol.Evol.17:530539 Higgs,P.G.,2000.RNAsecondarystructure:Physicalandcomputationalaspects.Q RevBiophys 30 :199253. Hovmoller,R.,Pape,T.,Kallersjo,M.2002.ThePalaeopteraproblem:Basalpterygote phylogenyinferredfrom18Sand28SrDNAsequences. Cladistics , 18 :313323. Huelsenbeck,J.P.,Ronquist,F.,2002.MrBayes3:Bayesiananalysisofphylogeny. UniversityofCalifornia.

29

JarzembowskiE.A,NelA,1996.NewdragonfliesfromtheLowerCretaceousof SEEnglandandthephylogenyofthesuperfamilyLibelluloidea(Insecta:Odonata) Cretaceous Research , 17 (1) :6785. Jow,H.,Hudelot,C.,Rattray,M.,Higgs,P.,2002.BayesianphylogeneticsusinganRNA substitutionmodelappliedtoearlymammalianevolution. Molecular Biology & Evolution , 19(9): 15911601. Kambhampati,S.,Charlton,R.E.,1999.PhylogeneticrelationshipamongLibellula, LadonaandPlathemis(Odonata:Libellulidae)basedonDNAsequenceofmitochondrial 16SrRNAgene. Systematic Entomology, 24 :3749. Kirby,W.F.,1890.AsynonymiccatalogueofNeuropteraOdonata.Guerney& Jackson,London,202pp. KjerK.M.,1995.UseofrRNAsecondarystructureinphylogeneticstudiestoidentify homologouspositions:anexampleofalignmentanddatapresentationfromthefrogs. Molecular Phylogenetics & Evolution, 4(3) 314330. Kjer,K.M.,2004.Aligned18Sandinsectphylogeny. Systematic Biology, 53 :506514. Kjer,K.M.,Gillespie,J.J.,Ober,K.A.,2007.Opinionsonmultiplesequencealignment, andanempiricalcomparisonofrepeatabilityandaccuracybetweenPOYandstructural alignments. Systematic Biology, 56 :133146 Lieftinck,M.A.,1960.NotesontheaffinityandnomenclatureofsomeOldWorld Corduliidae(Odonata). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series C Zoology, 64 : 41023. Lieftinck,M.A.,1971.StudiesinOrientalCorduliidae(Odonata).1. Tijdschrift voor Entomologie, 114(1) :163. Lieftinck,M.A.,1977,NewandlittleknownCorduliidae(Odonata:Anisoptera)fromthe IndoPacificregion. Oriental Insects , 11(2) :157159. Lohmann,H.,1996.DasphylogenetischesystemderAnisoptera(Insecta:Odonata). unpublisheddiplomathesisattheBiologicalFacultyoftheAlbertLudwigsUniversityin Freiburgi.Br.117+13pp. Lohmann,H.,1996.DasphylogenetischesystemderAnisoptera(Odonata). Entomologische Zeitschrift , 106(6) :209252(firstpart); 106(7) :253266(secondpart); 106(9) :360367(postscript). Lutzoni,F.,Wagner,P.,Reeb,V.,Zoller.S.,2000.Integratingambiguouslyaligned regionsofDNAsequencesinphylogeneticanalyseswithoutviolatingpositional

30

homology. Systematic Biology, 49 :628651 LyonsWeilerJ.,Hoelzer,G.A.,Tausch,R.J.,1998.Optimaloutgroupanalysis Biological Journal of the Linnean Society, 64 :49351. Martin,R.,1907.Cordulines. Collections Zoologiques du Baron Edm. de Selys Longchamps. Institut royal des Sciences Naturelles de Belgique : Brussels . 17 :194. Martin,R.,1909.Cordulines.Addenda.CollectionszoologiquesduBaronEdm.DeSelys Longchamps,Cataloguesystematiqueetdescriptif. Collections Zooogiques du Baron Edm. de Selys Longchamps 17 :9598. Martin,R.,1914.Odonata,Fam.Libellulidae,subfam.Corduliinae. Gen. Insectorium, 155 :31pp. May,M.L.,1995.Comparativenotesonmicropylestructurein"cordulegastroid"and "libelluloid"Anisoptera. Odonatologica , 19(1) :5362. Minin,V.,Abdo,Z.,Joyce,P.,Sullivan,J.,2003.Performancebasedselectionof likelihoodmodelsforphylogenyestimation. Systematic Biology , 52 :674683. Misof,B.,Fleck,G.,2003.ComparativeanalysisofmtLSUrRNAsecondarystructures ofOdonates:structuralvariabilityandphylogeneticsignal. Insect Molecular Biology . 12(6) :535547. Misof,B.,Rickert,A.M.,Buckley,T.R.,Fleck,G.,Sauer,K.P.,2001.Phylogenetic signalanditsdecayinmitochondrialSSUandLSUrRNAgenefragmentsofAnisoptera. Molecular Biology & Evolution, 18(1) :2737. D.A.Morrison,J.T.Ellis,1997.Effectsofnucleotidesequencealignmentonphylogeny estimation:acasestudyof18SrDNAsofapicomplexa. Molecular Biology and Evolution , 14 :428441. N.B.Mugridge,D.A.Morrison,T.Jäkel,A.R.Heckeroth,A.M.Tenter,A.M. Johnson.2000.EffectsofSequenceAlignmentandStructuralDomainsofRibosomal DNAonPhylogenyReconstructionfortheProtozoanFamilySarcocystidae. Molecular Biology and Evolution 17: 18421853 Nel,A.,Paicheler,J.C.,1994.Leslibellulidaefossiles.Uninventairecritique(Odon., Anisoptera,Libelluloidae). Entomologica Gallica, 4(4) :166190. Needham,J.G.,1903.Agenealogicstudyofdragonflywingvenation. Proceedings of the U.S. National Museum , 26(1331) :703764. Needham,J.G.,1908.CriticalnotesontheclassificationoftheCorduliinae(Odonata). Annals of the Entomological Society of America, 1:273280.

31

Needham,J.G.,Broughton,E.,1927.ThevenationoftheLibellulinae(Odonata). Transactions of the American Entomological Society (Philadelphia), 53 :157190. Needham,J.G.,Westfall,M.J.,May,M.L.,2000.DragonfliesofNorthAmerica. Scientificpublishers,Inc.939pp. NoveloGutierrez,R.,1995.Thelarvaof andareclassificationof Amphipterygidaesensulatobaseduponthelarvae(Zygoptera). Odonatologica, 24 :73 87. O'Grady,E.W.,May,M.L.,2003.Aphylogeneticreassessmentofthesubfamiliesof (Odonata:Zygoptera). Journal of Natural History, 37 :28072835. Pfau,H.K.,1971,StrukturundFunktiondessekundarenKopulationsapparatesder Odonaten(Insecta,Palaeoptera),ihreWandlunginderStammesgeschichteund BedeutungfurdieadaptiveEntfaltungderOrdnung , Zeitschrift fur Morphologie der Tiere , 70 :281371. Pfau,H.K.,1991.Contributionsoffunctionalmorphologytothephylogenetic systematicsofOdonata. Advances in Odonatolology, 5:109141. Pfau,H.K.,2005.Structure,functionandevolutionofthe‘glans’oftheanisopteran vesicaspermalis(Odonata). International journal of Odonatology, 8(2) :259310. Pilgrim,E.Systematicsofthesympetriendragonflieswithemphasisonthe phylogeny,taxonomy,andhistoricalbiogeographyofthegenus Sympetrum (Odonata:Libellulidae).UtahStateUniversity,154pp. Posada,D.,Crandall,K.A.,1998.Modeltest:testingthemodelofDNAsubstitution. Bioinformatics, 124 :817–818. Posada,D.,Buckley,T.,2004.Modelselectionandmodelaveraginginphylogenetics: AdvantagesofAkaikeinformationcriterionandbayesianapproachesoverlikelihood ratiotests. Systematic Biology , 53(5) :793808. Rambur,M.P.,1842.Neuropteres.HistoirenaturelledesInsectes,Paris,pp.534. Rehn,A.C.,2003.PhylogeneticanalysisofhigherlevelrelationshipsofOdonata. Systematic Entomology, 28(2) :181239. Riek,E.F.,KukalováPeck,J.,1984.Anewinterpretationofdragonflywingvenation baseduponEarlyUpperCarboniferousfossilsfromArgentina(Insecta:Odonatoidea)and basiccharacterstatesinpterygotewings. Canadian Journal Of Zoology , 62(6) :1150 1166.

32

Ris,F.,19091919.CollectionsZoologiquesduBaronEdm.deSelysLongchamps,Cat. System.etDescript.,Fasc.916.Bruxelles,Hayez,Impr.desAcadémies. Sarot,E.E.,1958.FolkloreoftheDragonfly.ALinguisticApproach.Rome,Storiae Letteratura.80pp. Saux,C.,Simon,C.,Spicer,G.S.,2003.Phylogenyofthedragonflyandorder Odonataasinferredbymitochondrial12SribosomalRNAsequences. Annals of the Entomological Society of America, 96(6) :693699. Schnare,M.N.,Damberger,S.H.,Gray,M.W.,Gutell,R.R.,1996.Comprehensive comparisonofstructuralcharacteristicsineukaryoticcytoplasmiclargesubunit(23S like)ribosomalRNA. Journal of Molecular Biology 256 :701719. Schorr,M.,Lindeboom,M,Paulson,D.,2006.WorldOdonataList. http://www.ups.edu/x6140.xml ,LastvisitedOctober19,2006. Silsby,J.,2001.DragonfliesoftheWorld.Washington,D.C.:SmithsonianInstitution Press. St.Quentin,D.,1939.DiesystematischestellungderunterfamiliederCorduliinaeSelys (OrdungOdonata). Proceedings Of the International Congress of Entomology 7 (Berlin), 1:345360. Steinmann,H.1997.WorldcatalogueofOdonata,Anisoptera.Berlin,W.Gruyter.v.2, 636p. Theischinger,G.,Watson,J.A.L.,1978.TheAustralianGomphomacromiinae(Odonata :Corduliidae). Australian Journal of Zoology, 26 :399431. Theischinger,G.,Watson,J.A.L.,1984.LarvaeofAustralianGomphomacromiinae, andtheirbearingonthestatusofthe Synthemis groupofgenera(Odonata:Corduliidae). Australian Journal of Zoology, 32:6795. Tillyard,R.J.,1910.Monographofthegenus Synthemis .(Neuroptera:Odonata). Proceedings of the Linnean Society of New South Wales , 35 :312377. Tillyard,R.J.,1917.ThebiologyofDragonflies.Cambridge.CambridgeUniv.Press. Tillyard,R.J.,1928.TheevolutionoftheorderOdonata.PartI.Introductionandearly historyoftheorder. Records of the Indian Museum, 30 :151172. Titus,T.A.,D.R.Frost.1996.Molecularhomologyassessmentandphylogenyin thelizardfamilyOpluridae(Squamata:Iguania). Molecular Phylogenetics and Evolution 6:4962.

33

Trueman,J.W.H.,1996.Apreliminarycladisticanalysisofodonatewingvenation. Odonatologica, 25 :5972. Weins,J.J.,2005.Missingdataandthedesignofphylogeneticanalyses. Journal of Biomedical Informatics , 39 :3442. Whiteley,G.,Samways,M.J.,DiDomenico,M.,Carchini,G.,1999.Descriptionofthe lastinstarof Hemistigma albipuncta (Rambur,1842)andcomparisionswithother Brachydiplacinae(Anisoptera:Libellulidae). Odonatologica 28 :433437. Wootton,R.J.,Kukalova–Peck,J.,2000.FlightadaptationsinPalaeozoicPalaeoptera (Insecta). Biological Reviews , 75 :129167. Yang,Z.,1994.Estimatingthepatternofnucleotidesubstitution. Journal of Molecular Evolution , 39 :105111. Yang,Z.,Goldman,N.,Friday,A.E.,1994.Comparisonofmodelsfornucleotide substitutionusedinmaximumlikelihoodestimation. Molecular Biology & Evolution , 11 :316324. Zwickl,D.J.,2006.Geneticalgorithmapproachesforthephylogeneticanalysisoflarge biologicalsequencedatasetsunderthemaximumlikelihoodcriterion.Ph.D.Dissertation, UniversityofTexasatAustin.

34

Figure1:Hypotheses,alsolistedinTable1,ofrelationshipswithinLibelluloidea. Topologiesare(a)OnehigherLibelluloidfamily(Libellulidae)comprisestwosubfamilies: CorduliinaeandLibellulinae.*Somewhousethistaxonomyincludeathirdsubfamily,the Macromiinae;(b)TwohigherLibelluloidfamilies(CorduliidaeandLibellulidae).The Corduliidaecomprisestwosubfamilies:Corduliinae,Macromiinae.*Thisislooselybasedon Kirby,1890,butheusedtheterm‘Corduliinae’;(c)ThreehigherLibelluloidfamilies (Macromiidae,andLibellulidae).TheLibellulidaecomprisesCorduliinaeand Libellulinae;(d)FourhigherLibelluloidfamilies(Synthemistidae,Corduliidae,Macromiidae, Libellulidae).*ThisislooselybasedonFraser(1957)butexcludesMacrodiplactidae;(e)Four higherLibelluloidfamiliesSynthemistidae,Corduliidae,Libellulidae,Macrodiplactidae).Fraser usedthename“Synthemidae”forSynthemistidae;(f)FivehigherLibelluloidfamilies (Synthemistidae,Gomphomacromiidae,Corduliidae,MacromiidaeandLibellulidae).*Thisis looselybasedonCarleandLoutton,1994;(g)TwelvehigherLibelluloidfamilies (Synthemistidae,Gomphomacromiidae,Idomacromiidae,Austrocorduliidae,Oxygastridae, Idionychidae,Cordulephyidae,Hemicorduliidae,Macromiidae,Corduliidae,Urothemistidae, Libellulidae).ThisschemeislooselybasedonBechly(1996)andLohmann(1996a,b)although thenomenclaturedifferedslightly;(h)ThreehigherLibelluloidfamilies(Synthemistidae, Corduliidae,andLibellulidae).PetaluroideaincludesCordulegastridae.Placementof Macromiidaenotdiscussed.*In2005,PfaualsoincludesthefamiliesCordulephyidaeand Gomphomacromiidae,placedbasaltoSynthemistidae+Libellulidae .

35

Figure2:Phylogeneticreconstructionfroma10milliongenerationPHASEmcmc analysis.Thenumbersabovethebranchindicateposteriorprobabilities.The“*” indicatesGARLIsupportgreaterthan50%.

36

Figure3:Phylogeneticreconstructionfromtenthousandreplicateparsimony heuristicsearch.The“*”indicatesthatthiscladediffersincompositioninthePHASE analysis.Bootstrapsupportiswrittenabovethebranches.

37

Figure4color:Forewingandhindwingfragmentsofseverallibelluloids; Yellow=AnalLoop,Blue=Supratriangle,Red=Triangle.Wingsarenottoscale.The“*” indicatesfiguremodifiedfromBridges(1994).

38

Figure4blackandwhite:Forewingandhindwingfragmentsofseverallibelluloids; LightGray=AnalLoop,Black=Supratriangle,DarkGray=Triangle.Wingsarenotto scale.The“*”indicatesfiguremodifiedfromBridges(1994).

39

Figure5:Terminalabdominalsegmentsinlateralviewof(A)female Zoraena diastatops (Cordulegastridae)and(B) Sympetrum costiferum (Libellulidae).Arrows indicatethewelldevelopedfirstgonapophysestypicalofCordulegastridaeandsome SynthemistinaeandGomphomacromiinae(A)andthenearlyobsoleteovipositor,often reducedtoashortextensionofthesternumofS8and/orapairofsmallscalesatthebase ofS9inLibellulidaeandmostCorduliidae(B).FiguresfromNeedham,Westfalland

May,2000.

40

Figure6:Lateralviewofmalesecondarygenitaliaof(A) Zoraena diastatops (Cordulegastridae);(B) transversa (Corduliidae,Macromiinae);(C) Libellula quadrimaculata (Libellulidae,Libellulinae).Ineachcasetheventralsideisupwardand theanteriordirectiontotheright,andtheabdominaltergaareremovedtorevealthe genitalicstructures.Accessorysecondarygenitaliaaretheanteriorlamina(AL),anterior hamules(AH;absentin L. quadrimaculata andotherLibellulidae),anteriorframe(AF), posteriorhamule(PH),posteriorframe(PF),andgenitalligula(GL);thesestructures engagethefemaleovipositorduringcopulationandassistmovementofthevesica spermalis.Segmentsofthevesicaspermalis,whichfunctionsbothfortemporarysperm storagebeforecopulationandforintromission,areindicatedbyRomannumeralsI,II,III, andIVfrombasetoapex;thesemedialstructuresaremosteasilyvisibleinA. TerminologyfollowsPfau(1971).

41

Figure7:Phylogeneticreconstructionfromatenthousandreplicateparsimony heuristicsearch.The“*”indicatesacladethatdiffersincompositionfromthesmaller PHASEdataset.The“ ✯”indicatesthatthetaxonsequencewasdownloadedfrom GenBank.Posteriorprobabilitiesarewrittenabovethebranchexceptonveryshort brancheswhereitiswrittenbelow.

Table1:Asummaryofpreviousworkinlibelluloidsystematics,withreferencetotheMCLhypothesesarelistedinFigure1. Author Yea Taxa Studied Extant Libelluloid Families MCL Dataset Analysis r Studied Hypothe sis Support ed Carle 2002 9NonLibelluloid Neopetaliidae,Cordulegastridae, A Morphology Computerassisted &Kjer Anisopteranfamilies;4 Corduliidae,Libellulidae parsimony Libelluloidfamilies Carle 1982a Odonata Cordulegastridae,Corduliidae, A Morphology Manualparsimony Libellulidae StQuentin 1939 3Libelluloidfamilies Cordulegastridae,Corduliidae, A Morphology: Intuition Libellulidae genetalia Martin 1914 1Libelluloidfamily Corduliidae A Morphology Intuition Tillyard 1917 Odonata Neopetaliidae,Cordulegastridae, A Morphology Intuition Corduliidae,Libellulidae Needham 1908 2Libelluloidfamilies Corduliidae,Libellulidae A Morphology Intuition Martin 1907 1Libelluloidfamily Corduliidae A Morphology Intuition Needham 1903 Anisoptera Neopetaliidae,Cordulegastridae, A Morphology Intuition Corduliidae,Libellulidae Selys 1892 Anisoptera Cordulegastridae,Corduliidae A Morphology Intuition Kirby 1890 Odonata Cordulegastridae,Corduliidae, A Morphology Intuition Libellulidae Hagen 1861 Odonata Corduliidae,Libellulidae, A Morphology Intuition Rambur 1842 Odonata Neopetaliidae,Cordulegastridae, A Morphology Intuition Corduliidae,Libellulidae Misofe t 2001 4nonLibelluloid Neopetaliidae,Cordulegastridae, B Molecular:16s Computerassisted al. Anisopteranfamilies;4 Corduliidae,Libellulidae and12s parsimonyand Libelluloidfamilies likelihood Bridges 1994 Odonata Neopetaliidae,Cordulegastridae, B Corduliidae,Libellulidae Davies& 1985 Anisoptera Neopetaliidae,Cordulegastridae, B Morphology Manualparsimony Tobin Corduliidae,Libellulidae Steinmann 1997 Odonata Neopetaliidae,Cordulegastridae, B Corduliidae,Libellulidae Lieftinck 1977 1Libelluloidfamilies Corduliidae B Morphology Manualparsimony Lieftinck 1971 1Libelluloidfamilies Corduliidae B Morphology Intuition Tillyard 1928 2Libelluloidfamilies Corduliidae,Libellulidae B Morphology Intuition 42 Gloyd 1959 1Libelluloidfamily Corduliidae C Morphology Intuition Jarzembow 1996 Libelluloidfossils Neopetaliidae,Cordulegastridae, D Morphology Computerassisted ski 4Libelluloidfamilies Corduliidae,Libellulidae parsimony &Nel Nel& 1994 2Libelluloidfamilies Cordulegastridae,Corduliidae, D*No Morphology Manualparsimony Paicheler Libellulidae studied Theisching 1978 1Libelluloidfamilies Corduliidae E Morphology Manualparsimony er &Watson Fraser 1957 Zygoptera+ Neopetaliidae,Cordulegastridae, E Morphology Intuition Anisozygoptera Corduliidae,Libellulidae 3NonLibelluloid families 2Libelluloidfamilies Carle 1995 Libelluloidfossil: Neopetaliidae,Cordulegastridae, F Morphology Manualparsimony Nothomacromia Corduliidae,Libellulidae 3LibelluloidAnisoptera Carle& 1994 4NonLibelluloid Neopetaliidae,Cordulegastridae, F*No Morphology Manualparsimony Louton Anisopterafamilies Libellulidae Corduliidae 4Libelluloidfamilies studied Lohmann 1996 4NonLibelluloid Neopetaliidae,Cordulegastridae, G Morphology Manualparsimony Anisopteranfamilies, Corduliidae,Libellulidae 4Libelluloidfamilies Bechly 1996 Zygoptera,4Non Neopetaliidae,Cordulegastridae, G Morphology Manualparsimony LibelluloidAnisopteran Corduliidae,Libellulidae families, 4Libelluloidfamilies Pfau 2005 3Nonlibelluloid Neopetaliidae,Cordulegastridae, H Morphology: Manualparsimony families Cordullidae,Libellulidae genitalia 4libelluloidfamilies Pfau 1991 Zygoptera+ Cordulegastridae,Cordullidae, H Morphology: Manualparsimony Anisozygoptera Libellulidae secondary 2Nonlibelluloid genitalia families 3libelluloidfamilies Pfau 1971 Zygoptera+ Cordulegastridae,Cordullidae, H Morphology: Manualparsimony Anisozygoptera Libellulidae secondary 2Nonlibelluloid genitalia families 3libelluloidfamilies 43 44

Table2:Taxonlistforthepresentstudy.TaxonomybasedonBridges(1994)andDaviesandTobin(1985). Taxon Locality Genbank Number Cordulegastridae Taeniogaster obliqua USA:NJ(M.L.May) D7:EF631216 D3:EF631312 D2:EF631420 16S:EF631533 Pangaeagaster maculata USA:NJ(M.L.May) N/A Kalyptogaster erronea USA:NJ(M.L.May) D7:EF631245 D3:N/A D2:EF631450 16S:EF631561 Zoraena bilineata USA:MD(M.L.May) N/A Chlorogomphidae Chloropetalia soarer SequencesfromF.L.Carle D7:EF631248D3: EF631339D2: EF631453 16S:N/A Sinorogomphus sp SequencesfromF.L.Carle D7:EF631249D3: EF631340D2: EF63145416S: EF631564 Neopetaliidae Neopetalia punctata SequencesfromF.L.Carle D7:EF631247D3: EF631338D2: EF63145216S: EF631563 Corduliidae: Cordulephyinae Cordulephya pygmea Australia(Theischinger) D7:EF631255D3: EF631346D2: EF63146016S: EF631570 Corduliidae: Corduliinae Aeschnosoma forcipula FrenchGuiana(J.Huff) D7:EF631223D3: EF631319D2: EF63142716S: EF631540 Cordulia shurtleffii Canada:Ontario(J.L.Ware,J.Huff) D7:EF631232D3: EF631326D2: EF631435 16S:N/A Cordulia aenea (K.M.Kjer) D7:EF631286D3: EF631383D2: EF63150016S: EF631603 USA:NJ(M.L.May) N/A Epitheca princeps USA:NJ(J.L.Ware) D7:EF631205D3: EF631302D2: EF63140716S: EF631521 uhleri USA:NJ(M.L.May) D7:EF631227 D3:N/A D2:EF631431 16S:EF631544 Hemicordulia tau Australia(J.L.Ware,K.M.Kjer,F.L. D7:EF631233D3: Carle) EF631328D2: EF63143716S: EF631550 obsoleta USA:FL(M.L.MayandK.Tennessen) D7:EF631196 D3:N/A D2:EF631395 16S:EF631509 Metaphya elongata NewCaledonia(Tobin&Davies) N/A Pentathemis membranulata Australia(F.L.Carle) D7:EF631211D3:

45

EF631308D2: EF63141516S: EF631528 Neurocordulia xanthosoma USA:AK(M.L.May) D7:EF631242 D3:N/A D2:EF631447 16S:N/A Procordulia grayi NewZealand(R.Rowe) D7:EF631199 D3:N/A D2:EF631399 16S:EF631513 Procordulia smithi NewZealand(R.Rowe) D7:EF631200D3: EF631295D2: EF63140016S: EF631514 Rialla villosa Chile(Heppner) D7:EF631273D3: EF631364D2: EF63148016S: EF631590 Somatochlora tenebrosa USA:NJ(M.L.May) D7:EF631215D3: EF631311D2: EF63141916S: EF631532 Tetragoneuria cynosura USA:NJ(M.L.May) D7:N/A D3:EF631379 D2:N/A 16S:N/A Tetragoneuria cynosura USA:NJ(M.L.May) D7:EF631231D3: EF631325 D2:N/A 16S:N/A Williamsonia fletcheri USA:MA(M.L.May) N/A Corduliidae: Gomphomacromiinae Apocordulia macrops Australia(G.Theischinger) N/A magnifica Australia(K.M.Kjer) D7:N/A D3:EF631356D2: EF63147016S: EF631580 refracta Australia(G.Theischinger) D7:EF631243D3: EF631336D2: EF63144816S: EF631559 Austrophya mystica Australia(F.L.Carle) D7:EF631236D3: EF631332D2: EF631441 16S:N/A Gomphomacromia chilensis & paradoxa Chile(F.L.Carle) D7:EF631206D3: EF631303D2: EF63140816S: EF631522 Hespercordulia berthoudi Australia(F.L.Carle) D7:EF631244D3: EF631337D2: EF63144916S: EF631560 Lathrocordulia metallica Australia(F.L.Carle) D7:EF631239D3: EF631334D2: EF63144416S: EF631556 atrifrons Australia(M.L.MayandF.L.Carle) D7:EF631240 D3:N/A D2:EF631445 16S:EF631557 Neocordulia batesi longipollex Panama(M.L.May) N/A Neocordulia campana Panama(M.L.May) N/A Oxygastra curtisii (P.Corbet) D7:N/A D3:N/A D2:EF631413

46

16S:EF631526 Pseudocordulia circularis Australia(G.Theischinger) D7:EF631251D3: EF631342D2: EF63145616S: EF631566 Syncordulia gracilis SouthAfrican(P.Grant) D7:N/A D3:N/A D2:EF631439 16S:N/A Corduliidae: Idionychinae Idionyx selysi HongKong(K.Wilson) D7:EF631193D3: EF631290D2: EF631391 16S:N/A Macromidia rapida 1 HongKong(K.Wilson) D7:EF631209D3: EF631306D2: EF631411 16S:N/A Macromidia rapida 2 HongKong(K.Wilson) D7:EF631271D3: EF631362D2: EF63147816S: EF631588 Corduliidae: Idomacromiinae Idomacromia proavita (CAS) N/A Corduliidae: Macromiinae USA:NJ(M.L.May) D7:N/A D3:EF631327D2: EF63143616S: EF631549 Macromia illionoiensis USA:IL(M.L.May) D7:EF631208D3: EF631305D2: EF63141016S: EF631524 Phyllomacromia contumax (T.W.Donnelly) D7:EF631197D3: EF631293D2: EF63139716S: EF631511 Corduliidae: Synthemistinae Choristhemis flavoterminata Australia(M.L.May,K.M.KjerandF. D7:EF631237D3: L.Carle) EF631333D2: EF63144216S: EF631554 Eusynthemis brevistyla Australia(J.L.Ware,K.M.Kjer,F.L. D7:EF631230D3: Carle) EF631323D2: EF63143416S: EF631547 Synthemiopsis gomphomacromioides Australia(M.L.May,K.M.KjerandF. D7:EF631213 L.Carle);D2andD7sequencesfromF. D3:N/A L.Carle D2:EF631417 16S:EF631530 Synthemis eustalacta Australia(J.L.Ware,K.M.Kjer,F.L. D7:N/A Carle) D3:EF631296D2: EF63140116S: EF631515 Synthemis leachii Australia(D.Pryce) D7:EF631201D3: EF631297D2: EF63140216S: EF631516 Corduliidae: Neophyinae Neophya rutherfordi (J.Lempert) N/A Libellulidae: Tetrathemistinae Calophlebia interposita CAS(project) D7:N/A D3:EF631381 D2:N/A 16S:N/A Nannophlebia risi Australia(M.L.May,K.M.KjerandF. D7:EF631254D3:

47

L.Carle) EF631345D2: EF63145916S: EF631569 Neodythemis pauliani CAS(MadagascarProject) D7:EF631279D3: EF631368D2: EF631486 16S:N/A Tetrathemis polleni 1 SouthAfrica(M.L.May) D7:EF631222D3: EF631318D2: EF63142616S: EF631600 Tetrathemis polleni 2 SouthAfrica(M.L.May) D7:N/A D3:EF631376D2: EF63149516S: EF631539 Libellulidae: Brachydiplacinae Anatya guttata Trinidad(S.Dunkle) N/A denticauda Australia(K.M.KjerandF.L.Carle) D7:EF631246D3: N/A D2:EF631451 16S:EF631562 Brachydiplax c. chalybea (J.Michalski) N/A Chalcostephia flavifrons Bissau(J.Huff) D7:EF631260D3: EF631351D2: EF63146516S: EF631575 Elga leptostyla Trinidad(M.L.May) D7:EF631274D3: N/A D2:EF631481 16S:N/A aequalis Panama(M.L.May) D7:EF631195D3: EF631291D2: EF63139316S: EF631508 Micrathyria aequalis Belize(J.L.Ware,J.Huff) D7:EF631250D3: EF631341D2: EF63145516S: EF631565 Hemistigma albipuncta (J.Huff) D7:EF631256D3: EF631347D2: EF63146116S: EF631571 Nannophya dalei Australia(J.L.Ware,K.M.KjerandF. D7:EF631241D3: L.Carle) EF631335D2: EF63144616S: EF631558 Nannothemis bella USA:FL(M.L.May) D7:EF631210D3: EF631307D2: EF63141216S: EF631525 Nephepeltia phyryne Trinidad(M.L.May) N/A Thermochoria equivocata Cameroon(MbidaMbida) N/A Oligoclada walkeri Trinidad(M.L.May) N/A Uracis imbuta Panama(M.L.May) D7:EF631228D3: N/A D2:EF631432 16S:EF631545 Libellulidae: Leucorrhiniinae herbida Venezuela(R.West) N/A Celithemis elisa USA:NJ(M.L.May) D7:EF631224D3: EF631320D2: EF63142816S: EF631541 Leucorrhinia glacialis USA:NY(M.L.May) D7:EF631207D3: EF631304D2: EF63140916S:

48

EF631523 Libellulidae: Libellulinae Agrionoptera longitudinalis Australia(M.L.May,K.M.KjerandF. D7:EF631235D3: L.Carle) EF631331D2: EF63144016S: EF631553 Cannaphila vibex Panama(M.L.May) N/A Dasythemis esmeralda Trinidad(J.Michalski) D7:N/A D3:N/A D2:EF631386 16S:N/A Hadrothemis defecta Uganda(T.W.Donnelly) D7:EF631277D3: EF631366D2: EF63148416S: EF631592 Libellula pulchella USA:NJ(J.L.Ware) D7:N/A D3:EF631329 D2:N/A 16S:EF631551 Libellula luctuosa USA:NJ(J.L.Ware) D7:EF631194D3: N/A D2:EF631392 16S:EF631507 Libellula quadrimaculata 1 USA:NJ(M.L.May) D7:EF631272D3: EF631363D2: EF63147916S: N/A Libellula quadrimaculata 2 Sweden(K.M.Kjer) D7:N/A D3:N/A D2:EF631497 16S:EF631589 Ladona julia USA:WI(M.L.May) D7:EF631219D3: EF631315D2: EF63142316S: EF631536 Lyriothemis pachygastra (M.L.May) D7:EF631276D3: EF631365D2: EF631483 16S:N/A Misagria parana FrenchGuiana(J.Huff) D7:EF631268D3: EF631359D2: EF63147516S: EF631585 Orthemis ferruginea 1 DominicanRepublic(J.Huff) D7:EF631265D3: EF631357D2: EF63147116S: EF631581 Orthemis ferruginea 2 DominicanRepublic(J.Huff) D7:EF631266D3: N/A D2:EF631472 16S:EF631582 Orthetrum sp 1 GuineaBissau(J.Huff) D7:N/A D3:N/A D2:EF631396 16S:EF631510 Orthetrum sp 2 SouthAfrica(K.M.Kjer) D7:EF631261D3: EF631352D2: EF63146616S: EF631576 Orthetrum sp 3 SouthAfrica(K.M.Kjer) N/A Orthetrum sp 4 Senegal(J.Huff) N/A CAS(Madagascar) D7:EF631275D3: N/A D2:EF631482 16S:EF631591 (X.Zhou) D7:EF631263D3: EF631354D2:

49

EF63146816S: EF631578 1 SouthAfrica(K.M.Kjer) D7:EF631285D3: EF631380D2: EF63149816S: EF631601 Orthetrum julia 2 SouthAfrica(K.M.Kjer) D7:N/A D3:EF631382D2: EF63149916S: EF631602 neglectum CAS(MadagascarProject) D7:EF631267D3: N/A D2:EF631473 16S:EF631583 Plathemis lydia USA:NJ(F.L.Carle) D7:EF631234D3: EF631330D2: EF63143816S: EF631552 Libellulidae: Sympetrinae Acisoma panorpoides GuineaBissau(J.Huff) D7:EF631229D3: EF631322D2: EF63143316S: EF631546 Bradinopyga strachani GuineaBissau(J.Huff) D7:EF631257D3: EF631348D2: EF63146216S: EF631572 Brachythemis leucosticta GuineaBissau(J.Huff) D7:EF631258D3: EF631349D2: EF63146316S: EF631573 Crocothemis erythraea SouthAfrica(M.L.May) D7:EF631225D3: EF631321D2: EF63142916S: EF631542 Crocothemis servilla USA:FL(M.L.May) D7:EF631192D3: EF631289D2: EF63139016S: EF631506 Crocothemis sp Senegal(J.Huff) N/A Deielia phaon Japan(M.L.May) D7:EF631226D3: EF631543D2: EF63143016S: N/A haematodes Australia(J.L.Ware,K.M.Kjer,F.L. D7:EF631238D3: Carle) N/A D2:EF631443 16S:EF631555 Erythemis simplicicollis USA:TX(M.L.May) D7:EF631191D3: EF631288D2: EF63138916S: EF631505 Erythrodiplax minuscula USA:FL(J.L.WareandJ.Huff) D7:EF631190D3: EF631287D2: EF63138816S: EF631504 Pachydiplax longipennis USA:NJ(F.L.Carle) D7:EF631198D3: EF631294D2: EF63139816S: EF631512 Rhodopygia hollandi Trinidad(M.L.May) N/A Sympetrum janeae USA:NJ(F.L.Carle) D7:EF631214D3: EF631310D2: EF63141816S: EF631531 Sympetrum ambiguum USA:DE(M.L.May) D7:N/A D3:EF631324D2:

50

N/A 16S:EF631548 Libellulidae: Trithemistinae Brechmorhoga mendax USA:TX(M.L.May) D7:EF631572D3: N/A D2:EF631385 16s:EF631502 fugax USA:TX(M.L.May) D7:N/A D3:N/A D2:EF631387 16S:EF631503 Dythemis multipunctata Panama(M.L.May) D7:EF631259D3: EF631350D2: EF63146416S: EF631574 Huonia oreophila NewGuinea(J.Michalski) D7:EF631270D3: EF631361D2: EF63147716S: EF631587 Macrothemis celeno PuertoRico(M.L.May) D7:EF631282D3: EF631370D2: EF63148916S: EF631594 Macrothemis hemichlora Panama(M.L.May) D7:N/A D3:EF631292D2: EF63139416S: N/A Macrothemis pulmila Trinidad(M.L.May) N/A lineatipes USA:CA(M.L.May) D7:N/A D3:EF631373D2: EF63149216S: EF631597 Scapanea archboldi DominicanRepublic(J.Huff) D7:EF631269D3: EF631360D2: EF63147616S: EF631586 Trithemis basileri SouthAfrica(K.M.Kjer) N/A Trithemis dorsalis SouthAfrica(M.L.May) D7:N/A D3:EF631299D2: EF63140416S: EF631518 Trithemis monardi GuineaBissau(J.Huff) D7:EF631264D3: EF631355D2: EF63146916S: EF631579 Libellulidae: Onychothemistinae Onychothemis culminicola Thailand(T.W.Donnelly) D7:N/A D3:EF631374D2: EF63149316S: EF631598 Onychothemis testacea 1 Thailand(T.W.Donnelly) D7:EF631278D3: EF631367D2: EF63148516S: EF631599 Onychothemis testacea 2 Thailand(T.W.Donnelly) D7:EF631284D3: EF631375D2: EF631494 16S:N/A Libellulidae: Palpopleurinae Palpopleura jucunda SouthAfrica(M.L.May) D7:N/A D3:N/A D2:EF631414 16S:EF631527 Palpopleura lucia Senegal(J.Huff) D7:EF631262D3: EF631353D2: EF63146716S: EF631577

51

Perithemis tenera NewJersey(J.L.Ware) D7:EF631212D3: EF631309D2: EF63141616S: EF631529 Zenithoptera fasciata 1 FrenchGuiana(J.Huff) D7:EF631283D3: EF631371D2: EF63149016S: EF631595 Zenithoptera fasciata 2 FrenchGuiana(J.Huff) D7:N/A D3:EF631372D2: EF63149116S: EF631596 Libellulidae: Trameinae Tramea onusta USA:NJ(M.L.May) D7:EF631281D3: N/A D2:EF631488 16S:EF631593 Tramea lacerata USA:NJ(J.L.Ware) D7:EF631221D3: EF631317D2: EF63142516S: EF631538 Rhyothemis semihyalina 1 SouthAfrica(M.L.May) D7:EF631204D3: EF631301D2: EF63140616S: EF631520 Rhyothemis semihyalina 2 SouthAfrica(C.Chaboo) D7:N/A D3:EF631358D2: EF63147416S: EF631584 Miathyria marcella USA:FL(M.L.May) N/A Pantala flavescens 1 SouthAfrica(M.L.May) D7:EF631220D3: EF631316D2: EF63142416S: EF631537 Pantala flavescens 2 Senegal(J.Huff) D7:EF631280D3: EF631369D2: EF63148716S: N/A Hydrobasileus brevistylus Australia(M.L.May,K.M.KjerandF. D7:EF631252D3: L.Carle) EF631343D2: EF63145716S: EF631567 Idiataphe amazonica Bolivia(Mauffray) D7:N/A D3:EF631377 D2:N/A 16S:N/A Tholymis tillarga GuineaBissau(J.Huff) D7:EF631202D3: EF631298D2: EF63140316S: EF631517 Tauriphila australis Panama(M.L.May) N/A Libellulidae: Urothemistinae rezia GuineaBissau(J.Huff) D7:EF631188D3: N/A D2:EF631384 16S:EF631501 balteata USA:FL(M.L.May) N/A Urothemis assignata Senegal(J.Huff) D7:EF631217D3: EF631313D2: EF63142116S: EF631534 Zyxomma elgneri Australia(K.M.Kjer,F.L.Carle) D7:EF631253D3: EF631344D2: EF63145816S: EF631568 Zyxomma petiolatum Bali(A.Rowat) D7:N/A D3:EF631378D2:

52

EF631496 16S:N/A Libellulidae: Zygonychinae Zygonyx torridus SouthAfrica(M.L.May) D7:EF631218D3: EF631314D2: EF63142216S: EF631535 Zygonyx natalensis SouthAfrica(M.L.May) D7:EF631203D3: EF631300D2: EF63140516S: EF631519

Table3:Primersusedinthepresentstudy. D2regionofthe D3regionofthe D7regionofthe 16SprimersbyE. 16sprimersfrom 28S 28S 28S Pilgrim Misofetal.,(2001) Forward 5’TGCTTGAGAG 5’ACCCGTCTTG 5’CGSGCGACGA 5’GTAAGAGTTT LRJ12887 PrimerSequence TGCAGCCCAA3’ AAACACGGAC3’ GTAGGAGGG3’ AAASGTCGAAC 5’GGAGCTCCGGTT AGA3’ TGAACTCAGATC3’ ReversePrimer 5’CCTTGGTCCGT 5’ATAGTTCACC 5’CTTCAGAGCC 5’AGGATTAGAT LRN13398 Sequence GTTTCAAGAC3’ ATCTTTCGGGTC AATCCTTAT3’ ACCCTTTTATTT 5’CGGCCGCCTGTT C3’ TAAATG3’ ATCAAAAACAT3’

53 54

Chapter 2: Divergence dates of libelluloid dragonflies (Odonata: Anisoptera) estimated from rRNA using paired-site substitution models JessicaL.Ware a1* ,SimonY.W.Ho b1 ,andKarlKjer c aDepartment of Entomology, Rutgers the State University of New Jersey, New Brunswick, NJ, USA; bDepartment of Zoology, University of Oxford, Oxford, ; cDepartment of Ecology and Evolution, Rutgers the State University of New Jersey, New Brunswick, NJ, USA Abstract Moleculardatingmethodsmakeassumptionsaboutevolutionaryprocessesthatcan haveaprofoundinfluenceontheresultingdateestimates.Inthisrespect,theimpactof substitutionmodelselectionhasreceivedlittleattention.Thisisperhapsmostimportant inanalysesofrRNAmolecules,whicharesubjecttononindependentevolutionamong sitesduetocorrelatedsubstitutionsinpairedstemregions.UsinganrRNAdatasetfrom libelluloiddragonflies,weinvestigatedtheeffectofusinganexplicitpairedsitesmodel indivergencetimeestimationwitharelaxedclock.Formostnodes,thepairedsites modelyieldedmorerecenttimesthanthoseproducedusingamodelthattreatedallsites asindependent.Inseveralcases,thedifferencesindateestimatesresultedindivergence eventsbeingassignedtoadifferentgeologicalperiod.Disagreementindivergencedate estimatescomplicatesanevaluationoftheevolutionaryreductionofthelibelluloid ovipositor.Accordingly,itisprudenttoassesstheeffectsofmodelselectiononresulting dateestimates,aswellasontheconsequentecologicalandbiogeographicinterpretations.

55

1. Introduction

Moleculardatingmethodshaveprovidedvaluableinsightsintotheratesandtime scalesofevolutioninavarietyoforganisms.Allofthesemethodsmakeanumberof assumptionsabouttheevolutionaryprocessthatcanhaveaprofoundinfluenceonthe resultingdateestimates.Accordingly,modelselectionisanimportantcomponentnot onlyoftopologicalreconstructionbutalsoofdivergencetimeestimation;poorlychosen modelscanleadtoerrorsindateestimates(e.g.,SullivanandSwofford,1997).Therehas beenaconsistentfocusontheassumptionofamolecularclock,withsubstantialvariation insubstitutionrateshavingbeenobservedinarangeoftaxonomicgroups(Bromhamand

Penny,2003).Thispromptedthedevelopmentofsophisticatedmethodsfordealingwith rateheterogeneityamonglineages(e.g.,Thorneetal.,1998;Sanderson,2002;

Drummondetal.,2006).

Theimpactofsubstitutionmodelselectionondateestimateshasreceivedconsiderably lessattention.Thepotentialeffectofmodelselectionisperhapsmostpronouncedinthe analysisofrDNAmolecules,therRNAproductsofwhicharesubjecttodistinctive substitutionpatternsonaccountofsecondarystructuralconstraints(Wheelerand

Honeycutt,1988;DixonandHillis,1993).RibosomalRNA(rRNA)foldsonitself, creatingacomplexsecondarystructuremaintainedbybondednucleotidepairs,whichis importantforribosomefunction(Noller,1984).Inthesestemregions,asubstitutionat onesiteisoftenaccompaniedbyacompensatorysubstitutionatitscomplementinorder topreventdisruptiontothesecondarystructureofthemolecule(Smithetal.,2004 ;

TillierandCollins,1998).Forexample,inananalysisofeubacterial

56

rRNAsequences,Savilletal.(2001)foundthattherateofdoublesubstitutionswas significantlynonzero.

ThecorrelatedmodeofmolecularevolutioninRNAstemsviolatesoneofthe fundamentalassumptionsofstandardnucleotidesubstitutionmodels,thatof independenceamongsites(WheelerandHoneycutt,1988;DixonandHillis,1993).In suchcases,itismoreappropriatetoanalysethealignmentusingapairedsitemodelthat treatsthenucleotideanditscomplementasasinglecharacter(Jowetal.,2002).The

RNAloopregions,whichareunpaired,canbesuitablyanalysedusingstandard substitutionmodels.Thisfundamentaldifferenceinevolutionarymodesalsoarguesfor datapartitioninginthephylogeneticanalysisofrRNAmoleculesbasedonsecondary structure.Theseconcernshavereceivedscantattentionindivergencedatingstudies despitethewidespreaduseofrRNAasaphylogeneticmarker:among14studiesthat usedrRNAdatatoestimatedivergencetimes,onlyoneusedapairedsitesmodel(Table

1).

Anumberofpairedsitessubstitutionmodelsareavailableforthephylogeneticanalysis ofRNAsequences.Theearliestmodelstreatedall16possiblepairsthatcanbeformed withfournucleotidesasdistinctstates,producingatimereversible16 ×16ratematrix

(SchönigerandvonHaeseler,1994;Muse,1995;Rzhetsky,1995).Thismaybe unnecessarilycomplex,sinceonlymatchingpairs(thefourWatsonCrickpairs,along withGUandUGpairs)arefrequentinthehelixregionsofribosomalmolecules(Savill etal.,2001).Subsequently,lessgeneralmodelshavebeendeveloped.7statemodels, suchasthatdescribedbyTillierandCollins(1998),consideronlythesixmatchingpairs

57

andgrouptheremaining10mismatchpairingsintoasinglestate(Higgs,2000).These havebeenshowntofitthedataaswellas16statemodels(Savilletal.,2001).

Inthisstudy,theeffectofusingapairedsitesmodelindivergencedateestimationis investigatedusingalibelluloiddragonflyrRNAdataset.Libelluloiddragonfliesare highlyspecialized,widelycollected,andoftenbrightlycolouredmembersofthemost recentlyderivedpartoftheAnisopteranlineage.Libelluloideacomprisessevenmajor groups(sixfamilies:Cordulegastridae,Neopetaliidae,Chlorogomphidae,Macromiidae,

Corduliidae,andLibellulidae;andonemonophyleticgroup,theGSI sensu Wareetal.

(2007),ofundeterminedtaxonomicstatus).Incomparisonwithotherdragonflies, libelluloidsareconsideredhighlyderived,primarilybecausetheypossessareduced ovipositorthatallowsforendophyticoviposition,aprobablyconvergenttraitsharedwith

Gomphidae(Carle,1995),anduniquelarvallabialmodifications.Theearliestlibelluloid fossilsarenotolderthanthemidCretaceous,roughly120130Myr(e.g.,Jarzembowski andNel,1996).

Dateestimatesfromtworelaxedclockanalysesarepresented,oneinwhichthetreeis obtainedusingapairedsitesmodelforRNAstemregions,andoneinwhichthetreeis obtainedusingstandardunpairedsitesmodelsforalldatapartitions.Weinvestigatethe differencesbetweentheresultsofthesetwoanalysesinthecontextofnonindependent evolutionatstemsites,andexaminehowinterpretationsofbiogeographicaland morphologicalevolutionareaffectedbydifferingdateestimates.

2. Materials and Methods

58

Data Set

TherRNAsequencesusedinthepresentstudywereasubsetofthoseanalysedby

Wareetal.(2007),withgenefragmentsfromthenuclearlargesubunit(28S;D2,D3,D7) andthemitochondriallargesubunit(16S)(supplementarymaterial).Sequenceswere alignedmanuallyusingthestructuralmethodsdescribedinKjer(1995).Ambiguously alignedregionswereexcludedfromthedataset,yieldingafinalalignmentof1763bp from32taxa.Thealignmentwasdividedintofourpartitions(28Sstem,28Sloop,16S stem,and16Sloop).OuralignmentsareavailableontheKjerlabwebsite, www.rci.rutgers.edu/~entomology/kjer ).

Model Selection

SubstitutionmodelswereselectedforeachlooppartitionbycomparisonofAkaike

InformationCriterion(AIC)scores.Thereisnoimmediatelyapparentmethodfor comparingthefitofpairedandunpairedmodelsfortheRNAstempartition,becausethe mostcommonlyusedmethodsformodelselectionarenotreadilyabletocomparemodels withdifferentstatespaces.Consequently,analyseswereperformedusingpairedand unpairedsitesmodels,andtheresultswerecompared.

Phylogenetic Analysis

Bayesianphylogeneticanalyseswereperformedusingthesoftware PHASE (Jowetal.,

2002).Twoseparateanalyseswereperformed:(i)theAICselectedsubstitutionmodel wasassumedforeachpartition;(ii)AICselectedsubstitutionmodelswere

59

assumedfornonstempartitions,buttheRNA7Amodelwasassumedforstempartitions.

Thismodelwaschosenbecauseitisarealisticsimplificationofthefull16statemodel

(Savilletal.,2001;Jowetal.,2002).ThesimplerRNA6Amodelwasnotusedbecause inspectionofthealignmentrevealedthatsomepairedstemsitesdidnotcontainmatching pairs.PosteriordistributionswereapproximatedbyMarkovchainMonteCarlo(MCMC) sampling,withsamplesdrawnevery500stepsoveratotalof10,000,000stepsfollowing adiscardedburninof1,000,000steps.Convergencetothestationarydistributionand acceptablemixingwerecheckedbyinspectionofMCMCtraces.Consensustopologies andoptimalbranchlengthswerecomputedusingmaximumlikelihoodin PHASE .The resultingtreeswereusedasfixedinputtreesforsubsequentdivergencedatinganalysis.

Followingrejectionofamolecularclockusingalikelihoodratiotest( p=0.008), divergencedateswereestimatedinarelaxedclockframeworkbytheprogram r8s

(Sanderson,2003)usingpenalizedlikelihood,amethodthatappliesapenaltyagainst largeratechangesbetweenneighboringbranches.Themagnitudeofthepenaltyis dictatedbyasmoothingparameter,thevalueofwhichwasoptimizedbycrossvalidation analysis.Alogarithmicpenaltywasusedonaccountofitssimilaritytotheautocorrelated relaxedclockmodelsusedinBayesianphylogeneticmethods(e.g.,Thorneetal.,2002).

DatesandsubstitutionrateswereestimatedusingthetruncatedNewtonalgorithmwith10 independentstarts.

Calibration using fossils

WeusedfossilbasedestimatesofdivergencetimesbetweenChlorogomphidae,

60

Macromiidae,Corduliidae,Libellulidae,andtheLibelluloideatocalibratethedivergence datinganalysis(supplementarymaterial).Duetothedifficultyinacquiringconfident genuslevelidentificationsofdragonflyfossils,ageboundswereforfamilylevellimits only.

Simulations

Analysesofsimulateddatawereperformedinordertoinvestigatetheeffectof ignoringthepairednatureofstemregions.Usingparametervaluesandthetreeestimated fromthestemregionof28SrRNA,50datasetsweregeneratedbysimulationundera pairedsitesmodel,withsubstitutionparametersandsequencelength(532bp)matching thoseestimatedfromtherealdataset.Astrictmolecularclockwasassumed.

Eachofthe50alignmentswasanalysedwithpairedandunpairedsitesmodelsin

PHASE ,withthetopologyfixed.Ineachcase,theconsensustree(withaveragebranch lengths)wasusedasthefixedinputtreefordivergencetimeestimationusing r8s .The

LangleyFitchalgorithmwasused,whichassumesastrictmolecularclock.Paired ttests wereperformedtoinvestigatedifferencesindivergencetimesinferredunderpairedand unpairedsitesmodels.

3. Results

Model selection

Inspectionoflikelihoodsrevealsthatthebesttreeunderthepairedsitesmodel,with branchlengthsoptimizedusingmaximumlikelihood,is712loglikelihoodunitsmore

61

likelythanthebesttreeundertheunpairedsitesmodel.Thisresult,alongwiththeknown pairednatureofRNAstemsites,canbetakenasanindicationthatthepairedsitesmodel ispreferred.Nevertheless,amoreformalmodelselectionframeworkisdesirablefor futurestudies.

Topology

Asinpreviousstudies,analysesusingbothpairedandunpairedsitesmodels stronglysupportedthemonophylyofCorduliidae(Figure1).Thetwotopologiesdifferin theirplacementofCorduliidaeandMacromiidae,whosemutualrelationshipswith

LibellulidaewereunresolvedinapreviousanalysisbyWareetal.(2007)andhavebeen thesubjectofconsiderabledebate(seeWareetal.,2007foradetailedreview). There weretwomaindifferencesbetweenthephylogeneticreconstructionsproducedusingthe differentsubstitutionmodels:theplacementofthelibellulidtaxa Urothemis and

Perithemis (Figure1) .Theunpairedsitesmodelyieldedtreesinwhich Perithemis was closelyrelatedto Pantala. Bycontrast,theanalysisusingapairedsitessubstitution modelplaced Perithemis atthebaseofLibellulidae,assistertaxontoallotherlibellulids.

Urothemis wasplacedassistertotheremainingLibellulidaebytheanalysisusingan unpairedsitesmodel,althoughwithlowsupport.Theanalysisusingapairedsitesmodel reconstructedanalternatetopology,with Urothemis nestedwellwithintheLibellulidae, assistertothe{ Libellula + Ladona + Plathemis + Pantala }clade,againwithextremely lowsupport.Thepositionof Perithemis wasalsovariableintheanalysesofWareetal.

62

(2007). Urothemis, however,wasconsistentlyrecoveredinabasalpositionwithin

LibellulidaeinallanalysesbyWareetal.(2007).

Divergence time estimates

Formostnodes,divergencetimeestimationfromthepairedsitestreeyieldedmore recentdatesthanthosefromtheunpairedsitestree(Table2).Theestimatesforthetime tothemostrecentcommonancestor(TMRCA)of(i)Libellulidae,(ii)Corduliidae,and

(iii) Cordulia + Somatochlora ,however,wereyoungerintheunpairedsitesanalysis.

Forthe Cordulia + Somatochlora node,theunpairedsitesmodelsuggestedshorter branchlengthsthanthepairedsitesanalysis(Table2)andlowersubstitutionrates

(unpairedsites:6.04 ×10 4subs/site/Myr;pairedsites:6.04 ×10 3subs/site/Myr).Similar patternswereobservedfortheLibellulidaeandCorduliidaenodes(unpairedsites:

Corduliidae5.17 ×10 4subs/site/Myr,Libellulidae5.02 ×10 4subs/site/Myr;pairedsites:

Corduliidae1.22 ×10 3subs/site/Myr,Libellulidae1.13 ×10 3subs/site/Myr).Thisresulted inolderdateestimatesintheanalysisusingthepairedsitesmodel.

Inseveralcases,thedifferencesindateestimatesresultedinthenodalagebeing assignedtoadifferentevolutionarytimeperiod(Table2).Forexample,theunpaired sitesdatinganalysissuggestedaPermian/Triassicagefortherootofthetree,whilethe pairedsitesmodeldatinganalysissuggestayounger,Jurassicage(Table2).Thepaired sitesmodeldatinganalysissuggestsaCretaceousageforthemostrecentcommon ancestorofLibellulidae,whiletheunpairedsitesmodelanalysissuggestsayounger,

Cenozoicage.

63

Simulations

Thereweresignificantdifferencesbetweenthedivergencetimesinferredunder pairedandunpairedsitesmodels.Forallmajornodes(interfamilialrelationships),the estimatedageswerewithinonestandarddeviationofthetrue(simulation)ages.Age estimatesmadeundertheunpairedsitesmodelwereolderthanthosemadeunderthe pairedsitesmodel,althoughtovaryingdegrees(paired ttests, pvaluesrangingfrom

9.36 ×10 5to0.065);thisresultisconsistentwiththoseobtainedfromtherealdataset.

Inthetreesinferredusing PHASE ,withbranchlengthsmeasuredinsubstitutionsper site,theratioofinternaltoexternalbranchlengthswassignificantlydifferent(paired t test, p=2.96 ×10 9)betweenpairedandunpairedsitesmodels(Figure2).Thissuggests thattheinappropriateuseofanunpairedsitemodeldoesnotsimplyalterthetotaltree length,aswouldbeexpectedifthemodelproducesaconsistentbiasamongbranches.

4. Discussion

Ouranalysesyieldedstrongpreferenceforapairedsitesmodeloveranunpairedsites modelfortheanalysisofrRNAsequencesfromlibelluloiddragonflies.Basedon comparisonoflikelihoodscoresfromthetwoanalyses,alongwithstrongsupportinthe literatureforthepairedsitesmodelinstudiesofrRNA(Savilletal.,2001;Jowetal.,

2002;HoyleandHiggs,2003;Hudelotetal.,2003),andfromoursimulationstudies,we considerdivergencetimesobtainedusingthepairedsitesmodeltobebetterestimates thanthoseobtainedusingtheunpairedsitesmodel.Thissuggeststhatuseofthelatterhas ledtoerroneousestimatesoftheagesofseveralnodesinthetree:theageoftherootof

64

thetree,theTMRCAofChlorogomphidae+Libelluloidea,andtheTMRCAof

Corduliidae+Macromiidaewereoverestimated;whereastheTMRCAsofLibellulidae,

Corduliidae,andMacromiidaewereunderestimated.Althoughitmaybedifficultto objectivelyassesswhichdateestimatesareunreasonable,theageof249Myrfortheroot oftheunpairedsitestreeissurprisinglyold,andclosetotheuppercalibrationlimitof

250Myr.

Do differences in date estimates really matter?

Inmanycases,thedatesobtainedbyanalysesusingpairedandunpairedsites treatmentsdidnotdiffergreatly.Consequently,theimpactonevolutionaryinterpretations basedonthesewouldnotbesubstantial.ForLibelluloidea,however,twoimportantnodes ofinterestwereinconsistentbetweenmodels:theageoftherootofthetreeandthe divergencedateforthemostspeciose,heterogeneous,andwidelystudiedlibelluloid family,Libellulidae.

Inthecaseoftherootofthetree,theunpairedsitesanalysisreturnedasurprisinglyearly dateatthePermian/TriassicboundaryinsteadofbeingintheJurassicassuggestedunder thepairedsitesmodel.Thedifferenceinthesedateswouldaffectassumptionsofthe geographicalpositionsofcontinents,airtemperature,sealevel,andthebiodiversitythat wouldhavebeenpresentwhenthisnodeofinterestdiverged.IftheLibelluloideahad divergedatthePermian/Triassicboundary,itwouldhavebeenduringaperiodwhere onlyonelargecontinentallandmass,Pangaea,existed(inwhatisconsideredaperiodof hotdryclimate;e.g.,Parish,1993).Thiswouldhavejustfollowedoneofthelargest

65

extinctionsofinsectsinevolutionaryhistory(e.g.,Erwin,2006).Thisdiffersdramatically fromtheconditionsthattheLibelluloideawouldhaveencounteredhadtheydiverged50 millionyearslater,intheearlyJurassic,asthepairedsitestreemodelanalysissuggests.

Atthisyoungerdate,Pangaeawouldhavealreadybeguntobreakapart,withan associatedincreaseintheamountofinlandwater,adecreaseinoveralltemperature,and anincreaseinhumiditylevelsonthecontinents(e.g.,Hallam,1993).Ourunderstanding ofthebiogeographicalhistoryofLibelluloideaisstronglydependentoncorrect assumptionsaboutcontinentalpositions.DidtheLibelluloideadivergewhentherewasa singlecontinentallandmassafterwhichvicarianceeventsinvolvedinthebreakupof

Pangaealedtospeciation?Alternatively,didtheLibelluloideadivergeduringtheearly

JurassicinGondwana,forexample,andthendispersetoothercontinents?

OurunderstandingofcharacterevolutioninLibelluloideaisalsostronglyaffectedby incorrectdateestimation.Forexample,Libelluloideahaveincommonareductionintheir ovipositor,convergentlysharedwithGomphidae(Carle,1995).Inlibelluloidsthe ovipositorismodifiedforexophyticoviposition(i.e.notrequiringplanttissueforegg deposition;Tillyard,1917;Carle,1995;seeWareetal.,2007forfigures).Inthehigher libelluloidtaxastudiedhere(Macromiidae,CorduliidaeandLibellulidae),thefirst processesarereducedtosmallflapsandtheotherstructuresareapparentlyabsentexcept fortheprobablevestigeofthestyliemergingdirectlyfromtheninthsternite(Tillyard,

1917).ThedivergenceestimatesforLibelluloideainfluenceourhypothesesaboutthe evolutionaryprocessofthisreduction.Iftheunpairedsitesmodelisapplied,andwe assumethatLibelluloideadiverged249Myrago,wemightfavorahypothesisproposing

66

ovipositorreductionandexophyticovipositioninresponsetolimitedfreshwaterniche spaceduringtheTriassic.Usinginformationfromthepairedsitesmodelanalysis, however,whichsuggestsadivergenceageof205Myrago,wemightsupposethat ovipositorreductionoccurredinresponsetoanincreaseinthenumberofpredatorsatthe ovipositionsite.Exophyticovipositionisgenerallyfasterthanendophyticoviposition, whichmayreducethenumberofpredatorsencountered(e.g.Corbet,1999).Fish,frogs, andbirdsimposeastrongpredationthreatonovipositingfemales,particularlythosethat dosoendophytically(Corbet,1999).Exophyticovipositionmayhaveevolvedasa responsetothediversificationofthesepredators(modernbirdsdivergedduringthe

Cretaceous,Brownetal.,2007;NeobatrachidfrogsdivergedduringtheJurassic,

Roelantsetal.,2007).Certainlytherearenumerousotherhypothesesthatcouldbe supposedfortheevolutionofdragonflygenetalia,butwithoutrealisticdatingestimatesit willbehardtoevaluatethemeffectively.

Conclusions

Theresultsofouranalyseshere,coupledwiththegeneraldesirabilityofutilizing evolutionarymodelsthatarebiologicallyrealistic,suggestthatitisveryimportanttotake stempairingintoaccountduringanalysesofrRNAdatasets.Theimpactofusingpaired sitessubstitutionmodelsondivergencetimeestimatesisnoteasilypredictable, particularlywhenexplicitmodelsofamonglineagerateheterogeneityareusedin conjunctionwithpartitionedanalysesofcomplexdata.Pairedsitesmodelsapparentlydo notleadtouniformlylowerdatingestimates,althoughitisnecessarytoinvestigatea

67

widerrangeofdatasetsbeforefurtherinferencescanbemade.Accordingly,itisprudent toassesstheeffectsofmodelselectiononresultingdateestimates,aswellasonthe consequentecologicalandbiogeographicinterpretations.

Acknowledgments Wewouldliketothankallthosewhoprovideddragonflyspecimensfor sequencing(F.L.Carle,T.W.Donnelly,Heppner,J.C.Huff,M.L.May).Wealsothank

MichaelL.Mayfornumerousdiscussionsofdragonflygenitaliaandbiogeography.This researchwasfundedandsupportedbytheNationalScienceFoundationgrant(NSFDEB

0423834).

68

References

Bromham,L.,Penny,D.,2003.Themodernmolecularclock. Nature Rev. Genet. ,4: 216224. Brown,J.W.,Payne,R.B.,Mindell,D.P.,2007.Comment.NuclearDNAdoesnot reconcile‘rocks’and‘clocks’inNeoaves:acommentonEricsonetal. Biology Letters , 3(3) :257259. Carle,F.L.,1995.Evolution,taxonomy,andbiogeographyofancientGondwanian libelluloides,withcommentsonanisopteroidevolutionandphylogeneticsystematics (Anisoptera:Libelluloidea). Odonatologica , 24 :383506. Corbet,P.S.,1999. Dragonflies: Behavior and Ecology of Odonata .Comstock PublishingAssociates,CornellUniversityPress.Ithaca,NewYork. Dixon,M.T.,Hillis,D.M.,1993.RibosomalRNAsecondarystructure:compensatory mutationsandimplicationsforphylogeneticanalysis. Mol. Biol. Evol. ,10 :256267. Drummond,A.J.,Ho,S.Y.W.,Phillips,M.J.,RambautA.,2006.Relaxed phylogeneticsanddatingwithconfidence. PLoS Biol. ,4: e88. Erwin,D.H.,2006. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago . PrincetonUniversityPress.296pp. Hallam,A.1993.Jurassicclimatesasinferredfromthesedimentaryandfossilrecord. Phil . Trans .R. Soc. Lond . B341 :287–296. Higgs,P.G.,2000.RNAsecondarystructure:physicalandcomputationalaspects. Q. Rev. Biophys. , 33 :199253. Hoyle,D.C.,Higgs,P.G.,2003.Factorsaffectingtheerrorsinestimationofevolutionary distancesbetweenspecies Mol. Biol. Evol. , 20 :19. Hudelot,C.,GowriShankar,V.,Jow,H.,Rattray,M.,Higgs,P.G.,2003.RNAbased phylogeneticmethods:ApplicationtomammalianmitochondrialRNAsequences. Mol. Phylogenet. Evol. , 28 :241252. Jarzembowski,E.A,Nel,A.,1996.NewfossildragonfliesfromtheLowerCretaceousof SEEnglandandthephylogenyofthesuperfamilyLibelluloidea(Insecta:Odonata) Cretaceous Res. , 17 :6785. Jow,H.,Hudelot,C.,Rattray,M.,Higgs,P.G.,2002.Bayesianphylogeneticsusingan

69

RNAsubstitutionmodelappliedtoearlymammalianevolution. Mol. Biol. Evol. ,19 : 15911601. KjerK.M.,1995.UseofrRNAsecondarystructureinphylogeneticstudiestoidentify homologouspositions:anexampleofalignmentanddatapresentationfromthefrogs. Mol. Phylogenet. Evol. , 4:314330. Muse,S.,1995.EvolutionaryanalysesofDNAsequencessubjecttoconstraintson secondarystructure. Genetics , 139 :14291439. Noller,H.F.,1984.StructureofribosomalRNA. Ann. Rev. Biochem. ,53 :119162. Parish,J.T.,1993.Climateofasupercontinent.JournalofGeology, 101 :215–233 Roelants,K.,Gower,D.J.,Wilkinson,M.,Loader,S.P.,Biju,S.D.,Guillaume,K., Moriau,L.,Bossuyt,F.,2007.Globalpatternsofdiversificationinthehistoryofmodern amphibians. Proc. Natl. Acad. Sci., USA , 104 (3) :887892 Rzhetsky,A.,1995.EstimatingsubstitutionratesinribosomalRNAgenes. Genetics , 141 :771783. Sanderson,M.J.,2002.Estimatingabsoluteratesofmolecularevolutionanddivergence times:Apenalizedlikelihoodapproach. Mol. Biol. Evol. 19 :101109. Sanderson,M.J.,2003.r8s;inferringabsoluteratesofevolutionanddivergencetimesin theabsenceofamolecularclock. Bioinformatics , 19 :301302 Savill,N.J.,Hoyle,D.C.,Higgs,P.G.,2001.RNAsequenceevolutionwithsecondary structureconstraints:Comparisonofsubstitutionratemodelsusingmaximumlikelihood methods. Genetics , 157 :399411. Schöniger,M.,vonHaeseler,A.,1994.Astochasticmodelfortheevolutionof autocorrelatedDNAsequences. Mol. Phylogenet. Evol. , 3:240247. Smith,A.,Thomas,D.,Lui,W.H.,Tillier,E.R.M.,2001.EmpiricalModelsfor SubstitutioninRibosomalRNA. Mol Biol Evol 21 :419427. Sullivan,J.,Swofford,D.L.,1997.Areguineapigsrodents?Theimportanceofadequate modelsinmolecularphylogenetics. J. Mammal. Evol. , 4:7786. Thorne,J.L.,Kishino,H.,Painter,I.S.,1998.Estimatingtherateofevolutionoftherate ofmolecularevolution. Mol. Biol. Evol. 15:16471657. Tillier,E.R.M.,Collins,R.A.,1998.Highapparentrateofsimultaneouscompensatory basepairsubstitutionsinribosomalRNA. Genetics 148 :19932002

70

Tillyard,R.J.,1917.ThebiologyofDragonflies.Cambridge.CambridgeUniv.Press. Ware,J.L.,M.L.May,K.M.Kjer,2007.PhylogenyofthehigherLibelluloidea (Anisoptera:Odonata):anexplorationofthemostspeciosesuperfamilyofdragonflies. Mol. Phylogenet. Evol. , 45(1): 289310. Wheeler,W.C.,Honeycutt,R.L.,1988.Pairedsequencedifferenceinribosomal RNAs:evolutionandphylogeneticimplications. Mol. Biol. Evol. , 5:9096.

71

Figure1:Resultsofr8sanalysesusinganunpairedsitesmodel(a)andapairedsites model(b).

72

Figure2:Resultsofsimulationstudy:Aplotoftheratiosofinternaltoexternal branchlengthsfromanalysesof50independentdatasetsusingunpairedandpairedsites models.

Table 1 :FourteendivergencedatingstudiesusingRNAdatasets,foundusingdatabasesearchesofCABabstracts, Google Scholar, Pubmed, and Systematic Biology with the search terms ‘phylogeny’, ‘dating’, ‘r8s’, ‘divergence estimation’,‘pairedsites’,and‘doublet’. Reference a Data set Gene Substitution model

Bakeretal.(2005) Moa 12S , tRNA Lys GTR+I+G Bossuytetal.(2006) Frogs(Ranidae) 12S , 16S , tRNA Val GTR+I+G Brammer&Dohlen(2007) Flies(Stratiomyidae) 28S GTR+I+G Craynetal.(2006) Trees(Elaeocarpaceae) trnL trnF ;ITS GTR+G Dumontetal.(2005) Dragonflies ITS1,ITS2; 18S ; 28S GTR+I+G () GómezZuritaetal. Leaf 28S , 18S , 16S F84•C8 (2007) (Chrysomelidae) Jansenetal.(2006) Fish(Clariidae) ITS1,ITS2; 18S ; 28S GTR+G Nearetal.(2005) Fish(Centrarchidae) Pairedandunpairedsiteswerepartitioned, 16S butapairedsitesmodelwasnotused. Pereira&Baker(2006) Birds 12S , 16S ,22mttRNAs HKY+G PerezLosadaetal. Barnacles(Thoracica) 12S , 16S , 18S , 28S HKY+G (2004) Wiegmannetal.(2003) Flies(Brachycera) 28S HKY+G* Wintertonetal.(2007) Flies(Acroceridae) 16S , 28S GTR+I+G Williamsetal.(2003) Periwinkles(Gastropoda) 12S , 18S GTR+I+G( 28S +12S ),SYM+I+G( 18S ), GTR+G( 12S ) Zhangetal.(2006) Salamanders(Hynobiidae) 12S ; 16S ; tRNA Val ? aBakeretal.(2005) Proc. Natl Acad. Sci. USA , 102 :82578262;Bossuytetal.(2006) Syst. Biol. , 55 :579594;Brammer& Dohlen(2007) Mol. Phylogenet. Evol. , 43 :660673;Craynetal.(2006) Am. J. Bot. , 93 :13281342;Dumontetal.(2005) Syst. Biol. , 54 :347362;GómezZuritaetal.(2007) PLoS ONE , 2:e360;Jansenetal.(2006) Mol. Phylogenet. Evol. , 38 : 6578;Nearetal.(2005) Evolution , 59 :17681782;Pereira&Baker(2006) Mol. Phylogenet. Evol. , 38 :499509;Perez Losadaetal.(2004) Syst. Biol. , 53 :244264;Wiegmannetal.(2003) Syst Biol. , 52 :745756;Wintertonetal.(2007) Mol. Phylogenet. Evol. , 43 : 808832; Williams et al. (2003) Mol. Phylogenetic. Evol. , 28(1) :6086: YZ; Zhang et al. (2006) Proc. Natl Acad. Sci. USA , 103 :73607365. 73 Table 2 :Divergencetimesandsubstitutionratesestimatedusingthepairedandunpairedsitesmodels. Estimate Parameter Paired-sites model Unpaired-sites model

Divergencetimes Root 205.7Myr 249.1Myr Macromiidae 34.2Myr 28.2Myr EpithecaTetragoneuria 28.5Myr N/A CorduliaSomatochlora 65.7Myr 62.3Myr Corduliidae 87.1Myr 71.6Myr CorduliidaeMacromiidae 134.2Myr 140.1Myr Libellulidae 87.6Myr 57.7Myr Libellulidae+Macromiidae+Corduliidae 144.0Myr N/A Chloropetaliidae+Sinorogomphidae+ingroup 186.3Myr 192.4Myr Substitutionrate Mean 7.95 ×10 4subs/site/Myr 5.81 ×10 4subs/site/Myr Minimum 3.67 ×10 5subs/site/Myr 7.49 ×10 5subs/site/Myr Maximum 1.85 ×10 3subs/site/Myr 1.28 ×10 3subs/site/Myr

74 Table S1 :Detailsofsequencesanalysed Genbank Accession No. (D7, D3, D2, Taxon Species Locality and 16S )

EF631216,EF631312,EF631420, Cordulegastridae Taeniogaster oblique USA:NJ(M.L.May) EF631533 Kalyptogaster erronea USA:NJ(M.L.May) EF631245,N/A,EF631450,EF631561 SequencesfromF.L. Chlorogomphidae Chloropetalia soarer EF631248,EF631339,EF631453,N/A Carle SequencesfromF.L. EF631249,EF631340,EF631454, Sinorogomphus sp Carle EF631564 SequencesfromF.L. EF631247,EF631338,EF631452, Neopetaliidae Neopetalia punctata Carle EF631563 Canada:ON(J.L. Corduliidae Cordulia shurtleffii EF631232,EF631326,EF631435,N/A Ware,J.Huff) EF631205,EF631302,EF631407, Epitheca princeps USA:NJ(J.L.Ware) EF631521 EF631273,EF631364,EF631480, Rialla villosa Chile(Heppner) EF631590 EF631215,EF631311,EF631419, Somatochlora tenebrosa USA:NJ(M.L.May) EF631532 Tetragoneuria cynosura USA:NJ(M.L.May) N/A,EF631379,N/A,N/A Macromiidae Didymops transversa USA:NJ(M.L.May) N/A,EF631327,EF631436,EF631549 EF631208,EF631305,EF631410, Macromia illionoiensis USA:IL(M.L.May) EF631524 Uganda(T.W. EF631197,EF631293,EF631397, Phyllomacromia contumax Donnelly) EF631511 EF631224,EF631320,EF631428, Libellulidae:Leucorrhiniinae Celithemis elisa USA:NJ(M.L.May) EF631541 EF631207,EF631304,EF631409, Leucorrhinia glacialis USA:NY(M.L.May) EF631523 Libellulidae:Libellulinae Libellula pulchella USA:NJ(J.L.Ware) N/A,EF631329,N/A,EF631551 Libellula luctuosa USA:NJ(J.L.Ware) EF631194,N/A,EF631392,EF631507 Libellula quadrimaculata 1 USA:NJ(M.L.May) EF631272,EF631363,EF631479,N/A Libellula quadrimaculata 2 Sweden(K.M.Kjer) N/A,N/A,EF631497,EF631589 EF631219,EF631315,EF631423, Ladona julia USA:WI(M.L.May) EF631536 Plathemis lydia USA:NJ(F.L.Carle) EF631234,EF631330,EF631438, 75 EF631552 EF631191,EF631288,EF631389, Libellulidae:Sympetrinae Erythemis simplicicollis USA:TX(M.L.May) EF631505 USA:FL(J.L.Ware& EF631190,EF631287,EF631388, Erythrodiplax minuscula J.Huff) EF631504 EF631198,EF631294,EF631398, Pachydiplax longipennis USA:NJ(F.L.Carle) EF631512 EF631214,EF631310,EF631418, Sympetrum janeae USA:NJ(F.L.Carle) EF631531 Sympetrum ambiguum USA:DE(M.L.May) N/A,EF631324,N/A,EF631548 Libellulidae:Trameinae Tramea onusta USA:NJ(M.L.May) EF631281,N/A,EF631488,EF631593 EF631221,EF631317,EF631425, Tramea lacerata USA:NJ(J.L.Ware) EF631538 SouthAfrica(M.L. EF631220,EF631316,EF631424, Pantala flavescens 1 May) EF631537

Pantala flavescens 2 Senegal(J.Huff) EF631280,EF631369,EF631487,N/A EF631217,EF631313,EF631421, Libellulidae:Urothemistinae Urothemis assignata Senegal(J.Huff) EF631534 76 Table S2 :Fossilcalibrationsusedinthephylogeneticanalysis. Age constraint (Myr) Node Fossil evidence for calibration points Maximum Minimum

Rootoftree 250 – DateofearlyTriassic.OldestanisopteranfossilsarefromtheTriassic (GrimaldiandEngels,2005). Ingroup 144 120 DatesfromthelateJurassic,atimeperiodsuggestedbyNeletal.(1993) forthemaximumage.Minimumageconstraintbasedonthefossildatesfor themostbasalgroupofLibelluloidea,theGSI( sensu Wareetal,2007;not studiedhere),usinginformationfromNeletal.(1993),andthefossil Libellulidaefrom120Myr: Araripelibellula (NelandPaicheler,1994), usingageinformationfromtheChapadadoAraripeformation(Vianaand Neumann,1999). Macromiidae – 10.1 10.4 ±0.3Myr: Macromia (Rambur,1842).DateforTochigiprefecture fromNoEToru(1984),althoughactualfossildescriptionliststhefossil fromthePleistocene. Corduliidae 131 – ThesplitbetweenCorduliidaeandLibellulidaehadalreadyoccurredby 14.516.5Myrandprobablyoccurredasearlyas118131Myr.Datefrom theWealdenformation,approximatetimeperiodssuggestedby JarzembowskiandNel(1996). Libellulidae 131 – ThesplitbetweenCorduliidaeandLibellulidaehadalreadyoccurredby 14.516.5Myrandprobablyoccurredasearlyas118131Myr.Datefrom theWealdenformation,approximatetimeperiodssuggestedby JarzembowskiandNel(1996). Macromiidae+Corduliidae a – 118 ThesplitbetweenCorduliidaeandLibellulidaehadalreadyoccurredby 14.516.5Myrandprobablyoccurredasearlyas118131Myr.Datefrom theWealdenformation,approximatetimeperiodssuggestedby JarzembowskiandNel(1996). Epitheca +Tetragoneuria a – 5.3 7.2465.332Myr: Epitheca (Burmeister,1839).MessinendatefromOgg (2004). Cordulia +Somatochlora a – 49 49Myr: Cordulia ,Pongracz1931.DateofMonteBolcafromUniversityof 77 Bristol http://www.gly.bris.ac.uk (2006). aForpairedsiteanalysisonly,becausethe Epitheca sequencewasunusableintheunpairedsiteanalysis;inthelatter analysis, Cordulia didnotcomeoutassisterto Somatochlora, norwasMacromiidaesistertoCorduliidae. References Grimaldi,D.,Engels,M.S.,2005. Evolution of the Insects ,NewYorkCambridgeUniversityPress. Jarzembowski,E.A,Nel,A.,1996.NewfossildragonfliesfromtheLowerCretaceousofSEEnglandandthephylogenyofthe superfamilyLibelluloidea(Insecta:Odonata) Cretaceous Res. , 17 :6785. Nel,A.,Marti´nezDelclos,X.,Paicheler,J.C.,Henrotay,M.,1993.Les‘Anisozygoptera’fossiles.Phyloge´nieetclassification (Odonata). Martinia ,Nume´rohorsse´rie, 3:1–311. Nel ,A.,Paicheler,J.C.,1994.LesLibelluloidea fossilesautresqueLibellulidae.Uninventairecritique(Odonata,Corduliidae, Macromiidae,Synthemistidae,Chlorogomphidaeet Mesophlebiidae). Nouvelle Revue d'Entomologie ,(N.S.), 11 :321–334 NoE,Toru,1984.APleistoceneflorafromShiobaramachi,Tochigiprefecture,Japan(1)_Apaleoenvironmentalconsideration underthepalynologicalstudiesoftheflora . Geol. Surv. Japn . 35(2): 4957. Ogg,J.,2004.OverviewofGlobalBoundaryStratotypeSectionsandPoints(GSSP's).InternationalStratigraphicCommission Website, www.stratigraphy.org/gssp.htm Viana,M.S.,Neumann,V.H.L.1999.TheCratomemberoftheSantanaformation,Cearástate,Brazil.In:SítiosGeológicose PaleontológicosdoBrasil.Schobbenhaus,C.,Campos,D.A.,Queiroz,E.T.,Winge,M.,BerbertBorn,M.,(Eds.).PublishedonInternet attheaddresshttp://www.unb.br/ig/sigep/sitio005/sitio005english.htm . Last dateviewed:August8,2007. 78 79 Chapter 3: Biogeography and divergence estimation of the relic Cape dragonfly genus Syncordulia: global significance and implications for conservation JessicaL.Ware 1,JohnP.Simaika 2,MichaelJ.Samways 2 1Department of Entomology, Rutgers University, New Brunswick, NJ, 08901 (email: [email protected] ) 2 Department of Conservation Ecology and Entomology, Stellenbosch University, P Bag X1, Matieland, 7602, (email: [email protected]) Abstract Syncordulia ,alibelluloiddragonfly(Odonata:Anisoptera:Libelluloidea)genus, inhabitsmostlycoolmountainousstreamsintheCapeFloristicRegion(CFR)ofSouth

Africa.Thefourspeciesareallrareandthreatened.Herewecorroboratethevalidityof thesetwonewspeciesusingmoleculardata(using12S,16S,28SandCOIfragments) andproposetheintergenericrelationshipswithin Syncordulia .Inaddition,weevaluate thephylogeneticplacementofthegenuswithinLibelluloidea,onaglobalbasis.Finally, werelatethesephylogeneticdatatotheimportanceofconservationaction.Weuseddata setsinparticularfromSouthAfrica,Africa,(Asia),,andNorthandSouth

America.Moleculardatafromtwoindependentgenefragments(nuclear28Sand ribosomalandCytochromeOxidaseImitochondrialdata)weresequenced(and/or downloadedfromGenBank)for7libelluloidfamilies,including12Syncordulia specimens(2Syncorduliagracilis,4S.serendipator,2S.legatorand4S.venator).We ranparsimonyanalysesusingPAUP,andBayesiananalysesusingphase.The phylogenetichypothesesgeneratedbythephaseanalysiswereusedinsubsequentDIVA andr8sanalysestoevaluateancestraldistributionsanddivergenceestimates.Thelower libelluloidgroupGSI( sensu Wareetal.,2007),adiversegroupofnoncorduliinetaxa,is stronglysupportedasmonophyletic.TheAustralianmembersoftheGSIwererecovered

80 asamonophyleticclade. Syncordulia iswellsupportedbybothmethodsofphylogenetic analysesasamonophyleticdeeplynestedwithintheGSIclade.Allspecieswithinthe genusaredistinct.divaanalysesconstrainedtotworegionsrecoveredan

Indomalayan/AustraliandistributionfortheGSI.R8sanalysesestimatethat Syncordulia divergedfromotherLibelluloideaintheCretaceous.DIVAanalysessuggestthatthe presentdistributionsof Syncordulia maybetheresultofdispersalevents. Syncordulia is amonophyleticgenusandeachspecieswasfoundtobeadistinctmonophyletictaxon.

Divergenceestimatessuggestthat Syncordulia divergedwellafterthebreakupof

Gondwanaland,approximately60millionyearsago(Mya),whichcoincideswiththe divergenceofseveralCapefynbostaxa,between86–60Mya,specificallythe

Restionaceae,ProteaeandGeissolomataceae.ADIVAbiogeographicalanalysissuggests thattheancestortothegenus Syncordulia mayhavearisenconsequenttothebreakupof

Gondwanaland(>120Mya).

1. Introduction Corduliiddragonflies,oftenknownas“emeralds”forthemetallicgreenbodyandeye colorofmanyspecies,aremembersofthelargesuperfamily,Libelluloidea.Previously consideredtobeonefamily(Rambur,1842;Hagen,1861;Kirby,1890;Selys,1892;

Needham,1908;Tillyard,1917;Martin,1914;Tillyard,1928;St.Quentin,1939;Gloyd,

1959;Lieftinck,1971;Lieftinck,1977;Carle,1982;Davies&Tobin,1985;Bridges,

1994;Steinmann,1997)ordividedintotwoormorefamilies(Fraser,1957;Carle,1995;

Bechly,1995;Lohmann,1996a,b;Pfau,2005),Corduliidaehasnotbeenfoundtobe monophyleticinmodernphylogeneticanalyses(May,1995b;Misofetal.,2001;Carle

81 andKjer,2002;Wareetal.,2007;Bybeeetal.,2008;Letschinprep).‘Corduliidae’

(sensu Fraser,1957,andothers)consistsofatleastthreedistinctclades,theCorduliinae, theMacromiinae,andadiversegroupofnoncorduliinetaxa,informallycalledthe“GSI” byWareetal.(2007)afterthesubfamiliesGomphomacromiinae,Synthemistinaeand

Idionychinae.WithintheGSIareAustralianendemics,aswellasAfrican,South

American,EuropeanandIndomalayangenera,andtherelictSouthAfricangenus

Syncordulia .

AlthoughbothGSIadultsandlarvaehavebeendocumentedintheliterature(Selys

Longchamps,1871;Geijskes,1970;Lieftinck,1960,1971,1977;Theischingerand

Watson,1978;May,1991;TheischingerandWatson,1984;Carle,1995;May,1995a,b;

Carvalhoetal.,2004;vonEllenriederandGarrison,2005),thetaxahavebeen infrequentlyusedinmodernphylogeneticstudies(Carle,1995;CarleandKjer,2002;

Misofetal.,2001;Wareetal.,2007;Bybeeetal.,2008,Letsch,inprep;ofthesestudies, onlyWareetal.(2007)incorporated Syncordulia intheirphylogeny).TheGSIstemfrom abasalnodeintheLibelluloidea.Thus,theevolutionofcertainlibelluloidapomorphies, suchasreductionintheovipositorforexophyticovipositionandmodificationofthe distalspermpumpofthepenis(Pfau,2005),cannotbefullyevaluatedwithoutan understandingofintergenericrelationshipswithinGSI.Inaddition,severalmembersof theGSIarerareendemics,andphylogenetichypothesesaboutthisgroupmaybeuseful inunderstandingthebiogeographyandconservationneedsofvulnerablegenerasuchas

Syncordulia .

InhabitingmostlycoolmountainousstreamsintheCapeFloristicRegion(CFR)of

SouthAfrica, Syncordulia speciesgenerallyoccuringeographicallyrestrictedareasand

82 atlowpopulationdensities. Syncordulia speciesaresympatric(Dijkstraetal.,2007)and areoftenfounddwellinginthesamestream.FirstdescribedbySelysLongchampsin

1882,thegenus Syncordulia comprisesdragonfliesendemictoSouthAfricaand restrictedalmostentirelytotheCFR.Untilrecently,only S. venator and S. gracilis were known,andbothareconsideredVulnerablebytheWorldConservationUnion(IUCN)

(IUCN,2001).Dijkstraetal.,(2007)describedtwonewspecies, S. serendipator and S. legator ,frompreviouslyunrecognizedmuseumspecimensandfromnewfield collections.Intragenericrelationshipswithin Syncordulia ,havenotyetbeenfully evaluatedwithinaphylogeneticcontext.Inaddition,placementof Syncordulia withinthe

GSIhasbeenunresolved.Lieftinck(1961)suggestedthat Syncordulia wascloselyrelated to Oxygastra , Hesperocordulia , Lathrocordulia or Micromidia ,buthisstudyrelied mainlyonmanualparsimonywithoutaformalanalysis.Wareetal.(2007)included S. gracilis intheirmolecularanalysis,butitspositionwithinthemonophyleticGSI assemblagewasunstableduetolowbranchsupport.Monophylyofthegenusitself, althoughseeminglyverylikelybasedonseveralmorphologicalcharactersincluding uniformwingveinpatternsandeyecolor,hasnotyetbeensupportedbyphylogenetic analysis.

Thevalidityofthetwonew Syncordulia species,andthemonophylyofthegenusare assessedhereinthismolecularstudy.Inaddition,weattempttodeterminetheplacement of Syncordulia withintheGSI.Usingthesephylogenetichypotheses,weestimateboth divergencetimesandbiogeographicalhistoryinordertobetterunderstandthe distribution,ecologyandconservationrequirementsofthisrelictgenus.

2. Materials and Methods

83

Data collection SpecimenswerecollectedinSouthAfricaduringthesummermonthsof2006and

2007(5 S. serendipator ,4 S. legator and10 S. venator )and2004(4 S. gracilis ).DNA wasextractedusingaQiagenDNEasykitwithamodifiedprotocolasdescribedbyWare etal.(2007).SequencesfromtheGSIgenera, Austrocordulia , Austrophya ,

Lathrocordulia, Micromidia , Pseudocordulia , Cordulephya , Hesperocordulia,

Oxygastra , Gomphomacromia , Macromidia ,and Idionyx weretakenfromWareetal.’s

(2007)moleculardataset.Thecorduliidtaxon, Hemicordulia tau , andthemacromiine taxa Macromia illinoiensis and Phyllomacromi a contumax werealsotakenfromWareet al.(2007).WeusedmembersoftheChlorogomphidae,Chloropetaliidae,

Cordulegastridae,andNeopetaliidaeasoutgroups.Allamplifiedordownloadedtaxaare listedinTable1.

Alignment

WeusedCLUSTAL X(Thompsonetal.,1997)toperformapreliminarysequence alignment,withthedefaultsettingsforgapcosts(gapopeningpenalty=10.00;gap extensionpenalty=0.20).TheresultingfileswerethenalignedmanuallyinMicrosoft

WordusingthestructuralmethodsdescribedinKjeretal.(1995),Kjer(2004),Kjeretal.

(2007)andsecondarystructuremodelsbasedonGuttelletal.(1993).Theresulting datafilecontainedthreemitochondrialfragmentsfromtheCOIIgene(512nts),the12S

(780nts),andthe16S(435nts),andthreevariableregionsfromthenuclearlargesubunit

(28S),theD2(480nts)theD3(369nts)andtheD7fragment(567nts).

84

Parsimony analyses

Weperformedparsimonyanalysesin PAUP (Swofford,2000)underequalweighting ofallmolecularandmorphologicalcharacterswith10,000randomadditionsequence heuristicreplicatesunderTBRbranchswapping.Gapsofuniformlengthweretreatedas presence/absencecharacters;othergapsweretreatedasmissingdata.Toestimatebranch support,weran1000parsimonynonparametricbootstrapreplicateswith10random additionsequencereplicatesunderTBRbranchswapping.

Bayesian analyses

InordertotakeintoconsiderationthenonindependenceofhydrogenbondedrRNA sites,weusedtheRNA7Asevenstatepairedsitesmodelavailableinthe PHASE program

(Jowetal.,2002),torunMarkovchainMonteCarlo(MCMC)analysesofpartitioned

RNAdata(10milliongenerationseach)andaREVmodelfortheloopregions.Jowetal.

(2002),showthatthisbiologicallyrealisticmodelisusefulforstudiesofrRNAanditis particularlyimportantinestimatingdivergencedatesforrRNA(Wareetal.,2008).The

REVmodelisthemostgeneralloopmodelwiththetimereversibleconstraint(four frequencies,fiverateparameters).

R8Sanalyses

Weuseda PHASE treetorunadivergenceestimationanalysisin R8S(Sanderson,

2003)usingpenalizedlikelihood(Sanderson,2002),amethodthatappliesapenalty againstlargeratechangesbetweenneighboringbranches.Weoptimizedthesmoothing

85 parameterusingcrossvalidationanalysis.Datesandsubstitutionrateswereestimated usingthetruncatedNewtonalgorithmwith10independentstarts.Inordertocalibratethe divergenceestimationanalysis,weusedfossildatafromGrimaldiandEngel(2005),Nel etal.(1993),NelandPaicheler(1994)andJarzembowskiandNel(1996)(seeTable2for alistingofthefossilsweusedtodeterminedateconstraints).

DIVA analyses

Usingtheprogram DIVA (Ronquist,1996,1997),weassessedancestraldistributions whiledifferentiatingpossiblevicarianceanddispersalevents.Since DIVA requiresafully bifurcatingtree,wemanuallyresolvedthepolytomyatthebaseofthetreeforthe topology( Neopetalia (Cordulegastridae(remainingtaxa).Eachtaxonwasassigneda distributionbasedonthespecies’collectiondata,Dijkstraetal.(2007)andDaviesand

Tobin(1985).

TaxawerescoredforpresenceorabsenceinoneormoreoftenregionsSouth

America(A),NorthAmerica(B),India/Asia(C),Europe(D),Australia(E),Africa

(outsideofSouthAfrica)(F),SouthAfrica:SouthWesternCape(G),SouthAfrica:

NorthWesternCape(H),SouthAfrica:slightlyeastoftheHexRivermountains(I),

SouthAfrica:SouthEast(J)(Table3)

3. Results

Phylogenetic hypotheses

86 Thedatasethadatotalof3148characters,ofwhich2057wereconstant,661were variablebutparsimonyuninformative,and430wereparsimonyinformative.Themost parsimonioustreehadalengthof2334steps.Aconsensusof131treesfromthe parsimonyheuristicsearchanalysisisshowninFigure1,withbootstrapsupportfromthe separatebootstrapanalysisaboveeachbranch.Aconsensustreeisshownfromtheten milliongeneration(20,000trees) PHASE analysisinFigure2,withposteriorprobabilities shownaboveeachbranch(weran11milliongenerationsanddiscardedaburninof1 milliongenerations).Thegenus Syncordulia wasfoundtobemonophyleticwithstrong bootstrapsupport(96%)andposteriorprobabilities(97%),aswerealltheindividual speciesexcept S. legator, whichreceivedlowtomoderatesupport(65%posterior probabilityand87%bootstrapsupport).

TheAustraliantaxa, Cordulephya , Pseudocordulia , Hesperocordulia ,

Austrocordulia , Micromidia , Lathrocordulia ,and Austrophya formamonophyleticclade, butwith<50%bootstrapsupportandonly75%posteriorprobability.Thisresultwasnot foundbyWareetal,(2007),withalargerGSItaxonsample.TheSouthAmericantaxon,

Gomphomacromia andtheIndomalayan Macromidia formaclade,butwithlowposterior probability(40%)andbootstrapsupport(<50%).TheEuropean Oxygastra and

Indomalayan Idionyx formamonophyleticgroupwith95%posteriorprobabilitybutlow bootstrapsupport(<50%).

Divergence estimation

Thetreeusedinthe R8SanalysisisshowninFigure3andcorrespondingdivergence estimatesinTable2.The R8Sanalysisrecovereddivergenceestimatesfortherootoftree

87 at200.53Mya(Figure4).ThehigherLibelluloidea( sensu Wareetal.,2007;GSI+

Macromiidae+Corduliidae+Libellulidae)divergenceestimatewas169.56Mya.The

GSIdiverged106.60Mya. Syncordulia wasestimatedtohavedivergedfromother

Libelluloidea59.58Mya,with S. gracilis divergingfromitsancestor59.57Mya, S. serendipator divergingfromitsancestor55.34and S. venator + S. legator diverging fromtheirancestor44.85Mya.

DIVA biogeographical analysis

DIVA optimizationswereconductedwitheitheranunrestrictednumberofareas assignedtoeachnode,orwithareaspernoderestrictedtofromonetosevenregions.The unrestricted DIVA analysissuggestedthattheancestorstothetaxainthetreeoccurredin eachofthetengeographicalregions.The DIVA analysisresultedinmultiplecombinations ofoptimalreconstructions,andatotalof17dispersalevents.Theancestraldistribution forthetaxonattherootofthetreeisambiguous,butconstrainingtheoptimizationtotwo regionsresultedinanancestraldistributionthatwasSouthAmericanandIndomalayanor

NorthAmericanandSouthAmerican,(asopposedtoNorthAmerican,SouthAmerican,

Indomalayan,European,AustralianandAfrican,whenoptimizationwasconstrainedto5 regions,andthewidespreadancestraldistributionwhennoconstraintswereused).When themaximumnumberofancestralnodeswasrestrictedtotwo,theancestortothe‘higher

Libelluloidea’hasanIndomalayandistribution(Figure4).Whentheoptimizationwas constrainedto17areas(i.e.,themaximumnumberofancestralareaspossibleateach nodewasconstrainedtoafinitenumber),theancestraldistributionof Syncordulia was estimatedtobeintheSouthwesternCapeofSouthAfrica;withnoconstraintsthree

88 distributionpossibilitieswererecovered:(a)SouthwesternCape,(b)SouthwesternCape andSouthwesternCapeeastoftheHexRivermountains,and(c)all4SouthAfrican locations.Currentdistributionsof Syncordulia speciesareshowninFigure5.

4. Discussion

Therecoveryofmonophyleticcladesforeachofthe Syncordulia speciessupportsthe morphologicalfindingsofDijkstraetal.(2007).Corroboratingthevalidityofeachofthe speciesmaybeimportantforconservationeffortsgiventheVulnerableRedListstatusof

S. gracilis and S. venator .Botharesensitivetothepresenceofalientrees,andsome populationshaveincreasedfollowingremovalofalienpine(Samways,2007),ashasa populationof S. legator (SimaikaandSamways,2008).Preliminaryevidencesuggests thatthetwonewlydiscoveredspeciesarealsothreatened,with S. legator particularly susceptibletoclimatechange(Samways,2008).

PreviousdivergenceanalysisbyWareetal.(2008)didnotincludetaxafromtheGSI.

ThedatestheyrecoveredfortherootoftheirLibelluloidtreeusingapairedsite evolutionarymodelweresimilartothedatesrecoveredinthepresentanalysis(205Mya intheiranalysisvs.201Myainouranalysis).Thedatetheyrecoveredforthedivergence ofMacromiidae+Corduliidaeisalsosimilar(20millionyearsyoungerthanthedatewe recoveredhere,adifferenceof10%).Thismightbeduetoadifferenceintaxonsample

(Macromia istheonlytaxonfromthesefamiliesincommonbetweenouranalyses).

Althoughthe DIVA analysiswith2scenariossuggestedanIndomalayanancestral distributionforthehigherLibelluloidea,theancestortothisgroupisestimatedtohave divergedapproximately169.56Mya,atatimewhenthecontinentswereinmuchcloser

89 proximitytooneanother,anditislikelythattheywerepresentonallcontinents.Indeed, anunconstrainedoptimizationin DIVA suggests17scenariosincludingascenariowith higherlibelluloidpresenceineverygeographicregion.Similarly,theancestorto

Macromiidae+CorduliidaehadaNorthAmericanandIndomalayanoranAfricanand

Indomalayandistributioninour2regionoptimization,andoptimizationwithno constraintsrecovered6scenarios,includingpresenceinIndomalayan,African,North

American,andAustralianregions.Itispossiblethatthisancestor’sdistributionmay indeedhavebeenmorewidespread,sincethesefamiliesareestimatedtohavediverged fromotherLibelluloideaatatimewhenthecontinentswereinpropinquity.Since

MacromiidaeandCorduliidaeweresimplyusedasoutgroupsinouranalysis,however, thereareprobablynotenoughtaxatomakerealisticconclusionsabouttheoriginsof thesegroups.

The R8SanalysissuggeststhattheGSIdiverged109Mya.Thiscorrespondswiththe breakupofGondwanaland,duringtheearlyCretaceous(e.g.,Veevers,2004)Shortly afterthis,Australia,whichsitsontheIndoAustralianplate(e.g.,HillisandReynolds,

2000)begantobreakawayfromAntarcticaandSouthernGondwanaland.Thisvicariant eventmayhaveledtotheisolationandspeciationofthecladeofAustraliantaxa,which wereestimatedtohavedivergedapproximately65Mya.The DIVA optimization(withno constraints,orconstrainedto17regions)estimatedthattheancestortothesetaxa occurredinAustralia,suggestingnofurtherintercontinentaldispersaleventsleadingto thedistributionofpresenttaxaasdefinedhere.TheSouthAfrican,Indomalayan,

European,andSouthAmericantaxa( Syncordulia, Idionyx, Macromidia, Oxygastra and

Gomphomacromia ,)wereestimatedtohavedivergedfromtheirancestorapproximately

90 77Mya,afterGondwanalandandLaurasiaeachbegantobreakapart(e.g.,Veevers,

2004).Supportforthe Idionyx and Oxygastra cladeissurprisinglystrong(95%pp) consideringthat Idionyx haspreviouslybeensuggestedtobeacloserelativeto Macromia and Macromidia (Lieftinck,1971).Lieftinck(1971)suggestedthat Macromidia ‘bridged thegap’inevolutionbetween Idionyx and Macromia duetolarvalandadult morphologicalcharacters. Idionyx and Oxygastra areestimatedtohavediverged approximately57Mya.

IndiasplitfromAfricaandbeganitsjourneytowardssouthernAsiaaround80Mya, eventuallycollidingwithEurasiaapproximately50millionyearsago(e.g.,Zhuetal.,

2005).Theimpactofthiscollisioncreatedlargemountainrangesthatmayhaveisolated theancestorsto Idionyx and Macromidia andledtotheirdivergence.The DIVA analysis suggeststhattheancestorto Oxygastra wasonlypresentintheEuropeanregion.

The divergenceestimationfor Syncordulia suggeststhatthegenusaroseduringthe transitionfromthelateCretaceousperiodtotheCenozoic,inagreementwithDijkstraet al.’s(2007)suggestionfrommorphologythatthegenusarosewellafterthebreakupof

Gondwanaland(>120Mya).Thishypothesisisfurtherstrengthenedbyevidenceonthe dispersalofseveralfynbosplanttaxa,theRestionaceae,ProteaeandGeissolomataceae, thataresuggestedtohavedispersedoveraprotoIndianOcean,thatwasformedduring thebreakupofGondwanaland(GalleyandLinder,2006).

Thedivergencedateforthe Syncordulia clade,60Mya,correspondswiththe divergencerangeoftheRestionaceae(6070Mya),Proteae(6070Mya)and

Geissolomataceae(81±5Mya)(GalleyandLinder,2006).Thecloseecological relationshipbetween Syncordulia andthearchitectureofthesefynbosplantsmight

91 explainthestrongnegativeimpactofalientreespeciesonthegroup.The DIVA analysis constrainedtotwomaximumareassupportsanancestraldistributionfor Syncordulia restrictedtotheSouthwesternCapeofSouthAfrica,whichwouldimplythatthecurrent distributionsof Syncordulia wereduetodispersal.Unconstrained DIVA optimization recoversanancestraldistributionthatwasmorewidespreadacrossSouthAfrica.With thedifficultyofconservingmarginalpopulations(Samways,2003),particularlyinEl

NiñoproneeasternregionsofSouthernAfrica,itiscriticallyimportantthatconservation oftherelictpopulationsofthisgenusintheCFRbegivenhighpriorityinconservation managementoftheregion.

Insummary, Syncordulia isrecoveredinadeeplynestedpositioninthephylogeny,as ahighlyderivedgenuswellwithintheGSIclade. Syncordulia isamonophyleticgenus, anditsfourspeciesareeachmonophyletictaxa.Thetwonewlyproposedspeciesof

Syncordulia shouldbeassessedfurtherinregardstotheirIUCNstatus.Thiswill undoubtedlybeofuseinshapingthefutureofthesetaxa.Populationstudiesmayprovide usefulinformationabouttheamountofgeneflowthatisoccurringbetweentheoften fragmentedandisolatedclustersofeachofthefourspecies’populations

Acknowledgements WewouldliketothankDr.MichaelMayformanythoughtfuldiscussionsaboutthe biogeographyoftheGSIgroup.ThankstoJeremyHuff,KarlKjer,MichaelMay,Mark

McPeekandDanaL.PriceforreviewingthemanuscriptandtoDr.FrederickRonquist forhisdiscussionofthe DIVA program.PartsofthisworkweresupportedbyNSFDEB

0423834.

92 References

Bechly,G.,1996.MorphologischeUntersuchungenamFlügelgeäderderrezenten LibellenundderenStammgruppenvertreter(Insecta;Pterygota;Odonata)unter besondererBerücksichtigungderPhylogenetischenSystematikunddesGrundplanesder Odonata. Petalura , special vol. 2 . Bridges,C.A.,1994.Catalogueofthefamilygroup,genusgroupandspeciesgroup namesoftheOdonataoftheworld(ThirdEdition).C.A.Bridges,Urbana,Illinois,USA. Bybee,S.M.,Ogden,H.T.,Branham,M.A.,Whiting,M.F.,2008.Molecules, morphologyandfossils:acomprehensiveapproachtoodonatephylogenyandthe evolutionoftheodonatewing, Cladistics , 23, 138. Carle,F.L.,1982.AcontributiontotheknowledgeoftheOdonata.UnpublishedPh.D. thesis,VirginiaPolytechnicInstituteandStateUniversity,Blacksburg,Virginia,USA. Carle,F.L.,1995.Evolution,taxonomy,andbiogeographyofancientGondwanian libelluloides,withcommentsonanisopteroidevolutionandphylogeneticsystematics (Anisoptera:Libelluloidea). Odonatologica , 24, 383506. Carle,F.L.,Kjer,K.M.,2002.Phylogenyof Libellula Linnaeus(Odonata:Insecta). Zootaxa , 87, 118. Carvalho,A.L.,Salgado,L.G.V.,WerneckdeCarvalho,P.C.,2004.Descriptionofa newspeciesofLauromacromiaGeijskes,1970(Odonata:Corduliidae)fromSoutheastern Brazil. Zootaxa , 666, 1–11. Davies,D.A.L.,TobinP.,1985.Thedragonfliesoftheworld:asystematiclistofextant speciesofOdonata.Vol.2.Anisoptera. Societas Internationalis Odonatologica Rapid Communications , Rapid Communication (Suppl.) No. 5 .,Utrecht. Dijkstra,KD.,Samways,M.J.,Simaika,J.P.,2007.Twonewrelict Syncordulia speciesfoundduringmuseumandfieldstudiesofthreateneddragonfliesintheCape FloristicRegion(Odonata:Corduliidae). Zootaxa , 1467, 1934. Fraser,F.C.,1957.A ReclassificationoftheOrderOdonata.RoyalZoologicalSocietyof NewSouthWales:Sydney,Australia. Galley,C.,H.P.Linder,2006.GeographicalaffinitiesoftheCapeflora,South African Journal of Biogeography , 33, 236250. Garrison,R.W.,vonEllenrieder,N.,Louton,J.A.,2006.DragonflygeneraoftheNew World.AnillustratedandannotatedkeytotheAnisoptera.TheJohnsHopkinsUniversity Press,Baltimore,USA.

93 Geijskes,D.C.,1970.GenericcharactersoftheSouthAmericanCorduliidaewith descriptionsofthespeciesfoundintheGuyanas. Notes on Odonata of Surinam 11. Studies of the Fauna of Suriname and other Guyanas, 12, 142. Gloyd,L.K.,1959.Elevationofthe Macromia grouptofamilystatus(Odonata). Entomological News, 70, 197205. Grimaldi,D.,Engel,M.S.,2005. Evolution of the Insects ,CambridgeUniversityPress, NewYork,USA. Guttell,R.R.,Gray,M.W.,Schinare,M.N.,1993.Acompilationoflargesubunit(23S and23Slike)ribosomalRNAstructures. Nucleic Acids Research, 21, 30553074. Hagen,H.,1861.SynopsisoftheNeuropteraofNorthAmerica,withaListoftheSouth Americanspecies.SmithsonianInstitute,Washington,D.C.,USA. Hillis,R.R.,Reynolds,S.D.,2000.TheAustralianStressMap. Journal of the Geological Society, 157, 915921. IUCN,2001.IUCNRedListCategoriesandCriteria:Version3.1.IUCNSpecies SurvivalCommission.IUCN,Gland,,andCambridge,U.K. Jarzembowski,E.A,Nel,A.,1996.NewfossildragonfliesfromtheLowerCretaceousof SEEnglandandthephylogenyofthesuperfamilyLibelluloidea(Insecta:Odonata) Cretaceous Research. , 17, 6785. Jow,H.,Hudelot,C.,Rattray,M.,Higgs,P.G.,2002.Bayesianphylogeneticsusingan RNAsubstitutionmodelappliedtoearlymammalianevolution, Molecular Biology and Evolution , 19, 1591–1601. Kirby,W.F.,1890. A synonymic catalogue of Neuroptera Odonata. Guerneyand Jackson,London,UK. Kjer,K.M.,1995.UseofrRNAsecondarystructureinphylogeneticstudiestoidentify homologouspositions:anexampleofalignmentanddatapresentationfromthe frogs. Molecular Phylogenetics & Evolution, 4,314330. Kjer,K.M.,2004.Aligned18Sandinsectphylogeny. Systematic Biology, 53 ,506514. Kjer,K.M.,Gillespie,J.J.,Ober,K.A.,2007.Opinionsonmultiplesequence alignment,andanempiricalcomparisonofrepeatabilityandaccuracybetweenPOYand structuralalignments. Systematic Biology, 56 ,133146. Letsch,H.,2007.PhylogenyofAnisoptera(Insecta:Odonata):promisesandlimitations ofanewalignmentapproach.PhD.Thesis,UniversitätBonn,Bonn,.

94 Lieftinck,M.A.,1960.NotesontheaffinityandnomenclatureofsomeOldWorld Corduliidae(Odonata). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series C Zoology, 64, 41023. Lieftinck,M.A.,1971.StudiesinOrientalCorduliidae(Odonata).1. Tijdschrift voor Entomologie, 114 ,163. Lieftinck,M.A.,1977.NewandlittleknownCorduliidae(Odonata:Anisoptera)fromthe IndoPacificregion. Oriental Insects , 11 ,157159. Lohmann,H.,1996.DasphylogenetischesystemderAnisoptera(Insecta:Odonata). UnpublishedDiplomaThesisattheBiologicalFacultyoftheAlbertLudwigsUniversity inFreiburgi.Br.,Germany. Martin,R.,1914.Odonata,Fam.Libellulidae,subfam.Corduliinae. Genera Insectorium, 155 :131. May,M.L.,1991.Areviewofthegenus Neocordulia ,withadescriptionof Mesocordulia subgen.nov.andof Neocordulia griphus spec.nov.fromCentralAmerica, andanoteonLauromacromia(Odonata:Corduliidae). Folia Entomologia Mexicana, 82, 1767. May,M.L.,1995a.Comparativenotesonmicropylestructurein"cordulegastroid"and "libelluloid"Anisoptera. Odonatologica , 19, 5362. May,M.L.,1995b.Apreliminaryphylogeneticanalysisofthe"Corduliidae".13th International Symposium of Odonatology Essential Abstracts :36. Misof,B.,Rickert,A.M.,Buckley,T.R.,Fleck,G.,Sauer,K.P.,2001.Phylogenetic signalanditsdecayinmitochondrialSSUandLSUrRNAgenefragmentsofAnisoptera. Molecular Biology and Evolution, 18, 2737. Needham,J.G.,1908.CriticalnotesontheclassificationoftheCorduliinae(Odonata). Annals of the Entomological Society of America, 1, 273280. Nel,A.,MartínezDelclòs,X.,Paicheler,J.C.,Henrotay,M.,1993.Les ‘Anisozygoptera’fossiles.Phylogénieetclassification(Odonata). Martinia ,Numéro horssérie, 3, 1–311. Nel,A.,Paicheler,J.C.,1994.LesLibelluloidea fossilesautresqueLibellulidae.Un inventairecritique(Odonata,Corduliidae,Macromiidae,Synthemistidae, Chlorogomphidaeet Mesophlebiidae). Nouvelle Revue d'Entomologie ,(N.S.), 11, 321– 334.

95 Pfau,H.K.,2005.Structure,functionandevolutionofthe‘glans’oftheanisopteran vesicaspermalis(Odonata). International Journal of Odonatology, 8, 259310. Rambur,M.P.,1842. Neuropteres. Histoire naturelle des Insectes ,Paris,. Ronquist,F.,1996.DIVA,ver.1.1.Computerprogramavailableat http://www.ebc.uu.se/systzoo/research/diva/diva.html.UppsalaUniversity,Uppsala. Samways,M.J.,2003.Marginalityandnationalredlistingofspecies. Biodiversity and Conservation , 12, 25232525. Samways,M.J.,2008.Dragonfliesasfocalorganismsincontemporaryconservation biology.In: Dragonflies: Model Organisms for Ecological and Evolutionary Research . (ed.A.CórdobaAguilar).OxfordUniversityPress,Oxford,UK.pp.97108. Samways,M.J.,2007.NationalRedListofSouthAfricandragonflies(Odonata). Odonatologica , 35 ,341368. Sanderson,M.J.,2002.Estimatingabsoluteratesofmolecularevolutionanddivergence times:Apenalizedlikelihoodapproach, Molecular Biology and Evolution 19 ,101–109. Sanderson,M.J.,2003. R8S;inferringabsoluteratesofevolutionanddivergencetimesin theabsenceofamolecularclock. Bioinformatics 19, 301–302. SelysLongchamps,E.de.,1871.SynopsisdesCordulines. Bulletin de l' Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, Bruxelles , 31, 238565. SelysLongchamps,E.de,1882.NotesurlegenreGomphomacromiaBrauer. Comptes- rendus des Séances de la Société entomologique de Belgique , 3, clxvi–clxix. SelysLongchamps,Ede,1892.CauseriesOdonatologiques.No.6.LesGomphines d’Afrique. Annales de la Société Entomologique de Belgique 36,86–107. SimaikaJ.P.,SamwaysM.J.,2008.Valuingdragonfliesasserviceproviders.In: Dragonflies: Model Organisms for Ecological and Evolutionary Research .(ed.A. CórdobaAguilar).OxfordUniversityPress,Oxford,UK.pp109123. St.Quentin,D.,1939.DiesystematischestellungderunterfamiliederCorduliinaeSelys (OrdungOdonata). Proceedings of the International Congress of Entomology 7 (Berlin), 1, 345360. Steinmann,H.,1997.WorldcatalogueofOdonata,Anisoptera.W.Gruyter.v.2,Berlin, Germany. Swofford,D.L.,2000.PAUP*.PhylogeneticAnalysisUsingParsimony(*andOther Methods).Version4.SinauerAssociates,Sunderland,Massachusetts,USA.

96 Theischinger,G.,Watson,J.A.L.,1978.TheAustralianGomphomacromiinae(Odonata: Corduliidae). Australian Journal of Zoology, 26, 399431. Theischinger,G.,Watson,J.A.L.,1984.LarvaeofAustralianGomphomacromiinae, andtheirbearingonthestatusofthe Synthemis groupofgenera(Odonata:Corduliidae). Australian Journal of Zoology, 32, 6795. ThompsonJ.D.,GibsonT.J.,PlewniakF,JeanmouginF.,HigginsD.G.,1997.The ClustalXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedby qualityanalysistools. Nucleic Acids Research , 25, 48764882. Tillyard,R.J.,1917. The Biology of Dragonflies. CambridgeUniversityPress, Cambridge,UK. Tillyard,R.J.,1928.TheevolutionoftheorderOdonata.PartI.Introductionandearly historyoftheorder. Records of the Indian Museum, 30, 151172. Titus,T.A.,D.R.,Frost,1996.Molecularhomologyassessmentandphylogenyin thelizardfamilyOpluridae(Squamata:Iguania). Molecular Phylogenetics and Evolution, 6, 4962. Viana,M.S.,Neumann,V.H.L.,1999.TheCratomemberoftheSantanaformation, Cearástate,Brazil. In :Schobbenhaus,C.;Campos,D.A.;Queiroz,E.T.;Winge,M.; BerbertBorn,M.(Edit.) Sítios Geológicos e Paleontológicos do Brasil. http://www.unb.br/ig/sigep/sitio005/sitio005english.htm,lastviewedMay8,2008. Veevers,J.J.,2004.Gondwanalandfrom650500Maassemblythrough320Mamerger inPangeato185100Mabreakup:supercontinentaltectonicsviastratigraphyand radiometricdating, Earth-Science Reviews, 68, 1132. Ware,J.L.,May,M.L.,Kjer,K.M.,2007.PhylogenyofthehigherLibelluloidea (Anisoptera:Odonata):Anexplorationofthemostspeciosesuperfamilyofdragonflies, Molecular Phylogenetics and Evolution, 45, 289310. Ware,J.L.,Ho,S.Y.W.,Kjer,K.M.,2008.Divergencedatesoflibelluloiddragonflies (Odonata:Anisoptera)estimatedfromrRNAusingpairedsitesubstitutionmodels. Molecular Phylogenetics and Evolution, 47, 426432. Zhu,B.,Kidd,W.S.F.,Rowley,D.B.,Currie,B.S.,Shafique,N.,2005.Ageof initiationoftheIndiaAsiacollisionintheeastcentralHimalaya. Journal of Geology, 113, 265–285.

97 Table 1. Taxonsamplefromthepresentstudy Taxon Name GenBank Collection information Accession Numbers 28S, (D7, D3, D2), 16S, 12S, COI Date Sex Syncordulia 123456 2004 Female In gracilis awayfrom water Syncordulia 123456 2004 Female Ingrassland gracilis awayfrom water Syncordulia 123456 18/10/2006 Female Open legator montane streamwith riffles,glides and deposition zones Syncordulia 123456 18/10/2006 Female Open legator montane streamwith riffles,glides and deposition zones Syncordulia 123456 11/11/1999 Female Open venator montane streamwith boulders Syncordulia 123456 16/11/2006 Male Open venator montane streamwith boulders Syncordulia 123456 16/11/2006 Male Open venator montane streamwith boulders Syncordulia 123456 14/11/2006 Female Open venator montane streamwith boulders Syncordulia 123456 18/02/2006 Male Open serendipator montane

98 streamwith boulders Syncordulia 123456 19/03/2006 Male Open serendipator montane streamwith boulders Syncordulia 123456 11/03/2006 Male Open serendipator montane streamwith boulders Syncordulia 123456 11/03/2006 Female Open serendipator montane streamwith boulders Sequences downloaded from GenBank and novel COI data 28S(D7,D3,D2), COIAccessionNumbers 16Sand12S AccessionNumbers Anotogaster D7:N/A N/A sieboldii D3:N/A D2:N/A12S&16S: AB127061 Austrocordulia D7:EF631243 N/A refracta D3:EF631336 D2:EF631448 16S:EF631559 Austrophya D7:EF631236 N/A mystica D3:EF631332 D2:EF631441 16S:N/A Chlorogomphus D7:N/A N/A brunneus D3:N/A D2:N/A 12S&16S: AF266088 Chloropetalia D7:EF631248 N/A soarer D3:EF631339 D2:EF631453 12S&16S:N/A Cordulephya D7:EF631255 123456 pygmaea D3:EF631346 D2:EF631460 16S:EF631570 Cordulegaster D7:N/A N/A boltoni D3:N/A D2:N/A

99 12S&16S: AF266056 Cordulegaster D7:N/A N/A dorsalis D3:N/A D2:N/A, 12S&16S: AY282558 Cordulegaster D7:N/A N/A picta D3:N/A D2:N/A 12S&16S:AF266086 Gomphomacromia D7:EF631206 N/A sp. D3:EF631303 D2:EF631408 16S:EF631522 Hemicordulia tau D7:EF631233 N/A D3:EF631328 D2:EF631437 16S:EF631550 Hesperocordulia D7:EF631244 N/A berthoudi D3:EF631337 D2:EF631449 16S:EF631560 Idionyx selysi EF631193 123456 EF631290 EF631391 N/A Kalyptogaster D7:EF631245 123456 erronea D3:N/A D2:EF631450 12S&16S:EF631561 Lathrocordulia D7:EF631239 N/A metallica D3:EF631334 D2:EF631444 16S:EF631556 Macromia D7:EF631208 N/A illinoiensis D3:EF631305 D2:EF631410 12S&16S: EF631524 Macromidia D7:EF631209 N/A rapida D3:EF631306 D2:EF631411 12S&16S:NA Macromidia D7:EF631271 N/A rapida D3:EF631362

100 D2:EF631478 12S&16S: EF631588 Micromidia D7:EF631240 N/A atrifrons D3:N/A D2:EF631445 16S:EF631557 Neopetalia D7:EF631247 N/A punctata D3:EF631338 D2:EF631452 12S&16S: EF631563 Oxygastra curtisii D7:N/A N/A D3:N/A D2:EF631413 16S:EF631526 Oxygastra curtisii D7:N/A N/A D3:N/A D2:N/A12S&16S: AF266103 Phyllomacromia D7:EF631197 N/A contumax D3:EF631293 D2:EF631397 12S&16S: EF631511 Pseudocordulia D7:EF631251 N/A circularis D3:EF631342 D2:EF631456 16S:EF631566 Sinorogomphus D7:EF631249 N/A sp. D3:EF631340 D2:EF631454 12S&16S: EF631564 Taeniogaster D7:EF631216 N/A obliqua D3:EF631312 D2:EF631420 12S&16S:EF631533

101 Table 2. R8Sanalysisdivergenceestimates.250millionyearageconstraintbasedon oldestknownanisopteranfossils,whicharefromtheTriassic;120millionyearage constraintbasedon Araripelibellula NelandPaicheler(1994)andtheageofthe ChiapadadoAraripeformation,VianaandNeumann(1999);118millionyearage constraintbasedontheJarzembowskiandNel(1996)anddatesfromtheWealden formation. Node Constraints (millions of years) Age (millions of years) Minimum Maximum Root 120.00 250.00 200.53 Cordulegastridae 173.73 Chlorogomphidae+ 110.60 Chloropetaliidae HigherLibelluloidea 120.00 250.00 169.56 Macromiidae+ 118.00 153.08 Corduliinae Gomphomacromiinae 108.60 +Synthemistinae+ Idionychinae(GSI) NonAustralianGSI 76.90 taxa Gomphomacromia + 62.59 Macromidia Idionyx + Oxygastra 56.69 AustralianGSItaxa 65.42 (Austrocordulia, Cordulephya, Pseudocordulia, Hesperocordulia, Micromidia, Lathrocordulia, Austrophya) Syncordulia genus 59.58 S. gracilis 59.57 S. serendipator 55.34 S. legator + S. 44.85 venator Summary of rate Mean Min Max variation (substitutions per site per unit time) 3.294e+16 2.023e+16 4.356e+16

Table 3. Biogeographicalregion(s)towhicheachtaxonwasassigned. A:South B:North C: D:Europe E:Australia F:Africa G:South H: I: J: America America India/Asia (outside west North South South South Cape west west eastern Africa) Cape Cape, South eastof Africa Hex River mountai ns Neopetalia Taeniogaster Anotogaster Cordulegaster Hemicordulia Phyllomacromia S. venator S. S. gracilis S. punctata oblique sieboldii boltoni tau contumax legator venator Gomphomacro Kalyptogaste Chloropetalia Cordulegaster Austrocordulia S. mia sp. r erronea soarer picta refracta serendipator Macromia Chlorogomphu Oxygastra Cordulephya S. legator illinoiensis s brunneus curtisii pygmaea Cordulegast Sinorogomphu Pseudocordulia S. gracilis er dorsalis s sp. circularis Hemicordulia Micromidia tau atrifrons Macromidia Hesperocordulia rapida berthoudi Idionyx selysi Lathrocordulia metallica Austrophya mystica 102 103

Figure 1. Strictconsensustreefroma PAUP parsimonyheuristicsearch;10,000addition sequencereplicates;bootstrapsupportshownabovebranches.

104

Figure 2 .Consensustreefroma PHASE analysis;10milliongenerations.Posterior probabilitiesshownabovebranches.

Figure 3. R8S analysisona26taxontree;Geologicalmapsadaptedfromfiguresonrst.gsfc.nasa.gov

105 106

Figure 4. Ancestraldistributions; DIVA analysisoptimizedwith2regions;Largerletters indicatethescenariosdiscussedinthetext.

107

Figure 5. Presentdistributionsof Syncordulia speciesinSouthAfrica.Uppermostbox showsthedistributionsofall Syncordulia species,lowerboxesshowindividualspecies distributions: S. gracilis (topandtopleft); S. legator (topright); S. serendipator (bottom left); S. venator (bottomright).

108

Chapter 4:

Phylogeny, homoplasy and divergence estimates within Libelluloidea (Anisoptera: Odonata): an exploration of the usefulness of molecular and morphological characters JessicaWare 1,MichaelMay 1,andKarlKjer 2 1 Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ, 08901, USA; 2 Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ, 08901, USA

Abstract

LibelluloideaisthemostspeciosegroupinAnisoptera,butitscomplicated phylogenetichistoryhasbeendifficulttointerpret.Usingthemostcomprehensive morphologicalandmoleculardatasettodate(166taxa,100morphologicalcharactersand

9,902molecularcharacters),weexaminephylogenetichypothesesoflibelluloid relationshipsusingparsimonyanddoubletmodelBayesiananalyses.Homoplasyin dragonflywingbasedmorphologicaldatasetshavebeenpreviouslyidentifiedasasource ofdisagreementbetweenmolecularandmorphologicaltopologies,butourdatasuggests thatothermorphologicallarval,penile,accessorygenitalicandexternalbodydatasets, whicharesimilarlypronetoconvergence,recovertopologiesindisagreementwith molecularfindings.ThetaxonomyofnoncordulegastridLibelluloideaisrevisedto includejustfourfamilies(Synthemistidae sen. nov ,Macromiidae,Corduliidaeand

Libellulidae)withLibellulidaefurthersubdividedintoatleast4subfamilies(Trameinae sen. nov ,Sympetrinae sen. nov, Pantalinae sen. nov. ,andLibellulinae).Weuseour

Bayesianresultstoestimatebothdivergencetimesanddiversificationrates.Our phylogenetichypothesesanddivergenceestimatesarediscussedinrelationtothesuccess ofLibelluloidea,withafocusontheevolutionofexophyticoviposition.

109

1. Introduction

Libelluloideacomprisesatleast4taxonomicgroupsincludingthe“RiverCruisers”

(Macromiidae),“Emeralds”(Corduliidae),thediverse“GSIcomplex”( sensu Ware et al. ,

2007)andthemostabundantandfamiliardragonflies,“Skimmers/Chasers”

(Libellulidae).Libellulidaearereadilyrecognizable,oftenwithcoloredorpatterned wingsandabootshapedseriesofveins(theanalloop)inthehindwing.Theyare commonlyseeninterritorialflightaroundlakesandponds,orperchedalongthebank.

Ofthealmost2900speciesinAnisoptera(Schorr et al., 2008),alittlemorethanhalf areLibelluloidea,makingitthemostspeciosetaxoninAnisoptera.Severalhypotheses havebeensuggestedtoexplainthesuccessoflibelluloids.Libelluloidshavereduced ovipositors,modifiedforexophyticoviposition,atraitthattheysharewiththesecond mostspeciosefamily,Gomphidae.Thesetwogroupssharesomelarval,and manyofthelarvaeburrowinaquaticsediments(larvaeinthesmallfamilyPetaluridae aresemiterrestrialburowers).Burrowingmayhaveopenednewniches(sincemuddy sedimentsarepresentindifferenthabitats),leadingtothepossibledevelopmentofother correlatedchangesinmorphologyandbehavior(Carleetal.,2008).Thesimilarities betweengomphidsandlibellulidshavebeentreatedasbeingduetocommonancestry

(e.g.,Bechly,1996),whichsuggeststhattheirgreatdiversityisduetoasingleevent.

Hennig(1981),Carle(1982a),andCarleandKjer(2002),however,consideredthese similaritiesconvergent,correlated,andtriggeredbylostcharacters.Misofetal.,(2001),

Letsch(2007),Wareetal.(2007)andBybee(2008)recoveredodonatephylogeniesin whichGomphidaeandLibelluloideaarenotsistergroups,implyingthatexophytic

110 ovipositionandlarvalburrowingtraitsareindeedconvergencesthatmayhave contributedtothehighlevelofspeciationanddiversityinthesefamilies.Our understandingofwhatmayhaveledtothesuccessofLibelluloideawouldbegreatly improvedwithastronglysupportedphylogenetichypothesisofinterfamilialand intergenericrelationships.

Amonglibelluloids,adultreproductiveandfeedingbehavior,larvalbehavior,ecology

(Corbet,1999),andbiogeography(Carle,1995)varywidelyandhavebeeninvestigated intensively.Awellsupportedphylogenetichypothesisisneededtounderstandthe evolutionofthesetraits,butlittleagreementexistsaboutintergenericrelationshipswithin eachofthefourtaxonomicgroups.Furthermore,moststudiesfocusingonLibelluloidea havereliedeitherentirelyonmoleculardata(e.g.,Ware et al .,2007)orentirelyon morphologicaldata(e.g.,CarleandKjer,2002).Bybeeetal.(2008)recentlyincorporated severalLibelluloideainastudyofOdonatausingbothmolecularandmorphologicaldata, butbecauselibelluloidrelationshipswerenotthemainfocusofthisstudy,libelluloid taxonsamplewassparse.PilgrimandVonDohlen(2008)reconstructedaphylogeny usingmorphologicalandmoleculardatabuttheirfocuswasonthesinglefamily,

Libellulidae.

Mostpreviousmorphologicalstudiesoflibelluloidphylogenyhavereliedheavilyon wingveincharacters(Kirby,1890;Needham,1903;Martin,1907;Needham,1908;Ris

19091919;Tillyard,1910;NeedhamandBroughton,1927;Fraser,1957;Gloyd,1959;

Geijskes,1970;Lieftinck,1971;Theischinger&Watson,1978;Carle,1982a;Daviesand

Tobin,1985;CarleandLouton,1994;Carle,1995;Bechly,1996;Lohmann,1996a,b;

Trueman,1996;JarzembowskiandNel,1996;CarleandKjer,2002;Rehn,2003;Pilgrim

111 andvonDohlen,2008;Bybee et al .,2008).Despiteprogressinunderstanding homologiesinOdonatavenation(e.g.Carle,1982b;RiekandKukolovaPeck,1984), manywingveincharactersmaysupportconvergentrelationshipswhenusedtothe exclusionofothercharacters(Hennig,1969;Carle,1982b;Ware et al .,inprep).For example,Carleetal.(2008)foundthatreducedwingvenationhadresultedinthe erroneousgroupingofprotoneurinesanddisparoneurines(Zygoptera).Thesubfamilies ofLibellulidaerecognizedinrecentcatalogs(DaviesandTobin,1985;Bridges,1994;

Steinmann,1997),largelybasedonwingveinmorphology,haverarelybeenrecovered withmolecularortotalevidencestudies(Ware et al .,2007;PilgrimandVonDohlen,

2008).Somestudieshavefocusedonegg,genitalic,flightmusculature,color,orlarval characteristics(St.Quentin,1939;Gloyd,1959;Lieftinck,1971;Pfau,1971;

TheischingerandWatson,1984;Pfau,1991,2005;May,1995;Bechly,1996;Lohmann,

1996a;CarleandKjer,2002).Pfau’s(2005)studyofspermtransfermechanismslead himtoanalternatephylogenetichypothesisthatplacedCordulegastridae,

Chlorogomphidae,andNeopetaliidaewithinPetaluroidearatherthanLibelluloidea.Much ofthecurrentconfusionoverlibelluloidtaxonomyandphylogenymaybetheresultof uncertaincharacterhomologyandindependence(reviewedinCarle,1982b).

Herewepresentthefirstlargescalephylogenetichypothesisofthehigher

Libelluloideathatincludesbothmorphologicalandmoleculardata.Weincorporatedata generatedfromthreeindependentgenefragments,(mitochondriallargeandsmall(12S and16S)ribosomalRNAsubunitsandtheproteincodinggenesCytochromeOxidaseI

(COI)andCytochromeOxidaseII,(COII);nuclearlargeandsmallribosomalRNA subunits(18Sand28S);,andthenuclearproteincodinggeneElongationFactor1α

112

(EF1α)).Wescored100discretemorphologicalcharactersconsistingofwingvenation, externalbodystructures,accessorygenitalia,penilecharactersandlarvalstructures.

Extensivetaxonsamplinghasallowedustoexamineseveralregionsofcontentioninthe higherLibelluloideaandtoevaluatethefindingsofrecentphylogenetichypotheses

(Ware et al .,2007;PilgrimandVonDohlen,2008).Thisphylogeneticreassessment providesfurtherinformationforimprovingthetaxonomyofthehistoricallydifficult

Libelluloideawhileevaluatingtheusefulnessofawidevarietyofmorphological characterscommonlyusedinlibelluloidsystematics.Wecomparethehomoplasypresent inwingvenation,accessorygenitalic,penile,larvalandexternalbodycharacters.In addition,weuseourcombinedphylogenytoestimatedivergencetimesforeach libelluloidnodeusingtheprogramr8s(Sanderson,2003).Withthesedates,wediscuss theecologyandbehaviorofseverallibelluloidtaxa,andexplorethefactorsthatmay haveledtoLibelluloidea’ssuccess.

2. Materials and Methods

Molecular sampling

Taxon sampling

WeincludedallofthetaxasequencedbyWare et al. (2007)andalsosequenced congenersofseveraltaxaforwhichWare et al. (2007)hadsequencedonlyasingle specimen.Ouranalysishadatotalof166taxa(22GSItaxa,7macromiids,21corduliids, and116libellulids).AlltaxasequencedordownloadedfromGenBankarelistedinTable

1.Cordulegastridae,Chlorogomphidae,andNeopetaliidaeservedasoutgroups,withthe

113 treerootedusing Chloropetalia soarer ;outgrouptaxaconsistedof4speciesfrom4 cordulegastridgenera,3speciesfrom3chlorogomphidgenera,and1speciesfromthe monotypicNeopetaliidae.

Gene Selection, DNA extraction and PCR amplification

Freshlycollecteddragonflieswereusedwhenpossible;othertaxawereobtained fromprivateandmuseumcollections.Weamplifiedthesecond,thirdandseventh hypervariable(divergent)regions(D2,D3,andD7)ofthe28SrDNA,thethirddomainof themitochondrial16SrDNA, andafragmentofCOI. WedownloadedCOII,12S,18S,

28SandEF1αsequences.Thesecharacterswereincludedintheanalysisand,where necessary,codedasmissingforourtaxa(foradiscussionofmissingdataseeWeins,

2005).

MuscletissuewasextractedusingaQiagenDNEasytissuekitovernightat55 °Cwith

180LofATLBufferand20LProteinaseK.Olderspecimens(collectedpriorto

1980)wereextractedwith40L(twicethesuggestedamount)ofProteinaseKbufferfor severaldays(asuggestionmadebyR.Caesar,pers.comm.).Allotherstepsfollowedthe manufacturer’sprotocol.PCRprimers,andtheirsources,arelistedinWareetal.(2007).

Programsusedforamplificationswere(a)96 °C,3min;94 °C,30s;50 °C,30s;72 °C,45s for3540cycles;72 °C,10minand(b)96 °C,3min;94 °C,30s;46 °C,30s,72 °C,45sfor

10cycles;94 °C,30s;48 °C,40s;72 °C,45sfor30cycles;72 °C,10min.AQiagenPCR purificationkitwasusedtopurifyamplifiedproduct,whichwasthensequencedonan

ABI3100capillarysequencer.Sequencesfrombothstrandswerecomparedandeditedin

SequenceNavigator(AppliedBiosystems).Lowercaseletterswereusedtoindicate

114 nucleotidesthatwerereadablebutdifficulttointerpretwithcertaintyineitherstrand(i.e., therewascompetingbackgroundpeaks).Theselowercaseletterswerechangedto uppercaselettersonlyiftherewasagreementinthetwocomplementarystrands.When therewasconflictaboutasinglebasecallbetweenreadsfromcomplementarystrands, thisnucleotidewascodedwithanR(forambiguouspurines),Y(forambiguous pyrimidines)orN(forallotherambiguities).

Alignment

InitialsequencealignmentsweremadeusingCLUSTAL –X(Thompson et al .,1997) andtheresultingfileswerethenalignedmanuallyinMicrosoftWordusingthestructural methodsdescribedinKjer(1995)andKjer et al .,(2007),andsecondarystructuremodels basedonGuttell et al .(1993).Ambiguouslyalignedregionsweredefinedassingle strandedregionswithmultipleinsertionsanddeletions(indels)ofvariablelength(and thusunclearnucleotidehomology), boundedbyhydrogenbondedbasepairs.These regionswereexcludedfromthedataset.Forparsimonyanalyses,thesecharacterswere recodedassinglemultistatecharacterswiththeprogram INAASE (Lutzoni et al .,2000), withthestepmatricesapplied.AlignmentsareavailableontheKjerlabwebsite, www.rci.rutgers.edu/~entomology/kjer andoriginalsequencesaredepositedinGenBank.

Morphological sampling

Wecollectedmorphologicaldatafromapproximately590specimensinthe

RutgersUniversityCollection(RUC),theCaliforniaAcademyofSciences(CAS),the

AmericanMuseumofNaturalHistory(AMNH),theNationalMuseumofNaturalHistory

115

(NMNH)andtheprivatecollectionsofMikeMay(MMC)andKenTennessen(KTC).

Eachspecimenwasgivenavouchernumberandtreatedasaseparatetaxon;oncedata collectionwascompleted,informationfrommultiplespecimensofaparticularspecies wascombined.Whenmultiplespecimensfromasinglespeciesdifferedintheircharacter state,wecodedallpossiblestatespresentinthespecimensforthatparticularspecies.

Severaltaxacouldnotbeamplifiedwithmoleculartechniquesbutwerestill codedformorphologicalcharacters.Thetaxaforwhichwehadonlymorphologicaldata were Apocordulia macrops, Anatya guttata, , Cannaphila vibex,

Crocothemis divisa, Diastatops intensa, Didymops floridensis, Elasmothemis cannacriodes, Fylgia sp., Idomacromia proavita, Neocordulia batesi longipollex,

Neocordulia campana, Neophya rutherfordi, Nephepeltia phyryne, Oligoclada walkeri,

Orthetrum chrysis, Thermochoria equivocata, Trithemis sp., Urothemis sp., and

Williamsonia fletcheri.Wescored28wingvein,20externalbody,14accessory genitalic,14penile,and24larvalcharacters(Figure1aand1bshowselectedwingvein andlarvalcharacters).TerminologyforvenationfollowedRiekandKukavlovaPeck.For ourmorphologicalcharactermatrixwebeganwithpreviouslypublishedcharactersfrom

NeedhamandBroughton(1927),Fraser(1957),Miller(1991),Carle(1995),Needham et al. ,(2000),andGarrison et al. ,(2007),aswellasunpublishedcharactersfromTennessen

(pers.comm.)andCarle(pers.comm.)(Table7).Wecouldnotscoreallofthepenile charactersfromMiller(1991)becauseweusuallylackedfreshmaterialandthuswere unabletoinflatethelobesofthepenis;thesecharacterswerescoredwitha“?”.Finally, wescored10charactersthat,toourknowledge,havenotbeenusedpreviously.

116

Phylogenetic reconstruction

Themolecularandmorphologicaldatawereanalyzedseparatelyusingparsimonyto evaluatewhichnodeswereindependentlycorroborated.Thecombineddatasetwas analyzedusingparsimonyandBayesiancriteria.Fortheparsimonyreconstruction,atree bisectionreconnection(TBR)branchswapping,10,000replicateheuristicsearch,was runusing PAUP 4.0b10(Swofford,2001).Gapsofuniformlengthwereeachtreatedas presence/absencecharacters;othergapsweretreatedasmissingdata,exceptthose encodedwith INAASE ,asdescribedabove.Toestimatebranchsupport,1000bootstrap pseudoreplicates(Felsenstein,1985)wereperformedusing10randomadditionsearches perpseudoreplicate.

Weusedadoubletmodel(SchoönigerandvonHaeseler,1994)in MR .BAYES 3.1.2in ourBayesiananalyses,whichallowsmodelingofnucleotidesubstitutionsindependently instemandloopregionsofribosomalDNA(HuelsenbeckandRonquist,2002).An

MCMCanalyseswasrunfor20milliongenerations(withfourchains:onecoldandthree hot).Eachanalysishadprintfreq=500.PriortomaximumlikelihoodandBayesian analyses,weused MODELTEST 3.06Akaikeweights(PosadaandCrandall,1998;Posada andBuckley,2004)andDTMOD SEL (Minin et al .,2003)toselectanappropriatemodel ofevolutionforeachofthenonribosomalgenefragments.Bothprogramssuggesteda

GTR+I+ Γmodel(Yang,1994;Yang et al .,1994;Gu et al .,1995).Nonstemregions oftheribosomewerealsoanalyzedwiththeGTR+I+ Γmodel.Morphological characterswereanalyzedwiththeMKmodel(Lewis,2001).Aftertheanalyseswere completed,weverifiedthateachrunhadstabilizedusingTracer1.4(Rambautand

117

Drummond,2007),andcalculatedtheburninregions.Theanalysishadaburninof30% foreachchain.

R8S analyses

WeusedadoubletmodelBayesiantreebasedonourcombineddatatoruna divergenceestimationanalysisin R8S(Sanderson,2003)usingpenalizedlikelihood,a methodthatappliesapenaltyagainstlargeratechangesbetweenneighboringbranches.

Weoptimizedthesmoothingparameterusingcrossvalidationanalysis.Datesand substitutionrateswereestimatedusingthetruncatedNewtonalgorithmwith10 independentstarts.Inordertocalibratethedivergenceestimationanalysis,weusedfossil datafromGrimaldiandEngel(2005),Nel et al. (1993),NelandPaicheler(1994)and

JarzembowskiandNel(1996)(Table2).Todeterminewhetherthereweredifferencesin

^ diversificationratesamongtaxa,weestimatedtherateofdiversification, rε ,ofeachclade usingthemethodofmomentcalculationfromMagallónandSanderson(2001),where e=extinction,t=timeandn=diversitymeasure:

 1 rˆε =   log[n(1−ε) + ε]  t

Accelerationsinthenetdiversificationratewereestimatedusingtheratiocalculation fromRoelants et al .(2007),wheret=time:

  5 ln /t2−5 Diversification(post − split)  2 t − Ratio = = =1.322 1 2 −   Diversification(pre split) 2 t2−5 ln  /t −  1 1 2

118

3. Results

Maximumparsimonyanalysesrecovered700mostparsimonioustreesof11072steps long.Ourcombinedanalysisincluded10,002charactersofwhich5783wereconstant,

2332werevariablebutparsimonyuninformativeand1887wereparsimonyinformative.

ResultsfromourcombinedparsimonyanalysisareshowninFigure2,aconsensusof700 trees;resultsfromBayesiandoubletanalysesareshowninFigure3,whichisaconsensus of14,001trees.Themostlikelytreehadascoreof63625.45.Bootstrapsupportis shownabovethebranchesinFigure2andposteriorprobabilitysupportisshownabove thebranchesinFigure3.AmorphologyonlyparsimonytreeisshowninFigure4(1 mostparsimonioustree;besttreewas1025stepslong),withbootstrapsupportlisted abovethebranches.

Disagreement between analytical methods

OurparsimonyanalysesrecoveredaparaphyleticGSIcomplex,asalsofoundin parsimonyanalysesrunbyWare et al .(2007).CorduliidaeandMacromiidaeare recoveredinapolytomywithLibellulidaeinourparsimonyanalysiswhiletheBayesian analysisstronglysupportsCorduliidaeassistertoLibellulidae(100%posterior probability).TheLibellulidaeislargelyapolytomyinourparsimonyanalysis,andclades thatarerecoveredarenotconsistentwiththosefromourBayesiananalyses.Bayesianand parsimonyanalysestreatdatadifferently,(e.g.Lewis,2001),whichlikelyaccountsfor thediscrepanciesbetweentheresultsfromeachanalysismethod.Sinceourdatasetis comprisedofseveralribosomalfragments,wehavechosentofocusontheresultsfrom ourBayesiananalysesbecauseitimplementedamorerealisticmodelofevolution,

119 treatingpairedhydrogenbondedsitesinthesefragmentsindependently.Unlessotherwise noted,theresultsdiscussedbelowreferredtoourBayesiananalysis.

The GSI complex

Asinpreviousmolecularbasedanalyses(Ware et al .,2007;Letsch,2007)theGSI wassupportedasmonophyletic.ThesubfamilySynthemistinaewasrecoveredas monophyleticwithstrongposteriorprobability(100%posteriorprobability),butthis cladeincludedthenonsynthemistidtaxa Gomphomacromia and Archaeophya ,bothof whichwerepreviouslyconsideredtobemembersofthesubfamilyGomphomacromiinae

(DaviesandTobin,1985).Letsch(2007)recoveredasimilararrangement,withthe additionalinclusionof Idomacromia .Thereareseveralmorphologicalcharactersthat supportthemonophylyofSynthemistinae,includingthenumberofcrossveinsbetween thecostalbraces,thenumberofcrossveinsinthemidbasalspace,thenumberof forewingCubitalAnalcrossveins,thearrangementoflarvalpalpalteeth,andthe presenceofsetaeonthelarvalpalpalteeth.Thereare7morphologicalcharacters(wing vein,externalbody,accessorygenitalic,penile,andlarval)andseveralmolecular characters(16SandCOI)thatsupporttheSynthemistinae+ Gomphomacromia

+Archaeophya clade.Fewofthesearetruesynapomorphies,however,andmostare eitherhomoplasticderivedstates,orplesiomorphiessharedwithChlorogomphidae,

Neopetaliidaeand/orCordulegastridae.Theabsenceofagenitallobe,sharedby

Synthemistinae+ Gomphomacromia ,forexample,isaplesiomorphysharedwith

Chlorogomphidae.Theabsenceofsetaeonlarvalpalpalteeth,anotherplesiomorphy,

120 sharedby Archaeophya + Gomphomacromia + Synthemistidae,isadditionallypresentin

Pseudocordulia.

TheremaininggomphomacromiinetaxaandmembersofIdionychinaeand

Idomacromiinae( sensu Davies&Tobin,1985)arerecoveredintwoseparateclades.

Idionyx, and Macromidia arerecoveredasamonophyleticclade,with95%posterior probability.

AsinWare et al .(2007), Cordulephya isrecoverednestedwellwithintheGSI,ina cladecomprisinggomphomacromiinetaxa,contratoitspreviousassignmentin

Corduliinae(DaviesandTobin,1985). Pseudocordulia and Cordulephya arestrongly supportedassistertaxa(92%posteriorprobability).Thesetaxaarepresentinaclade comprisingtheSouthAfricanendemic Syncordulia ,theholarctic Oxygastra andseveral otherAustralianendemicgenerawith100%posteriorprobability.

Corduliine Corduliidae and Macromiidae

ThemonophylyoftheMacromiidaeisstronglysupportedwith100%posterior probability.Inadditiontoseveralmolecularcharactersfromindependentdatasets,

Macromiidaealsosharemorphologicaltraits,suchasalargeanderectanteriorhamule

(althoughthisislikelyaplesiomorphyretainedinthisgroupand Lathrocordulia ).

Phyllomacromia isamonophyleticgenus(85%).The2speciesof Macromia arenot recoveredassisters. Macromia urania hasonly16Smoleculardatasothepositionof thesetaxarelativetotheothermacromiidsmaychangewiththeinclusionofmoredata.

Corduliidae( sensu Ware et al .,2007,i.e.,Corduliinae)issimilarlystrongly supported. Pentathemis + Aeschnosoma aresistertaxa,formingacladewhichissisterto

121 theremainingCorduliidae.UnlikeinWare et al .(2007), Hemicordulia isrecoveredas nextmostapicalnode,apositionsimilarlyfoundbyLetsch(2007;althoughwitha differentcorduliidtaxonsample,andinexclusionof Pentathemis and Aeschnosoma ).

CorduliidaearerecoveredassistertoLibellulidaewith100%posteriorprobability,a positionsupportedbyasmallnumberofmorphologicalcharacters.SeveralCorduliidae andLibellulidaesharethearrangementoftheirpostanalcells(twoormoreclosedcells present),forexample,andbothpossesslateralcarinaeontwoormoreabdominal segments.

Libellulidae

ThefamilyLibellulidaeisrecoveredasmonophyleticwith96%support.Thesupport forthismonophylyis100%inpreliminaryanalysesexcludingtaxaforwhichonly morphologicaldataispresent(resultsnotshown).Therewere7cladesthatwere consistentlyrecoveredinLibellulidae(CladesAG,Figure3).Table3liststhecladesin thisanalysisthatwerealsosupportedbypreviousmolecularand/orcombineddata studies

TherestrictedTetrathemistinaefoundinWare et al. (2007)isrecoveredwith100%.

Urothemistinaeisnotwellsupported(47%posteriorprobability).

Tramea, Hydrobasileus, Tauriphila and Miathyria, all previouslyconsideredtobe membersofthesubfamilyTrameinaewererecoveredasamonophyleticassemblage alongwiththelibellulinetaxon Dasythemis (97%posteriorprobability).Othermembers oftheTrameinae ; Tholymis, Zyxomma, Rhyothemis , Idiataphe, and Pantala, werenot recoveredinthiscladebutwereinsteadscatteredthroughouttheLibellulidae.

122

ArestrictedLibellulinaewasrecovered(80%posteriorprobability),withthe remaininglibellulinetaxascatteredthroughouttheLibellulidae,whichisconsistentwith

Ware et al. (2007)andPilgrimandvonDohlen(2008).

Homoplasy in the morphological and molecular datasets

Thecharactersinourmorphologicalmatrixwerelargelyhomoplasious.Wingvein charactershadconsistencyindices(CI)whichrangedfromhigh(1.0)tolow(0.04),but onlyoneofourwingveincharacters(thenumberofcrossveinsbetweencostalbracesin forewing)hadaCIof1.0,and94%hadCIvaluesthatwerelessthan0.5.

TheothermorphologicaldatasetshadsimilarlylowCIvalues.Twoexternalbody charactershadCI’sof1.0(thepresence/absenceofventrolateralprocessesandthe presence/absenceoftheauricle),butmosthadCIvalueslowerthan0.3333.Onegenitalic characterhadaCIof1.0(thesizeofthegenitallobe),but42%hadCI’slowerthan0.1.

NoneofthepenilecharactersscoredinourmorphologicalmatrixhadCI’sgreaterthan

0.67and85%hadCI’s≤0.5.TwoofthelarvalcharactershadCI’sof1.0,but33%had

CI’slowerthan0.1.

Wecomparedtherescaledconsistencyindex(Table4)foreachcharacterinour morphologicalmatrixusinganANOVArunin EXCEL .TheANOVAfailedto demonstratesignificantvariationamongtheRCvaluesofwing,externalbody, accessorygenitalic,penileandlarvalcharacters(P=0.80).

MolecularcharactershadhigherCIandRCvaluesthanthemolecularcharacters.Six hundredmolecularcharacterswereparsimonyinformative.TheoverallCIofthe molecularcharacterswas0.5742,andtherescaledconsistencyindex(RC)was0.5776.

123

Themorphologicaldatasetcomprising100charactershadlowermeanCI(0.2715)and

RC(0.1769)values.

Divergence estimation and diversification rates

Thedatesrecoveredinouranalysiswerelargelyinagreementwiththesmallnumber ofpreviouslibelluloiddatingstudies(mostnodesdifferby<25%),althoughcertain nodesdifferedtoagreaterdegree(Ware et al .,2008;Ware et al .,submitted;Table2).

TherootofthetreewasestimatedtohaveanageinthelateTriassic(approximately214

Mya;Figure6).TheancestortoGSI+theMCLcomplex(Macromiidae,Corduliidaeand

Libellulidae)divergedapproximately132Mya,duringtheCretaceous.TheGSIare estimatedtohavedivergedfromotherLibelluloidea111Mya,andtheMCLapparently divergedfromotherLibelluloidea101Mya.Thisdateis30%lower ]thanpreviously recovered(Ware et al .,2008).WithintheMCL,Macromiidaeisestimatedtohave diverged93Mya,Corduliidae85Mya,andLibellulidae68Mya.Thedatewerecovered formacromiiddivergencewasmucholderthanpreviouslyrecovered(e.g.,63%different fromWare et al .,2008),butthisislikelyduetooursamplingoftaxadeeperintothe macromiidlineage,includingseveralnonholarctictaxasuchas Phyllomacromia and

Macromia urania .Thelibelluliddivergenceestimatewas23%olderinWare et al .(2008;

88My)thaninouranalysis(68My).

Estimatesofdiversificationratearedependentonassumptionsaboutextinctionrates.

ThediversificationrateforLibelluloideawasestimatedandusedforcomparison purposes(r 0=0.0127,r 0.95 =0.0075).Diversificationestimateswerelowestin

Cordulegastridae(r 0=0.0107,r 0.95 =0.0034)andhighestinLibellulidae(r 0=0.0328,

124

r0.95 =0.0219)(Table5).ThediversificationrateforLibelluloideaasawholemaybe lowerthantheactualvalue,sinceweestimateditwiththeageofoldestknown

AnisopteranfossilratherthanthedatefromthesplitofLibelluloideafromit’sclosest sistergroup,sincethishastoyetbeendetermined.Accelerationratesofnet diversificationwerelowestinCordulegastridae(0.0044)andhighestinGSI(0.2998)and

Libellulidae(0.4864).AccelerationratesweresimilarinMacromiidaeandCorduliidae

(0.0948and0.0911,respectively).

4. Discussion

TheresultsfromthecurrentstudyarelargelyinagreementwithCarleandKjer

(2002),Ware et al. (2007),PilgrimandvonDohlen(2007),Letsch(2007),andBybee

(2008),intermsofthemonophylyofeachoftheMCLfamilies.

HighposteriorprobabilityvaluesforGSImonophylysupportataxonomicdistinction betweenGSIandCorduliidae.WithintheGSItherearethreesubfamilies,eachone stronglysupported(<95%posteriorprobability).AsdiscussedinLetsch(2007)and brieflymentionedinWare et al .(2007),therelativepositionsof Gomphomacromia and

Oxygastra agreewithTheischingerandWatson’s(1984)suggesteddivisionof gomphomacromiinesintoan Oxygastra groupand Gomphomacromia group.Theybased thisdistinctionon Gomphomacromia, Archaeophya and Pseudocordulia larvae,which aresimilarinmanywaystosynthemistinelarvae(bothsynthemistidsand

Gomphomacromia lacklarvalpalpalsetae,havesubrectangularlarvalheads,broad,flat larvalpronota,welldevelopedlarvalfrontalplates,andlacklateralspinesonthelarval abdominaltergites). Gomphomacromia + Synthemistidaewasrecoveredwithstrong

125 supportbyLetsch(2007;100%posteriorprobability),buthedidnotinclude

Pseudocordulia or Archaeophya .Withamorecompletesynthemistidtaxonsampleand

Archaeophya ,werecovered Archaeophya + Gomphomacromia + Synthemistidae.Inour analysis, Pseudocordulia ,suggestedtobeamemberofthe Gomphomacromia group,is neverrecoveredwithSynthemistidae, Gomphomacromia and/or Archaeophya butrather issisterto Cordulephya inacladecomprisingthe‘Oxygastragroup’taxa.Ourresults thereforesupportthedefinitionof Archaeophya + Gomphomacromia + Synthemistidaeas amonophyleticsubfamilywithintheGSIonlyintheexclusionof Pseudocordulia .

Macromiidaecomprises4genera: Didymops, Epophthalmia, Macromia and

Phyllomacromia (May,1997);taxafromeachgenuswereincludedinthepresentstudy.

Withtheexceptionofthestronglysupportedarrangementof Epopthalmia + Macromia urania (100%posteriorprobability),bothofwhichareIndomalayanintheirdistribution, and Didymops transvera + Macromia illinoiensis (100%posteriorprobability),bothof whichareNorthAmericangenera,ourresultsdoprovidemuchinformationabout intergenericrelationshipsinMacromiidae.Thegenerallackofgenericmonophyly recoveredhereshouldbetreatedwithcautionuntilmoremoleculardatacanbe incorporatedforthesetaxa,anduntilmoreMacromiidaearesequenced.

CorduliidaeisrecoveredassistertoLibellulidae,whichhasbeenfoundbyseveral previousphylogeneticstudies(e.g.,CarleandKjer,2002;Bybee,2008;Letsch,2008).

AsinLetsch(2008),andWare et al .(2007),somespeciesof Somatochlora andCordulia arerecoveredtogether,althoughinourphylogenyneitherthe3speciesof Cordulia nor the2speciesof Somatochlora arerecoveredintogetherinoneclade.Withthegeneand taxonsampleofthepresentstudy,wecannotevaluatethestatusofthemonophylyof

126

Cordulia or Somatochlora. Speciesof Cordulia aresosimilarastobedifficultto distinguishmorphologically,andwebelievethegenusissurelymonophyletic(Jodickeet al.,2002). Somatochlora ,however,isanextremelyspecioseandheterogeneousgenus, thesystematicsofwhicharecurrentlybeingevaluatedusingawidertaxonsampleand genefragmentsthatevolvemorerapidlythanthoseusedhere(Voigt,pers.comm.).

AsinWare et al .(2007),andPilgrimandvonDohlen(2007),thelibellulid subfamiliesBrachydiplacinae,Leucorrhiniinae,Palpopleurinae,Sympetrinae,

Tetrathemistinae,Trameinae,andTrithemistinae,asdefinedbyFraser(1957)orDavies andTobin(1985),arenotsupportedasmonophyletic(seeTable3foracomparisonof whichnodesweresupportedbyrecentmolecularanalysesofLibelluloidea).

ThelibellulidcladesrecoveredherearesimilarincompositiontoWareet al. (2007),

Letsch(2007),andPilgrimandvonDohlen(2008),withafewnotableexceptions(Table

3).Allofthesestudiesusedsecondarystructuralalignmentofribosomaldata,andeach ranBayesiananalyses.Thepresentstudy,Ware et al .(2007)andLetsch(2007)eachused evolutionarymodelsthattookintoaccounttheinterdependenceofribosomalpairedsites, althoughWareetal.usedanRNA7Amodeltocodethestemregionsoftheirdatawhile

Letschandthepresentstudyusedthedoubletmodelin MR .BAYES (Huselbeckand

Ronquist,2002).Theaforementionedstudiesdifferedinthecompositionoftheir moleculardatasetsandLetsch(2007)didnotincorporatemorphologicaldata.These differencesmayhavebeenresponsiblefortheminordisagreementsbetweenphylogenetic hypotheses.

Someofthetaxonomicgroupingsthatwererecoveredweresurprisingdeviations frompreviousmorphologybasedassumptions. Pantala and Trithemis ,forexample,are

127 recoveredassistergroupsbyWare et al .(2007),PilgrimandvonDohlen(2008)andthe presentstudy.Thisissurprising,consideringstrikingdifferencesintheirappearance, behaviorandbiogeography. Pantala arecosmopolitan,largewinged,migratory dragonflieswhile Trithemis aresmalltomediumsizeddragonfliesthatarenonmigratory andfoundinAfrica,IndoMalayaandSouthernEurope.Therecoveryof Diastatops +

Perithemis and Zenithoptera incladesseparatefrom Palpopleura wassimilarly surprising,sincethesetaxahavebeencommonlyplacedinthesubfamilyDiastatopidinae basedontheirwingcolorationandthepresence,insometaxa,ofaconcavecostalvein.

Ingeneral,taxarepresentedbymorphologicalcharactersaloneweretreatedwith caution,especiallyincaseswherethesetaxawererecoveredoutsideofthefamilywithin whichtheyweretraditionallyplaced(i.e., Fylgia ).Indeed,thepositionsof Fylgia,

Neocordulia, and Idomacromia variedwithanalysismethod,andbetweenpreliminary

(notshown)andfinalBayesiananalyses.Thepositionofthesetaxadidnotappearto greatlyaffectthetopologyofthetreesrecovered,butthestochasticityoftheirplacement isworthyofnote.ManyodonatecollectionsaredeficientintaxafromAfrican,Asianand

MiddleEasternregionsandtoooftenanyavailablespecimensfromtheseregionsare difficulttoamplifyduetoageand/orpreservationmethod.Ifwewishtoincludesuch taxaintoourphylogeneticanalyses,butareunabletoobtainfreshspecimens,itwouldbe usefultobeabletoincorporatethemintoacombinedanalysisonthebasisof morphologicalcharactersalone.Thehighlevelsofhomoplasywithinmost morphologicaldatasets,however,mightpreventthesetaxafrombeingrecoveredina positionreflectiveofthe‘truetree’.Althoughpreviousauthorshavesuggestedthatthe useofmorphologicalcharactersotherthanwingvenationmightbeusefulinresolving

128 dragonflyrelationships(e.g.,PilgrimandvonDohlen,2008),wefoundthattheseother suitesofmorphologicalcharactersweresimilarlyunabletoprovidestrongsupportor resolutionamonggeneraandfamilieswithinLibelluloidea.

Homoplasy among morphological and molecular characters

Differencesintheevolutionaryrelationshipsproposedbylibelluloidmolecularand morphologicaldatasetsarenumerous.Ingeneral,morphologicalandmoleculardataoften disagreeinphylogeneticstudies,anditcanbedifficulttodeterminewhattodowhen thesedatasetsclash:(a)waitformoredata,(b)combinethedata,or(c)favortheresults fromonedatasourceoveranother(Jenner,2004).Awaitingmoredatamaynotbe profitableinthepresentcase,sinceawiderangeofbothsmallscale(Kambhampati

1996;Misof et al. ,2001;HasegawaandKasuya,2006)andlargescale(Ware et al .,

2007;Letsch,2007;PilgrimandvonDohlen,2008;Bybee,2008)studieshavealready beenundertaken,incorporatinganywherefromonetoseveralindependentmolecular datasets,eachofwhichhasbeenlargelyindisagreementwithmorphologicaldata.

Traditionalsubfamilyandevenfamilylevelmorphologicalbasedtaxonomyisinconflict withpresentmolecularandcombineddatahypotheses(Ware et al .,2007;Letsch,2007;

PilgrimandvonDohlen,2008;Bybee,2008).Othergenesmightincreaseresolutionand branchsupportinmoleculardata,butitseemsunlikelythatthiswouldalsoresultinthe resolutionofconflictbetweenmorphologicalandmoleculardata.Additional morphologicaldatashouldbeusefulifitwerelowinhomoplasy,but,giventheapparent extentofhomoplasyinwidelyusedmorphologicalcharacters,itisdifficulttoidentify suitesofnonhomoplasiousmorphologicalfeatureswithoutreferencetoindependent

129 data.Abetterargumentmaybethatmoleculardatagivemoreconcordantresultswhen comparingindependentsequencesand/orresultobtainedindependentlybydifferent researchers.Whenwecombinedthedatasetshere,werecoveredaphylogenylargelyin agreementwithpreviousmolecularonlyphylogenetichypothesesbyWare et al .(2007) andLetsch(2007).Extensivehomoplasyinthemorphologicaldatasetleadsustofavor molecularand/orcombinedphylogenetichypothesesovermorphologyonlydatasets.

Carle(1995)recoveredmonophyleticfamiliesusingmorphologicaldataand algorithmicmanualparsimony,butheassignedcharacterstatesatthefamilylevel,which mayhideintrafamilialandintragenericvariation,bothofwhichinfluencetheamountof homoplasywithinourdataset..Inordertoreducehomoplasyandnonindependence amonghischaracters,Carle(1995)downweightedoromittedcharacterchangesthatwere likelytobecorrelatedwithpreviouslyusedcharacters(“coapomorphies”)orthat representedlosses(“expomorphies”)andthusmadedetectionofconvergencedifficult.

Weconcurthatsuchcharacterscaneasilydistortresultsofmorphologybased phylogeneticanalyses,andaccountingfortheseeffectswouldbebeneficial,butwefound itextremelydifficulttodetermineobjectivelywhichcharactersareindeedfunctionally correlated.Moreover,ifcoapomorphiesorexapomorphiesaretobedownweightedin relationtotheirfrequencyofoccurrence,weightswillvarydependingontaxonsampling.

Wethereforeadheretothemorecommonassumptionthathomoplasywillberevealedby conflictwithpresumablymorefrequenthomologouschanges.Nevertheless,webelieve thateffortstoidentifyaccuratelystronglycoapomorphiccharacters,andtheexerciseof considerablecautioninrelyingonputativehomologiesduetolossofstructuralfeatures,

130 willprobablybenecessarytoimproveourabilitytointerpretphylogenyandcharacter evolutionindragonflies.

Molecularonlyphylogenetichypothesesarealsoseldominagreementeither,andin theoryanindependentmorphologicaldatasetlowinhomoplasywouldbeusefulin clarifyingintrafamilialrelationships.Unfortunately,characterscommonlyusedin dragonflymorphology,andthenewcharactersfromthepresentstudy,areextremely homoplasious.

Itiscommonformolecularandmorphologicalevolutiontooccuratdifferentrates

(Patterson et al .,1993), andinterpretationofmorphologicalcharacters,especially,is complicatedbyfunctionallydrivenconvergentevolution.Wingvenationfeatures,for example,maybehighlycorrelated(e.g.,Carle,1982b;PilgrimandvonDohlen,2008;

Ware et al .,inprep),andflightbehaviormayinfluenceveindensity,theshapeandsize ofthewing,andthevenationpattern.AsdiscussedinPilgrimandvonDohlen(2008),for example,Trameinae(sensuFraser,1957;notsupportedasmonophyleticbymolecular data)havesimilarlyshapedwings,withbroadbasesandexpandedanalregions.Thisarea ofthewinghasbeenthoughttobecorrelatedwithflightbehavior(e.g.,Bechly,1996;

PilgrimandvonDohlen,2008).Similarly,asfoundinWare et al .(2007)andFleck et al .

(2008),Tetrathemistinaearenotfoundtobemonophyletic.DijkstraandVick(2006) notedthatvenationinTetrathemistinaeislikelytobesubjecttoconvergenceassociated withnarrowingofthewingbase.

Severalofthevenationpatternsinourmorphologicalmatrix(suchasthenumberof cellsintheRSPL(Figure1b),thepresenceofundulationintheR 4+5 ,andtheangleofthe analloopmidrib)mayaffectchordwiseflexibility,spanwisestiffnessandwingtwisting

131 orcamber.Understandingofthedetailsofwingkinematicsandaerodynamicsduring flappingflight,however,isasyettoorudimentarytomakeconfidentpredictionsofthese effects(WootonandKukalovaPeck,2000;CombesandDaniel,2003a,b;2005)or,in general,torelatedifferencesinvenationpatternstospecificflightcharacteristics.

Wingvenationisoftencitedasacharactersetpronetoconvergence(e.g.,Carle,

1982b;Bechly,1996),butwefoundthatmorphologicalcharactersunrelatedtovenation couldalsobehighlyhomoplasious.Larvalmorphologymaybelinkedtolarvalhabitat andbehavior,suchaswatercurrentspeed,burrowingbehavior,larvalpositioninthe stream(sinceterrestrial,bankdwellers,rockclingersandlarvaedwellingamongplantsin themiddleofthestreammayhavedifferentadaptations)andthepresenceofpredatorsor competitors.Dorsalspinesonthelarvalabdomen,forexample,havebeenshowntodiffer in Leucorrhinia withfishpredatorpresence(MikolajewskiandJohansson,2003;

HovmollerandJohansson,2004).Stillotherstudieshavesuggestedthatspinesmayhelp stabilizethelarvaduringrecoilfromlabialprotraction(Nestler,1980)orwhencrawling throughvegetation(Aguiar,1989).Othercharacters,suchastheprothoracicepaulets, havebeensuggestedtoprotecteyesduringburrowinginmayflies(EdmundsandTraver,

1959).

Maledragonfliesusetheirsecondarygenitaliatoremovespermfromcompeting males,andthisbehaviormayhaveledtohighlyvariable,oftenextremelyelaborate penilestructures,thehomologiesofwhicharesometimesdifficulttoassessforthe purposesofmorphologicalanalyses(e.g.,Miller,1991).Miller(1991)extensively investigatedthehighlyvariedpenilestructureswithinLibellulidae.Usingthe classificationschemefromDaviesandTobin(1985),Millerwasunabletoreconcilethe

132 oftencomplex,penilestructureswithlibellulidtaxonomy.WecomparedMiller’sdata withourcombinedphylogenetichypothesisbutalsofoundnoobviousphylogenetic patterninthearrangementandlengthofthesestructures(Table8).Additionalpenile charactersscoredinourmatrixwerealsofoundtovarygreatlybetweenspecieswithina singlegenus.Figure5displaysSEMphotographsshowingthehighvariabilityofpenile structuresinLibellulidae:Figure5bshowsvariationinacladethathasbeenwidely supportedasmonophyletic, Sympetrum + Celithemis + Leucorrhinia ,andFigure5c,5d, and5eshowvariationamongthedistantlyrelated Brachydipla x, Chalcostephia and

Brachythemis .InCladeEofourphylogeny,however,therewassomepenilesimilarity betweenlibellulidgenera:thetaxa Nannothemis, Erythrodiplax, Pseudoleon, Uracis and

Ypirangthemis haveincommonanelongated,cylindricaldistalsegmentofthe vesica spermalis (Figure5a;identifiedinGarrison et al .,2006).Allofthesetaxa,withthe exceptionoftheyettobesequenced Ypirangthemis, arerecoveredinamonophyletic cladewithmoderatesupport(83%;Figure2; Pseudoleon wasnotsequencedherebut foundtobecloselyrelatedto Erythrodiplax byPilgrim&vonDohlen,2008).Basedon ourphylogeny,onecouldassumethatanelongateddistal vesica spermalis segmentwas thegainedseveraltimes,orthatitwastheancestralcondition(whichhassubsequently beenlostintheothertaxainthisclade,i.e., Acisoma, Rhodopygia, Nannophya,

Bradinopyga, Hemistigma, Palpopleura, Diplacodes, and Crocothemis ).Secondary lossessuchasthismaydistortourperceptionoftheamountofdisagreementbetween morphologicalandmoleculardatasets(Jenner,2004).

Althoughcolorandcolorpatternhavebeenusedinphylogeneticanalyses,especially atlowertaxonomiclevels(e.g.,CarleandKjer,2002;May,2002),itsuseathigher

133 levels,especially,isproblematicbecauseofthelikelihoodofstrongselectionfor signaling,concealment,orthermalfunctions(e.g., Calopteryx :Waage,1984,Misof et al .,

2000; Chlorocypha :Lempert,1988;Corbet,1999; Plathemis :Corbet,1999).The libellulidsubfamilyPalpopleurinae(notsupportedasmonophyleticbyourmolecular data),forexample,sharecoloredwings,whichtheymayhaveconvergeduponforvisual displaypurposes,ortoactaswaspmimics( Perithemis :Paulson,1966;Michalski,1988).

Furthercomplicatingtheuseofwingcolorationinlibelluloidtaxonomyisthe geographicalvariationinmanycolorationpatterns(e.g., Tetragoneuria :Donnelly,pers. comm.).Someodonatesusetheirwingorbodycolorationpatternsforvisualdisplays.

Ingeneral,morphologicalcharactersmaynotbeabletoanswerthequestionswehave aboutinterfamilialandintergenericrelationships.Whenwerananalysesofeach morphologicalgrouping(wingvenation,externalbody,genitalia,penile,andlarval characters)wefoundthattherewaslargedisagreementbetweeneachphylogenetic reconstructionrecovered,whicharealsoinconflictwiththemoleculardata(Table6).

Taxonomy

Giventhesimilarityandconsistencyinlibelluloidphylogenetichypothesesbetween thecombinedanalysisfromthepresentstudyandrecentanalyses(Letsch,2007;Ware et al .,2007;PilgrimandvonDohlen,2008;Bybee,2008),weproposenamesfortheGSI groupand4libellulidclades.

TheGSIcomprisestaxafromtheputativesubfamiliesIdionychinae,Idomacromiinae,

Neophyinae,SynthemistinaeandGomphomacromiinae(DaviesandTobin,1985).The oldestfamilygroupnameisSynthemistidae,basedonTillyard(1917),whoapplieditto

134 thesubfamilySynthemistinae.WethereforeproposethattheGSIshouldbenamed

“Synthemistidae”toincludeatleastthetaxapresentlyincorporated,other gomphomacromiines.

Libellulidaewaspreviouslyconsideredtocompriseatleast11subfamilies(Davies andTobin,1985;Steinmann,),butgiventhelackofsupportforthesesubfamilieswe takethisopportunitytorevise,inpart,thetaxonomyofLibellulidaebasedoncurrent evidence.Herewerecognizefoursubfamilies,eachsomewhatdifferentincomposition fromthetraditionalunderstanding(Fraser,1957;DaviesandTobin,1985;Bridges,194;

Steinmann,)ofthesesubfamilies;theremaininggeneraareleft incertae sedis pending moredetailedstudy.Wherepossible,weusedtheoldestgenusnamewhenassigning subfamilynames.PartofCladeBisdesignatedTrameinae, sens. nov .,comprisingatleast

Tramea Hagen,1861, Hydrobasileus Kirby,1989, Miathyia Kirby,1889,and Tauriphila

Kirby,1889,butnot Pantala Hagen,1861,RhyothemisHagen,1867,orTholymis,

Hagen,1867,allofwhichhavebeencommonlyplacedherepreviously. Dasythemis appearstobelonghere,butthisissounexpectedonmorphologicalgroundsthatwe suggestthatitspositionneedsfurtherstudy.LikewiseTetrathmistinae(sensuFlecketal.,

2008)andUrothemistinaecouldbeincluded,butagainweprefertoawaitadditionaldata beforesuggestingthischange,especiallysincesupportforanamalgamationofthese threegroupsislow.Trameinae,thusrestricted,wasalsofoundbyPilgrimandvon

Dohlen(2008),andLetsch(2007)recoveredthisgroupingassistertotheurothemistines, butnottotetrathemistines.

WedesignateCladeCasSympetrinae, sens. nov. ,currentlyincludingthetypegenus

Sympetrum Newman,1833,aswellas Leucorrhinia Brittinger,1850and Celithemis

135

Hagen,1861,andtheformerlyrecognizedsubfamilyLeucorrhiniinaeissubsumedwithin

Sympetrinae;averysimilarresultwasreportedbyLetsch(2007),Wareetal.,(2007),and

PilgrimandvonDohlen(2008).ForCladeF,comprising Trithemis Brauer,1968,and

Pantala Hagen,1861,amongothers,weproposethenameTrithemistinae, sens. nov .

PilgrimandvonDohlen(2007)andWareetal(2007)bothfound Pantala and Trithemis tobecloselyrelated;Letsch(2007)didnotinclude Pantala inhisanalysis.Itishighly likelythatanumberofgenerawillbeaddedtothissubfamilyasresearchprogresses,but itseemsclearthatitwillhavelittleresemblancetothetraditionalTrithemistinae,which appearstobeapolyphyleticassemblageofconvenience.

ForCladeG,whichlargelycompriseslibellulinetaxaandcontainsthegenus

Libellula Linnaeus1758,weacceptthecurrentnameLibellulinae,forthepresent excluding Cannaphila, Dasythemis and Hadrothemis ,previouslyassignedtoLibellulinae butnotrecoveredwithinCladeG(confirmationoftheplacementofthesetaxawith additionalmoleculardatawouldbeverydesirable).Letsch(2007),Wareetal.,(2007), andPilgrimandvonDohlen(2008)recoveredaverysimilarlibellulineclade.Itisalso reasonablywelldefinedbyasuiteoflarvalcharactersdiscussedbyFleck,etal.(2008).

Giventhecomplicatedtaxonomichistoryandfrequentnamechangesoflibelluloids(see

Ware et al .,2007forareviewofthevariousnomenclaturechangesoverthelast125 years),lowsupportforsomecladesthatarecandidatesforsubfamilydesignation,andthe nearcertaintythatcompositionofsomecladeswillchangewithadditionofmoretaxato lateranalyses,onemayquestionthewisdomofnamingsomenewsubfamiliesnow.We suggestthattheformaldesignationoftaxonnamestothewellsupportedcladesinour phylogenywillbebeneficialforfuturestudyoflibelluloids.Taxonnamedesignation

136 providesdefinitiontoourphylogenetichypotheses,whichcanbetestedinthepresenceof additionaltaxaandoutgroups.Namedtaxaprovidereadyindicationgroupsthatarelikely tobephylogeneticallyjustifiedandthusstableand,byomission,indicatethesubordinate taxaforwhichrelationshipsaremostproblematic.Theyalsoguidethestudyofcharacter evolutionandmayfacilitaterecognitionofmorphologicalsynapomorphiesthatcanin turnrefineandprovidefirmersupportofsucceedingphylogenetichypotheses.Toavoid unnecessaryfuturecomplicationsinlibelluloidtaxonomy,however,weavoidednaming cladesforwhichsupportvalueswerelow(CladeEhadthelowestposteriorsupport,

59%).

Libelluloid speciation, divergence estimation, biogeography and success

RadiationinLibelluloidea,particularlyinLibellulidae,wasapparentlyrapid,as evidencedbytheshortbranchlengthsalongthebackboneofthissectionofthetree

(Figure3).Thisrapidradiationmayberesponsibleforthepoorlysupportednodesin

Libellulidae.Asfoundpreviously(Misof et al .,2001;HasegawaandKasuya,2006; reviewedinPilgrimandvonDohlen,2008),the16Sand12Sfragmentsarenotvery usefulinresolvingtherelationshipswithintheLibelluloidea.PilgrimandvonDohlen

(2008)suggestthatrapidradiationinOdonata,alongwithsaturationofnucleotidesites hasmadephylogeneticanalysisdifficult.

Libelluloideacomprisesalargenumberofheterogeneoustaxa,andisthemost speciosesuperfamilyinAnisoptera.Ouranalysishadalargetaxonsample,with77%of

GSIgenera,100%ofmacromiidgenera,63%ofcorduliidgeneraand50%oflibellulid generarepresented(witharepresentationof17%ofGSIspecies,6%ofmacromiid

137 species,14%ofcorduliidspeciesand12%oflibellulidspecies).Usingthislargetaxon set,wewereabletoassessdiversificationratesandestimatedivergencetimes,inorderto explorewhatmayhaveledtosucharapidradiationinLibelluloidea(Figure6).Ourr8s analysissuggestedtheageoftherootofthetreewasTriassic(214).Atthistime,the continentswerestillincloseproximity,followingthebreakupofthesupercontinentof

PangeathatcreatedthesouthwestIndianOceanrift,splittingSouthAmerica+Africa fromEastGondwanaandmovingIndiaawayfromAntarctica,andtheNorthAtlantic

Caribbeanrift,whichseparatedLaurasiafromSouthAmericaandAfrica(Dietzand

Holden,1970).IftheancestortoLibelluloideawaspresentonalllandmasses,the isolationfollowedbythesegeographicalvicarianteventsmayhaveinfluencedits divergence.

Ourestimateforthedivergenceofnoncordulegastridtaxa(132Mya)issimilarto thatofCarle(1995),whosuggestedthattheradiationofnoncordulegastridLibelluloidea began‘atleast140millionyearsago’.DuringtheearlyCretaceous,Gondwanalandbegan tobreakapart(e.g.,Veevers,2004),whichlikelyresultedinthecreationofgeographical barrierstodispersalandtheisolationofpopulations.Vicarianteventssuchasthishave beensuggestedtodrivetherateofspeciation(e.g.,Nelson,1969;Rosen,1975,1978;

PlatnickandNelson,1978;NelsonandRosen,1980;NelsonandPlatnick,1981;Wiley,

1981).Movementofcontinentsmayhaveresultedinanincreasedamountofinlandwater

(e.g.,Hallam,1993);theoccurrenceofadditionalwatersourcesmighthaveencouraged dispersalofdragonflies,virtuallyallofwhichhaveaquaticorsemiaquaticlarvae.

Perhapstheancestorofnoncordulegastridtaxawasabletoexploitsmaller,and/or temporarybodiesofwaterthatdevelopedasaresultofGondwanaland’sbreakup,many

138 ofwhichmaynothavebeenabletosupportthewidevarietyofplantmaterialpresentin largerwatersources.Movementtonew,smallerand/ortemporarywatersourcesmight havebeenastrategytoavoidpredators,suchasneobatrichidfrogs,whichdiversified duringtheJurassicperiod,approximately160Mya(Roelants et al .,2007).Wefindit hardtoreconciletheevidencefromourdatinganalysiswiththehypothesisthatnon cordulegastridLibelluloideadivergedinAntarctica(Carle,1995)

AsdiscussedinWare et al .(2008)divergenceestimationm.aybeusefulinshaping ourhypothesesabouttheevolutionofstructuresrelatedtolibelluloidsuccess,suchas exophyticovipositionandburrowing.Mentionedabove,reductionintheovipositor, convergentlysharedwiththeGomphidae(Carle,1995),isaprominentfeatureof

Libelluloidea.TheovipositorofandPetaluridae(andZygoptera)comprises threepairsofventralprocesses.Thefirstandsecondpairs(anteriorandposterior gonapophyses)areenclosedbythethird(gonoplacs).Inlibelluloids,including

Cordulegastridae,theovipositorismodifiedforexophyticoviposition(Tillyard,1917;

Carle,1995;Figure6).InCordulegastridae,thethirdprocesses(gonoplacs)arevestigial.

IntheGSIclade,thethirdprocessesareabsentandatleastthesecondprocessesare reduced,althoughinsometaxathefirstpairispresentandnearlyaslongasin

Cordulegastridae.IntheMCL,thefirstprocessesarereducedtosmallflapsandtheother structuresareapparentlyabsentexceptfortheprobablevestigeofthestyliemerging directlyfromthe9 th sternite(Tillyard,1917).Inafewinstances,the8 th (e.g.,some

Somatochlora )or8 th and9 th sternites( Uracis )aresecondarilyproducedtoforman ovipositorinMCLspecies.Ifincreasedspeciationislinkedtoareductioninthe ovipositor(Carle,1995),wewouldexpecttherateofdiversificationtobehighestinthe

139 cladeswhichdivergedaftertheovipositorwasextremelyreduced.Basedontheir ovipositionmorphology,wemightexpectthehighestdiversificationratesinourdataset tooccurintheMCLandthelowestdiversificationratestooccurintheCordulegastridae.

Wecalculateddiversificationrates(r)forLibelluloidea,andforeachfamilyusingthe datesobtainedfromourr8sanalysisandthenumbersofspecieslistedbySchorr et al.

(2008),assumingeitheralowextinctionrate( ε=0)orahighextinctionrate( ε=95).Ther valuesforLibelluloideawereprogressivelyhigherinthemoreapicalnodesof

Libelluloidea,underbothassumptionsofextinctionrate(Figure6),withLibellulidae havingatenfoldhigherratethanChlorogomphidae.Thenetdiversificationrate calculationssuggestedthatGSIatonetimehadhigheraccelerationofdiversificationthan ispresentlyobservedwhichmightimplythattheywerebetteradaptedtoprevious environmentalconditions,and/orthattheyarelessabletocompeteforresourcesuponthe divergenceofLibellulidae. TheGSIlikelydivergedduringtheJurassic,withthe ancestorto Gomphomacromia + Archaeophya +Synthemistinaedivergingfromother

GSItaxaapproximately85Mya.Duringthistimeperiod,Australiahadbeguntomove awayfromAntarcticaandSouthAmerica(Veevers,2004).Theancestorto Archaeophya

+SynthemistidaebecameisolatedinAustralasia,whichmayhaveledtothespeciationof

Archaeophya andSynthemistidae.TheIndomalayanGSItaxa Idionyx +Macromidia divergedaroundthetimewhenIndiacollidedwithEurasia(approximately54Mya;e.g.,

Zhu et al .,2005).Therecovery,withstrongsupport,of Oxygastra and Syncordulia ina cladecomprisingAustralianendemicsdiverging47Mya,wellafterthebreakupof

Pangea,mightsuggestthatthecurrentdistributionofthesetaxainEuropeandAfrica, respectivelyisduetodispersal.

140

TheradiationoftheMCLcomplexbegan101millionyearsago,withMacromiidae diverging10millionyearsbeforeCorduliidaeand30millionyearsbeforeLibellulidae.

EachofthesefamiliesdivergedduringtheJurassic,withmostofthegenerawithinthese cladesdivergingduringtheCretaceousandCenozoic.Thissuggeststhatthecurrent distributionoftaxalike Libellula ,whicharepresenton4continentsbutdivergedwell aftertheformationoftheAtlanticOcean,maybeduetodispersal.Similarly,taxasuchas

Orthetrum ,presentinseveralcountriesintheOldWorld,mayhavedispersedintotheir presentlocationsaftertheydivergedfromtheirlibellulineancestorduringtheCenozoic.

Summary

TheLibelluloideacomprisefourfamilies:Synthemistidae( sens. nov ),Macromiidae,

CorduliidaeandLibellulidae.Libellulidaecomprises7apparentclades,fourofwhichare consistentenoughincompositiontobenamed:Trameinae( sens. nov. ),Sympetrinae

(sens . nov. ),andTrithemistinae( sens. nov. ),andLibellulinae( s.s. ).Therecoveryof monophyleticlibelluloidcladesislargelyduetomoleculardata,andourmorphological datawhenanalyzedaloneisinconflictwiththephylogenetichypothesesgeneratedby combinedanalyses.Homoplasyisrampantineachofthemorphologicaldatasetswe examined,notjustinwingvenationalcharacters.Divergenceestimationsuggeststhat

LibelluloideadivergedfromitsancestorduringthelateTriassic,withnoncordulegastrid taxadivergingduringtheJurassic.Diversificationrateswerehighestinthemostspeciose family,Libellulidae,whichdivergedduringtheearlyCretaceous,andlowestinthe

Chlorogomphidae.Exophyticovipositionmayhavebeenresponsiblethesuccessof

Libelluloidea,andtaxawithhighestdiversificationrateshavearethosewiththemost

141 reductioninthegonapophyses.FutureworkonLibelluloideashouldbegintodiscover whethertherearemorphologicalsynapomorphieswhichsupportthetaxonomicgroupings recoveredbycombinedanalyses.Inordertobestestimatethedivergencetimesand biogeographyofLibelluloideastillmoretaxashouldbesequenced,particularlyfrom

AfricanandAsia,toincreasethenumberofgenerarepresented.

Acknowledgements WewouldliketothankGeorgeHamilton,JeremyHuff,andMarkMcPeekforcareful reviewofthemanuscript.Thankyoutotheauthorswhosesequenceswedownloaded, especiallySethBybeeandErikPilgrim.WeareadditionallygratefultoHeatherSmith

Koppenhöferforherassistanceinrunningvariousanalyses,andtothefollowing researcherswhohelpedusaccessprivateandmuseumcollections:KenTennessen,Ollie

Flint,JerryLouton,TerryIrwin,TobySchuh,DaveGrimaldi,NormPenny,andLorenzo

Prendini.Thankstothosewhodonatedspecimensforinclusioninourmolecularwork, especially],KDDijkstra,RoryDow,RosserGarrison,JimJohnson,VincentKaulkman,

KamillaKoch,ElenaMalikova,MilenMarinov,KaiSchütte,NataliavonEllenrieder, andKeithWilson.ThanksalsotoFrankL.Carle,whosuppliedunpublishedsequences forsomespecies.ThisworkwassupportedbyNSFDEB0423834.

142

References Aguiar,S.D.S.,1989.Whatisthefunctionofthedorsalhooksandlateralspinesin larvaldragonflies(Anisoptera)? Notulae Odonatologicae 3:43–44. Bechly,G.,1996.MorphologischeUntersuchungenamFlügelgeäderderrezenten LibellenundderenStammgruppenvertreter(Insecta;Pterygota;Odonata)unter besondererBerücksichtigungderPhylogenetischenSystematikunddesGrundplanesder Odonata. Petalura , special vol. 2 :402pp. Bridges,C.A.,1994.Catalogueofthefamilygroup,genusgroupandspeciesgroup namesoftheOdonataoftheworld(ThirdEdition).C.A.Bridges,Urbana,Illinois. Bybee,S.M.,Ogden,T.H.,Branham,M.A.,Whiting,M.F.,2008.Molecules, morphologyandfossils:acomprehensiveapproachtoodonatephylogenyandthe evolutionoftheodonatewing. Cladistics ,doi:10.1111/j.10960031.2007.00191.x Carle,F.L.,1982a.AcontributiontotheknowledgeoftheOdonata.Unpublished Ph.D.thesis,VirginiaPolytechnicInstituteandStateUniversity,Blacksburg,Virginia. 1095pp. Carle,F.L.,1982b.ThewingveinhomologiesandphylogenyoftheOdonata:a continuingdebate. Societas Internationalis Odonatologica Rapid Communications, Rapid Communication, 4:x+66pp. Carle,F.L.,1995.Evolution,taxonomy,andbiogeographyofancientGondwanian libelluloides,withcommentsonanisopteroidevolutionandphylogeneticsystematics (Anisoptera:Libelluloidea). Odonatologica ,2 4(4) :383506. Carle,F.L.andLouton,J.A.,1994.ThelarvaofNeopetaliapunctataandestablishmentof Austropetaliidaefam.nov.(Odonata). Proceedings of the Entomological Society of Washington , 96(1 ):147155. Carle,F.L.andKjer,K.M.,2002.PhylogenyofLibellulaLinnaeus(Odonata:Insecta). Zootaxa , 87 :118. Combes,S.A.andDaniel,T.L.,2003a.Flexuralstiffnessininsectwings.I.Scalingand theinfluenceofwingvenation.Journal of Experimental Biology, 206(17 ):29792987. Combes,S.A.andDaniel,T.L.,2003b.Flexuralstiffnessininsectwings.II.Spatial distributionanddynamicwingbending.Journal of Experimental Biology, 206(17) :2989 2997. Combes,S.andDaniel,T.L.,2005.Flexuralstiffnessininsectwings:Effectsofwing venationandstiffnessdistributiononpassivewingbending. American Entomologist , 51(1) :4245.

143

Corbet,P.S.,1999.Dragonflies:BehaviorandEcologyofOdonata.CornellUniversity Press,Ithaca,NY.829pp. Davies,D.A.L.andTobinP.,1985.Thedragonfliesoftheworld:asystematiclistof extantspeciesofOdonata.Vol.2.Anisoptera. Societas Internationalis Odonatologica Rapid Communications , Rapid Communication (Supply.) No. 5. ,Utrecht.151pp. Dietz,R.S.andHolden,J.C.,1970.ReconstructionofPangaea:breakupanddispersion ofcontinents,Permiantopresent. Journal of Geophysical Research, 75(26) :49394956. Dijkstra,K.D.B.andVick,G.S.,2004.Inflationbyvenationandthebankruptcyof traditionalgenera:thecaseofNeodythemisandMicromacromia,withkeystothe continentalAfricanspeciesandthedescriptionoftwonewNeodythemisspeciesfromthe AlbertineRift(Odonata:Libellulidae). International Journal of Odonatology 9:5170. Edmunds,G.F.andTraver,J.R.,1959.TheclassificationoftheEphemeropteraII. Ephemeroidea:Behningiidae. Annals of the Entomological Society of America 52 :4351. FelsensteinJ,1985.Confidencelimitsonphylogenies:Anapproachusingthebootstrap. Evolution 39:783791. Fleck,G,Brenk,M.andMisof,B.,2008.Larvalandmolecularcharactershelptosolve phylogeneticpuzzlesinthehighlydiversedragonflyfamilyLibellulidae(Insecta: Odonata:Anisoptera):TheTetrathemistinaeareapolyphyleticgroup.2008. Organisms Diversity and Evolution 8(1) :116. Fraser,F.C.,1957.A reclassificationoftheorderOdonata.RoyalZoologicalSocietyof NewSouthWales:Sydney.133pp. Garrison,R.N.,vonEllenreider,N.andLouton,J.A.,2006.DragonflyGeneraofthe NewWorld:AnIllustratedandAnnotatedKeytotheAnisoptera.TheJohnsHopkins UniversityPress.368pp. Geijskes,D.C.,1970.GenericcharactersoftheSouthAmericanCorduliidaewith descriptionsofthespeciesfoundintheGuyanas. Notes on Odonata of Surinam 11. Stud. Fauna Suriname, 12(60) :142. Gloyd,L.K.,1959.Elevationofthe Macromia grouptofamilystatus(Odonata). Entomological News, 70 :197205. Goloboff,P.A.,1999.Analyzinglargedatasetsinreasonabletimes:solutionsfor compositeoptima. Cladistics 15(4) :415428. Goloboff,P.A.,Mattoni,C.I.andQuinteros,A.S.,2006.Continuouscharactersanalyzed assuch. Cladistics , 22(6) :589601.

144

Grimaldi,D.andEngel,M.S.,2005.EvolutionoftheInsects.CambridgeUniversity Press. Guttell,R.R.,Gray,M.W.andSchinare,M.N.,1993.Acompilationoflargesubunit (23Sand23Slike)ribosomalRNAstructures. Nucleic Acids Research, 21 :30553074. Gu,X.,Fu,Y.X.andLi,W.H.,1995.Maximumlikelihoodestimationofthe heterogeneityofsubstitutionrateamongnucleotidesites. Molecular Biology and Evolution 12 :546 Hallam,A.,1993.Jurassicclimatesasinferredfromthesedimentaryandfossilrecord. Philosophical Transactions of the Royal Society of London B341 :287–296. Hasegawa,E.,Kasuya,E.,2006.PhylogeneticanalysisoftheinsectorderOdonatausing 28Sand16SrDNAsequences:acomparisonbetweendatasetswithdifferent evolutionaryrates. Entomological Science 9:5566. Hennig,W.,1969.StammesgeschichtederInsekten,W.Kramer,Frankfurt/M. Hennig,W.,1981.InsectPhylogeny,AcademicPress,NewYork. HovmollerR.,JohanssonF.,2004.Aphylogeneticperspectiveonlarvalspine morphologyinLeucorrhinia(Odonata:Libellulidae)basedonITS1,5.8S,andITS2 rDNAsequences. Molecular Phylogenetics and Evolution , 30 (3) :653662. Huelsenbeck,J.P.,Ronquist,F.,2002.MrBayes3:Bayesiananalysisofphylogeny. UniversityofCalifornia. Jarzembowski,E.A.andNel,A.,1996.NewfossildragonfliesfromtheLower CretaceousofSEEnglandandthephylogenyofthesuperfamilyLibelluloidea(Insecta: Odonata). Cretaceous Research 17 ,67–85. Jenner,R.A.,2004.Whenmoleculesandmorphologyclash:Reconcilingconflicting phylogeniesoftheMetazoabyconsideringsecondarycharacterloss. Evolution & Development 6(5) :372378. Kennedy,C.H.,1922.ThemorphologyofthepenisinthegenusLibellula(Odonata). Entomological News, 33 :3340. Kirby,W.F.,1890.AsynonymiccatalogueofNeuropteraOdonata.Guerney& Jackson,London,202pp. KjerK.M.,1995.UseofrRNAsecondarystructureinphylogeneticstudiestoidentify homologouspositions:anexampleofalignmentanddatapresentationfromthefrogs. Molecular Phylogenetics & Evolution, 4(3) :314330.

145

Kjer,K.M.,Gillespie,J.J.,Ober,K.A.,2007.Opinionsonmultiplesequencealignment, andanempiricalcomparisonofrepeatabilityandaccuracybetweenPOYandstructural alignments. Systematic Biology, 56 :133146 Lempert,J.,1988.UntersuchungenzurFauna,Ökologieundzum FortpflanzungsverhaltenvonLibellen(Odonata)anGewässerndestropischen RegenwaldesinLiberia,Westafrika.Diplomarbeit,UniversitätBonn. Letsch,H.,2007.PhylogenyofAnisoptera(Insecta:Odonata):promisesandlimitations ofanewalignmentapproach.Diplomarbeit,UniversitätBonn Lewis,P.O.,2001.Alikelihoodapproachtoestimatingphylogenyfromdiscrete morphologicalcharacterdata. Systematic Biology, 50 :913925. Lieftinck,M.A.,1971.StudiesinOrientalCorduliidae(Odonata).1. Tijdschrift voor Entomologie, 114(1) :163. Lohmann,H.,1996a.DasphylogenetischesystemderAnisoptera(Insecta:Odonata). unpublisheddiplomathesisattheBiologicalFacultyoftheAlbertLudwigsUniversityin Freiburgi.Br.117+13pp. Lohmann,H.,1996b.DasphylogenetischesystemderAnisoptera(Odonata). Entomologische Zeitschrift , 106(6) :209252(firstpart); 106(7) :253266(secondpart); 106(9) :360367(postscript). Lutzoni,F.,Wagner,P.,Reeb,V.,Zoller.S.,2000.Integratingambiguouslyaligned regionsofDNAsequencesinphylogeneticanalyseswithoutviolatingpositional homology. Systematic Biology, 49 :628651 Magallón,S.,Sanderson,M.J.,2001.Absolutediversificationratesinangiosperm clades. Evolution, 55 :1762—1780. Martin,R.,1907.Cordulines. Collections Zoologiques du Baron Edm. de Selys Longchamps. Institut royal des Sciences Naturelles de Belgique : Brussels . 17 :194. May,M.L.,1995.Comparativenotesonmicropylestructurein"cordulegastroid"and "libelluloid"Anisoptera. Odonatologica , 19(1) :5362. May,M.L.,1997.ReconsiderationofthestatusofthegeneraPhyllomacromiaand Macromia(Anisoptera:Corduliidae). Odonatologica, 26(4) :405414 Michalski,J.,1988.AcatalogueandguidetothedragonfliesofTrinidad(Order Odonata),Occas.Pap.No.6,Univ.ofWestIndies,St.Augustine,Trinidad

146

Mikolajewski,D.J.andJohansson,F.,2004.Morphologicalandbehaviouraldefensesin dragonflylarvae:traitcompensationandcospecialization, Behavioral Ecology, 15 :614– 620. Miller,P.L.,1991.ThestructureandfunctionofthegenitaliaintheLibellulidae (Odonata). Zoological Journal of the Linnean Society , 102(1) :4374. Minin,V.,Abdo,Z.,Joyce,P.,Sullivan,J.,2003.Performancebasedselectionof likelihoodmodelsforphylogenyestimation. Systematic Biology , 52 :674683. Misof,B.,Anderson,C.L.,Hadrys,H.,2000.APhylogenyoftheDamselflyGenus Calopteryx(Odonata)UsingMitochondrial16SrDNAMarkers. Molecular Phylogenetics and Evolution , 15(1) :514. Misof,B.,Rickert,A.M.,Buckley,T.R.,Fleck,G.,Sauer,K.P.,2001.Phylogenetic signalanditsdecayinmitochondrialSSUandLSUrRNAgenefragmentsofAnisoptera. Molecular Biology and Evolution, 18(1) :2737. Nel,A.,X.MartinezDelclos,Paicheler,J.C.,Henrotay,M.,1993.Les"Anisozygoptera" fossiles:phylogeneieetclassification(Odonata). Martinia (horsser.) 3:1311. Nel,A.,Paicheler,J.C.,1994.Leslibellulidaefossiles.Uninventairecritique(Odon., Anisoptera,Libelluloidae). Entomologica Gallica, 4(4 ):166190. Needham,J.G.,1903.Agenealogicstudyofdragonflywingvenation. Proceedings of the U.S. National Museum , 26(1331) :703764. Needham,J.G.,1908.CriticalnotesontheclassificationoftheCorduliinae(Odonata). Annals of the Entomological Society of America, 1:273280. Needham,J.G.,Broughton,E.,1927.ThevenationoftheLibellulinae(Odonata). Transactions of the American Entomological Society (Philadelphia), 53 :157190. Needham,J.G.,Westfall,M.J.,May,M.L.,2000.DragonfliesofNorthAmerica. Scientificpublishers,Inc.939pp. Nelson,G.J.,1969.TheProblemofHistoricalBiogeography. Systematic Zoology , 18(2) : 243246 Nelson,G.,Platnick,N.,1981.Systematicsandbiogeography:cladisticsandvicariance. ColumbiaUniversityPress,NewYork. Nelson,G.,andRosen,D.E.,1981.Vicariancebiogeography:acritique.Columbia UniversityPress,NewYork.593pp.

147

Nestler,J.M.,1980.NicherelationshipsoftheAnisopteranymphsofIsaqueena. Dissertation.ClemsonUniversity,Clemson,SouthCarolina,USA. PaulsonD.R.,1966.DragonfliesofSouthFlorida(Odonata:Anisoptera).Ph.D. dissertation,UniversityofMiami,CoralGables,Florida.603pp. Patterson,C,Williams,D.M.,andHumphries,C.J.,1993.Congruencebetween molecularandmorphologicalphylogenies. Annual Review of Ecological Systematics ., 24 : 153188. Pfau,H.K.,1971.StrukturundFunktiondessekundarenKopulationsapparatesder Odonaten(Insecta,Palaeoptera),ihreWandlunginderStammesgeschichteund BedeutungfurdieadaptiveEntfaltungderOrdnung , Zeitschrift fur Morphologie der Tiere , 70 :281371. Pfau,H.K.,1991.Contributionsoffunctionalmorphologytothephylogenetic systematicsofOdonata. Advances in Odonatolology, 5:109141. Pfau,H.K.,2005.Structure,functionandevolutionofthe‘glans’oftheanisopteran vesicaspermalis(Odonata). International journal of Odonatology, 8(2) :259310. Pilgrim,E.M.andvonDohlen,C.D.,2008.PhylogenyoftheSympetrinae(Odonata: Libellulidae):furtherevidenceofthehomoplasiousnatureofwingvenation. Systematic Entomology , 33 :159174. Platnick,N.J.andNelson,G.,1978.Amethodforanalysisofhistoricalbiogeography. Systematic Zoology 27 :116. Posada,D.andCrandall,K.A.,1998.Modeltest:testingthemodelofDNAsubstitution. Bioinformatics, 124 :817–818. Posada,D.andBuckley,T.,2004.Modelselectionandmodelaveraginginphylogenetics: AdvantagesofAkaikeinformationcriterionandBayesianapproachesoverlikelihood ratiotests. Systematic Biology , 53(5 ):793808. RambautA.andDrummondA.J.,2007.Tracerv1.4,Availablefrom http://beast.bio.ed.ac.uk/Tracer Rambur,M.P.,1842.Neuropteres.HistoirenaturelledesInsectes,Paris,pp.534. Rehn,A.,2003.PhylogeneticanalysisofhigherlevelrelationshipsofOdonata, Systematic Entomology, 28 :181–239 Riek,E.F.andKukalováPeck,J.,1984.Anewinterpretationofdragonflywingvenation baseduponEarlyUpperCarboniferousfossilsfromArgentina(Insecta:Odonatoidea)and

148 basiccharacterstatesinpterygotewings. Canadian Journal Of Zoology , 62(6 ):1150 1166. Ris,F.,19091919.CollectionsZoologiquesduBaronEdm.deSelysLongchamps,Cat. System.etDescript.,Fasc.916.Bruxelles,Hayez,Impr.desAcadémies. Roelants,K.,Gower,D.J.,Wilkinson,M.,Loader,S.P.,Biju,S.D.,Guillaume,K., Moriau,L.,Bossuyt,F.,2007.Globalpatternsofdiversificationinthehistoryofmodern amphibians. Proceedings of the National Academy of Sciences of the United States of America, 104 :887892. Rosen,D.E.,1975.AvicariancemodelofCaribbeanbiogeography. Systematic Zoology, 24 :431464. Rosen,D.E.,1978.Vicariantpatternsandhistoricalexplanationsinbiogeography. Systematic Zoology, 27 :159188. Sanderson,M.J.,2003.r8s:inferringabsoluteratesofmolecularevolutionand divergencetimesintheabsenceofamolecularclock. Bioinformatics, 19 :301302. Schmidt,E.,1916.VergleichendeMorphologiedes2.und3.Abdominalsegmentesbei männlichenLibellen. Zool. Jb. (Abt. Anat.), 39 :87196. Schnare,M.N.,Damberger,S.H.,Gray,M.W.,Gutell,R.R.,1996.Comprehensive comparisonofstructuralcharacteristicsineukaryoticcytoplasmiclargesubunit(23S like)ribosomalRNA. Journal of Molecular Biology, 256 :701719. Schorr,M.,Lindeboom,M.,Paulson,D.,2008.WorldOdonataList. http://www.ups.edu/x6140.xml ,LastvisitedMay13,2008. Schoöniger,M.,vonHaeseler,A.,1994.SimulatingefficientlytheevolutionofDNA sequences. Computational Applied Bioscience 11 :111115. St.Quentin,D.,1939.DiesystematischestellungderunterfamiliederCorduliinaeSelys (OrdungOdonata). Proceedings Of the International Congress of Entomology 7 (Berlin), 1:345360. Swofford,D.L.,2001.PAUP*.PhylogeneticAnalysisUsingParsimony(*andOther Methods).Version4.SinauerAssociates,Sunderland,Massachusetts. Theischinger,G.,Watson,J.A.L.,1978.TheAustralianGomphomacromiinae(Odonata :Corduliidae). Australian Journal of Zoology, 26 :399431. Theischinger,G.,Watson,J.A.L.,1984.LarvaeofAustralianGomphomacromiinae,and theirbearingonthestatusofthe Synthemis groupofgenera(Odonata:Corduliidae). Australian Journal of Zoology, 32 :6795.

149

Theischinger,G.,Fleck,G.,2003.Anewcharactersusefulfortaxonomyandphylogeny ofAnisoptera(Odonata). Bulletin de la Societe entomologique de France 108(4) :409 412. Thompson,J.D.,T.J.Gibson,F.Plewniak,F.Jeanmougin,D.G.Higgins,1997.The ClustalXWindowsInterface:FlexibleStrategiesforMultipleSequence AlignmentAidedbyQualityAnalysisTools. Nucleic Acids Research, 24 :48764882. Tillyard,R.J.,1910.Monographofthegenus Synthemis .(Neuroptera:Odonata). Proceedings of the Linnean Society of New South Wales , 35 :312377. Tillyard,R.J.,1917.ThebiologyofDragonflies.Cambridge.CambridgeUniv.Press. Trueman,J.W.H.,1996.Apreliminarycladisticanalysisofodonatewingvenation. Odonatologica, 25 :5972. Veevers,J.J.,2004.Gondwanalandfrom650–500Maassemblythrough320Mamerger inPangeato185–100Mabreakup:supercontinentaltectonicsviastratigraphyand radiometricdating. Earth-Science Reviews, 68 :1–132. Waage,J.K.,1984.Influenceofovipositionbehavioronfemaleandmaleresponses duringcourtshipinCalopteryxmaculataandC.dimidiata(Odonata:). Behaviour 32 :400404. Ware,J.L.,May,M.L.,Kjer,K.M.,2007.PhylogenyofthehigherLibelluloidea (Anisoptera:Odonata):anexplorationofthemostspeciosesuperfamilyofdragonflies. Molecular Phylogenetics and Evolution 45 (1) :289–310. Ware,J.L.,Ho,S.Y.W.,Kjer,K.M.,2008.Divergencedatesoflibelluloiddragonflies (Odonata:Anisoptera)estimatedfromrRNAusingpairedsitesubstitutionmodels. Molecular Phylogenetics and Evolution, 47 ,426432. Wiens,J.J.,2001.Characteranalysisinmorphologicalphylogenetics:problemsand solutions. Systematic Biology 50 :689–699. Weins,J.J.,2005.Missingdataandthedesignofphylogeneticanalyses. Journal of Biomedical Informatics , 39 :3442. Wiley,E.O.,1981.Phylogenetics:thetheoryandpracticeofphylogeneticsystematics. NewYork,NewYork,U.S.A:JohnWileyandSons. Wootton,R.J.,Kukalova–Peck,J.,2000.FlightadaptationsinPalaeozoicPalaeoptera (Insecta). Biological Reviews , 75 :129167. Yang,Z.,1994.Estimatingthepatternofnucleotidesubstitution. Journal of Molecular

150

Evolution , 39 :105111. Yang,Z.,Goldman,N.,Friday,A.E.,1994.Comparisonofmodelsfornucleotide substitutionusedinmaximumlikelihoodestimation. Molecular Biology and Evolution , 11 :316324. ZhuB,KiddWSF,RowleyDB,CurrieBS,ShafiqueN.,2005.Ageofinitiationofthe IndiaAsiacollisionintheeastcentralHimalaya. Journal of Geology 113 :265–85

151

Figure1a:Selectedlarvalmorphologicalcharactersfromourmatrix.A:median prominenceonfrons;B:degreeofeyeprotuberance;C:eyespositionrelativetoocciput; D:coxalprotuberances;E:prothoracicepaulets;F:wingpads;G:hindtarsaeandclaw lengthrelativetotibiallength;H:dorsalhookspresentonsegment4segment8;I:lateral spinesonabdomen;J:paraprocts;K:arrangementoflabialpalpalteethandsetae;L:cleft inprementalhinge;M:hairpresenceonprementalhinge;N:transversesulcus;O:sulcus presenceon8and9.

152

Figure1b:Selectedwingveinmorphologicalcharactersfromourmatrix;imageisbased onanelectronicscanof Pantala flavescens wing.RSPL=Radialsectorplanatevein, MBS=Midbasalspace,CuA=Cubitoanalcell.

153

Figure2:Consensustreefromaparsimonyheuristicsearch(10,000additionsequence replicates;consensusof700trees).Numbersabovebranchesarebootstrapsupport values.Taxaforwhichonlymorphologicaldatawerepresentarenotedwithadragonfly symbol.*indicatesthatthecladecompositiondiffersfromtheBayesiananalysis.

154

Figure3:Bayesiananalysisconsensustree(from14001post“burnin”trees).Posterior probabilitiesarelistedabovebranches.Taxaforwhichonlymorphologicaldatawere presentarenotedwithadragonflysymbol.Insetboxisaphylogramofthemostlikely tree.

155

Figure4:Morphologybasedmaximumparsimonytree;consensustree.

Figure5:Morphologicalcharactersfromselectedtaxainouranalyses;(a)anelongateddistalsegmentofthevesicaspermalis isfoundin threetaxafromCladeE,(b)variationsinpenilestructureamongcloselyrelatedtaxafromCladeC,(c)variationsin penilestructurebetweenamongdistantlyrelatedtaxafromCladeAandCladeD.

156

Figure6:Resultsfromther8sanalysisanddiversificationcalculations.(a)Diversificationratesforstemgroupsinouranalysis underlow(r 0.0 )andhigh(r 0.95 )extinctionrates;(b)Cordulegasterovipositor;(c)Synthemisovipositor;(d)Trameaovipositor; (e)ProportionaldiversityofextantcladesduringtheCretaceousperiod;(f)Proportionaldiversityofextantcladesduringthe CenozoicPaleogeneperiod;(g)ProportionaldiversityofextantcladesduringtheCenozoicNeogeneperiod.Ovipositor diagramsareadaptedfromTillyard(1917).Geologicalmapsmodifiedfromusgs.com.

157

Table1:Taxonlistforthepresentstudy:sequencesdownloadedfromGenBank(lightgrey),novelmoleculardata(darkgrey) andtaxaforwhichonlymorphologicaldata(white)arepresent. Taxon COI, COII, EF-1ααα 18S, 28S, 12S, and 16S Novel accession accession numbers numbers Acisoma panorpoides COI:N/A N/A COII:DQ166802 EF1α:EF640489 18S:N/A 28S:EF631433,EF631322,EF631229 12S&16S:EF631546,EF640410 Aeschnosoma forcipula COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631427,EF631319,EF631223 12S&16S:EF631540 Aethriamanta gracilis COI:N/A 16S:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Aethriamanta rezia COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631384,EF631188 12S&16S:EF631501 Agrionoptera longitudinalis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631440,EF631331,EF631235 12S&16S:EF631553 Anatya guttata Morphologyonly N/A

158

Anotogaster sieboldii COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:AB127419 12S&16S:AB127061 Apocordulia macrops Morphologyonly N/A Archaeophya magnifica COI:N/A COI:123456 COII:N/A EF1α:N/A 18S:N/A 28S:EF631470,EF631356 12S&16S:EF631580 Atoconeura luxata COI:N/A D2:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631243 D3:EF631336 D2:EF631448 16S:EF631559 Austrophya mystica COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631236 D3:EF631332 D2:EF631441 16S:N/A Brachydiplax c chalybea Morphologyonly N/A

159

Brachydiplax denticauda COI:N/A N/A COII:EU055364 EF1α:N/A 18S:EU055167 28s:EF631451,EF631246,EU055265 12S&16S:EU054976,EF631562 Brachymesia furcata (morphology)/ Brachymesia COI:N/A N/A gravida (molecular) COII:N/A EF1α:EF640470 18S:N/A 28S:N/A 12S&16S:EF640392 Brachythemis leucosticta COI:N/A N/A COII:DQ166797 EF1α:EF640491 18S:N/A 28S:EF631463,EF631349,EF631258 12S&16S:EF640412,EF631573 Bradinopyga strachani COI:N/A N/A COII:N/A EF1α:EF640493 18S:N/A 28S:EF631462,EF631348,EF631257 12S&16S:EF640414,EF631572 Brechmorhoga mendax COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631385,EF631189 12S&16S:EF640453,EF631502 Calophlebia interposita COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631381 12S&16S:N/A

160

Cannaphila vibex Morphologyonly N/A Celithemis elisa COI:N/A N/A COII:N/A EF1α:EF640471 18S:N/A 28S:EF631428,EF631320,EF631224 12S&16S:,EF631541 Celithemis elisa COI:N/A N/A COII:N/A EF1α:EF640471 18S:N/A 28S:N/A 12S&16S:,DQ021425 Chalcostephia flavifrons COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631465,EF631351,EF631260 12S&16S:EF640385,EF631575 Chlorogomphus brunneus COI:N/A N/A COII:EU055383 EF1α:N/A 18S:EU055186 28S:EU055284 12S&16S:AF266088,EU055091 Chloropetalia soarer COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631248 D3:EF631339 D2:EF631453 12S&16S:N/A Choristhemis flavoterminata COI:N/A COI:123456 COII:EU055362 EF1α:N/A

161

18S:EU055165 28S:EF631442,EF631333,EF631237,EU055263 12S&16S:EU054974,EF631554 Cordulephya pygmaea COI:N/A COI:123456 COII:EU055345 EF1α:N/A 18S:EU055148 D7:EF631255 D3:EF631346 D2:EF631460 16S:EF631570 Cordulegaster boltoni COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:N/A D3:N/A D2:N/A 12S&16S:AF266056 Cordulegaster dorsalis COI:N/A N/A COII:EU055376 EF1α:N/A 18S:EU055179 28S:EU055277 12S&16S:AY282558 Cordulegaster picta COI:N/A N/A COII:N/A EF1α:N/A 18S:DQ008198 D7:N/A D3:N/A D2:N/A12S&16S:AF266086 Cordulia aenea COI:N/A N/A COII:N/A EF1α:N/A 18S:AF461236

162

28S:EF631500,EF631383,EF631286,AF461210 12S&16S:EF631603 Cordulia annurensis COI:N/A D2:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Cordulia shurtleffi COI:N/A N/A COII:EU055377 EF1α:N/A 18S:EU055180 28S:EF631435,EF631326,EF631232,EU055278 12S&16S:EU054989,EU055085 Crocothemis divisa Morphologyonly N/A Crocothemis erythraea COI:N/A N/A COII:N/A EF1α:DQ008200 18S:DQ008200 28S:EF631429,EF631321,EF631225 12S&16S:AF266100,EF631542 Crocothemis servilia COI:N/A N/A COII:DQ166789 EF1α:EF640495 18S:N/A 28S:EF631390,EF631289,EF631192,AB127415 12S&16S:EF640416,EF631506 Dasythemis esmeralda COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631386 12S&16S:N/A Deielia phaon COI:N/A N/A COII:N/A EF1α:EF640496

163

18S:N/A 28S:EF631430,EF631226 12S&16S:EF640417,EF631543 Diastatops intensa Morphologyonly N/A Didymops floridensis Morphologyonly N/A Didymops transversa COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631436,EF631327 12S&16S:EF631549 Diplacodes haematodes COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631443,EF631238 12S&16S:EF631555 COI:N/A N/A COII:N/A EF1α:EF640533 18S:N/A 28S:EF631387, 12S&16S:EF640454,EF631503 Dythemis multipunctata COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631330,EF631259 12S&16S:EF631574 Dythemis multipunctata COI:N/A D7:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Elasmothemis cannacriodes Morphologyonly N/A

164

Elga leptostyla COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631481,EF631274 12S&16S:N/A Epitheca princeps COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631407,EF631302,EF631205 12S&16S:EF631521 Epitheca stella COI:N/A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Epophthalmia sp. COI:N/A D2:123456 COII:DQ166792 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Erythemis simplicicollis COI:AF195759 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631389,EF631288,EF631191 12S&16S:AY282566,EF631505. Erythrodpilax minuscula COI: N/A COII:EU055340 EF1α:N/A 18S:EU055144 28S:EF631388,EF631287,EF631190,EU055239 12S&16S:EU054950,EF631504

165

Eusynthemis brevistyla COI:N/A COI:123456 COII:N/A EF1α:N/A 18S:N/A 28S:EF631434,EF631323,EF631230 12S&16S:EF631547 Fylgia sp Morphologyonly N/A Gomphomacromia sp. COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631206 D3:EF631303 D2:EF631408 16S:EF631522 Hadrothemis defecta COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631484,EF631366,EF631277 12S&16S:EF631592 COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631431,EF631227 12S&16S:EF631544 Hemicordulia tau COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631233 D3:EF631328 D2:EF631437 16S:EF631550 Hemistigma albipuncta COI:N/A N/A

166

COII:N/A EF1α:N/A 18S:N/A 28S:EF631461,EF631347,EF631256 12S&16S:EF631571 Hesperocordulia berthoudi COI:N/A COI:123456 COII:EU055357 EF1α:N/A 18S:EU055159 28S:EU055257 D7:EF631244 D3:EF631337 D2:EF631449 16S:EF631560 Huonia oreophila COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631477,EF631361,EF631270 12S&16S:EF631587 Hydrobasileus brevistylus COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631457,EF631343,EF631252 12S&16S:EF631567 Idiataphe amazonica COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631377 12S&16S:N/A Idionyx selysi COI:N/A COI:123456 COII:N/A EF1α:N/A 18S:N/A

167

D7:EF631193 D3:EF631290 D2:EF631391 12&16S:N/A Idomacromia proavita Morphologyonly N/A Kalyptogaster erronea COI:N/A N/A COII:N/A EF1α:N/A 18S:AY082599 D7:EF631245 D3:N/A D2:EF631450 12S&16S:EF631561 Ladona julia COI:AF195748 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631423,EF631315,EF631219 12S&16S:EF631536 Lathrocordulia metallica COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631239 D3:EF631334 D2:EF631444 16S:EF631556 Leucorrhinia glacialis COI:N/A N/A COII:N/A EF1α:EF640472 18S:N/A 28S:EF631409,EF631304,EF631207 12S&16S:EF640394,EF631523 Leucorrhinia intacta COI:N/A N/A COII:N/A EF1α:EF640474

168

18S:N/A 28S:N/A 12S&16S:EF640396, Libellula luctuosa COI:AF195749 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631392,EF631194 12S&16S:AY282563,EF631507 Libellula pulchella COI:AF195753 N/A COII:N/A EF1α:N/A 18S:U65109 28S:EF631329,U65168 12S&16S:EF631551 Libellula quadrimaculata COI:AY300816 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631497 12S&16S:AF037173 Libellula quadrimaculata COI:AY300814 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631479,EF631363,EF631272 12S&16S:DQ021418,EF631589 Lokia incongruens COI:N.A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Lyriothemis pachygastra COI:N/A N/A COII:DQ166800 EF1α:N/A

169

18S:N/A 28S:EF631483,EF631365,EF631276 12S&16S:EF032717 Macrodiplax balteata COI:N/A N/A COII:EU055332 EF1α:EF640538 18S:EU055134 28S:EU055229 12S&16S:EU054940,EU055040 Macromia illinoiensis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631208 D3:EF631305 D2:EF631410 12S&16S:EF631524 Macromia urania COI:N/A D2:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Macromidia rapida COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631209 D3:EF631306 D2:EF631411 12S&16S:NA Macromidia rapida COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631271

170

D3:EF631362 D2:EF631478 12S&16S:EF631588 Macrothemis celeno COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631489,EF631370,EF631282 12S&16S:EF631594 Macrothemis hemichlora COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631394,EF631292 12S&16S:N/A Miathyria marcella COI:N/A N/A COII:N/A EF1α:EF640528 18S:N/A 28S:N/A 12S&16S:EF640449 Micrathyria aequalis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631455,EF631341,EF631250 12S&16S:EF631565 Misagria parana COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631475,EF631359,EF631268 12S&16S:DQ021419,EF631585 Micromidia artifrons COI:N/A N/A COII:N/A EF1α:N/A

171

18S:N/A D7:EF631240 D3:N/A D2:EF631445 16S:EF631557 Nannophlebia risi COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631459,EF631345,EF631254 12S&16S:EF631569 Nannophya dalei COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631446,EF631335,EF631241 12S&16S:EF631558 Nannophyopsis clara COI:N/A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Nannothemis bella COI:N/A N/A COII:N/A EF1α:EF640466 18S:N/A 28S:EF631412,EF631307,EF631210 12S&16S:EF640388,EF631525 Neocordulia batesi longipollex Morphologyonly N/A Neocordulia campana Morphologyonly N/A Neodythemis pauliani COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631486,EF631368,EF631279

172

12S&16S:N/A Neopetalia punctata COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631247 D3:EF631338 D2:EF631452 12S&16S:EF631563 Neophya rutherfordi Morphologyonly N/A Nephepeltia phyryne Morphologyonly N/A Nesciothemis minor COI:N/A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Neurocordula obsoleta COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631395,EF631196 12S&16S:EF631509 Neurocordulia xanthosoma COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631447,EF631242 12S&16S:N/A Oligoclada walkeri Morphologyonly N/A Onychothemis culminicola COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631493,EF631374 12S&16S:EF631598

173

Onychothemis testacea COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631485,EF631367,EF631278 12S&16S:EF640408 Onychothemis testacea COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631494,EF631375,EF631284 12S&16S:DQ021427,EF631599 Orthemis ferruginea COI:AF195760 N/A COII:N/A EF1α:EF640482 18S:N/A 28S:EF631472,EF631357,EF631266 12S&16S:EF640402,EF631582 Orthetrum abbotti COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631482,EF631275 12S&16S:EF631591 Orthetrum austeni COI:N/A D2:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Orthetrum chrysis sp Morphologyonly N/A Orthetrum hintzi COI:N/A D2:123456 COII:N/A 16S:123456 EF1α:N/A 18S:N/A 28S:N/A

174

12S&16S:N/A Orthetrum julia COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631499,EF631382,EF631285 12S&16S:EF631602 Orthetrum pruinosum neglectum COI:N/A N/A COII:N/A EF1α:EF640483 18S:N/A 28S:EF631473,EF631267 12S&16S:EF640403,EF631583 Orthetrum sp COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631466,EF631352,EF631261 12S&16S:EF631576 Oxygastra curtisii COI:N/A N/A COII:N/A EF1α:N/A 18S:DQ008194 D7:N/A D3:N/A D2:EF631413 16S:EF631526 Oxygastra curtisii COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:N/A D3:N/A D2:N/A12S&16S:AF266103 Pachydiplax longipennis COI:AF195761 N/A COII:N/A

175

EF1α:EF640512 18S:N/A 28S:EF631398,EF631294,EF631198 12S&16S:EF640433,EF631512 Palpopleura jucunda COI:AY582782 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631414,AY582763,AY582762 12S&16S:EF631527 Palpopleura lucia COI:AY582796 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631467,EF631353,EF631262 12S&16S:EF631577 Palpopleura portia COI:AY582788 N/A COII:N/A EF1α:N/A 18S:N/A 28S:AY582768 12S&16S:N/A Paltothemis lineatipes COI:N/A N/A COII:N/A EF1α:EF640534 18S:N/A 28S:EF631492,EF631373 12S&16S:EF640455,EF631597 Pantala flavescens COI:DQ294650 N/A COII:DQ166791 EF1α:EF640529 18S:EF680326 28S:EF631487,EF631316,EF631220 12S&16S:EF640450, Pantala flavescens COI:N/A N/A COII:N/A

176

EF1α:N/A 18S:N/A 28S:EF631369,EF631280 12S&16S:EF631537 Pentathemis membranulata COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631415,EF631308,EF631211 12S&16S:EF631528 Perithemis tenera COI: N/A COII: EF1α:EF640488 18S: 28S:EF631416,EF631309,EF631212 12S&16S:EF640409,EF631529 Phyllomacromia contumax COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631197 D3:EF631293 D2:EF631397 12S&16S:EF631511 Phyllomacromia hervei COI:N/A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Plathemis lydia COI:AF195750 N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631438,EF631330,EF631234 12S&16S:EF631552

177

Procordulia grayi COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631399,EF631199 12S&16S:EF631513 Procordulia smithi COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631400,EF631295,EF631200 12S&16S:EF631514 Pseudocordulia circularis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631251 D3:EF631342 D2:EF631456 16S:EF631566 Pseudothemis zonata COI:N/A N/A COII:DQ166799 EF1α:N/A 18S:N/A 28S:AB127416 12S&16S:EF032730 Rhodopygia hollandi (morphology), R. hinei (molecular) COI:N/A N/A COII:N/A EF1α:EF640516 18S:N/A 28S:N/A 12S&16S:EF640437 Rhyothemis semihyalina COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A

178

28S:EF631474,EF631358 12S&16S:EF631584 Rhyothemis sp. COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631406,EF631301,EF631204 12S&16S:EF631520 Rialla villosa COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631480,EF631364,EF631273 12S&16S:EF631590 Scapanea frontalis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631476,EF631360,EF631269 12S&16S:EF631586 Sinorogomphus sp. COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631249 D3:EF631340 D2:EF631454 12S&16S:EF631564 Somatochlora borisi COI:N/A D2:123456 COII:N/A EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Somatochlora graeseri COI:N/A D2:123456 COII:N/A

179

EF1α:N/A 18S:N/A 28S:N/A 12S&16S:N/A Somatochlora tenebrosa COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631419,EF631311,EF631215 12S&16S:EF631532 Sympetrum ambiguum COI:EF636300 N/A COII: EF1α: 18S:EF636418 28S:EF631324 12S&16S:EF631548 Sympetrum corruptum COI:N/A D2:123456 COII:N/A EF1α:EF640518 18S:EU055135 28S:EU055230 12S&16S:EU054941,EU055041 Sympetrum janeae COI:EF636318 N/A COII: EF1α: 18S:EF636457 28S:EF631418,EF631310,EF631214 12S&16S:EF631531 Syncordulia gracilis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631439 12S&16S:N/A Synthemiopsis gomphomacromioides COI:N/A N/A COII:N/A

180

EF1α:N/A 18S:N/A 28S:EF631417,EF631213 12S&16S:EF631530 Synthemis eustalacta COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631401,EF631296 12S&16S:EF631515 Synthemis leachii COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631402,EF631297,EF631201 12S&16S:EF631516 Taeniogaster obliqua COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A D7:EF631216 D3:EF631312 D2:EF631420 12S&16S:EF631533 Tauriphila sp Morphologyonly N/A Tetragoneuria cynosura COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631379,EF631325,EF631231 12S&16S:N/A Tetrathemis polleni COI:N/A N/A COII:N/A EF1α:N/A

181

18S:N/A 28S:EF631495,EF631376 12S&16S:EF631600 Tetrathemis polleni COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631426,EF631318,EF631222 12S&16S:EF631539 Thermochoria equivocata Morphologyonly N/A Tholymis tillarga COI:N/A N/A COII:N/A EF1α:EF640531 18S:N/A 28S:EF631403,EF631298,EF631202 12S&16S:EF640452,EF631517 Tramea lacerata COI:N/A N/A COII:EU055368 EF1α:EF640532 18S:EU055171 28S:EF631425,EF631317,EF631221,EU055269 12S&16S:EU054980,EF631538 Tramea onusta COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631488,EF631281 12S&16S:AY282561,EF631593 Trithemis dorsalis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631404,EF631299 12S&16S:EF631518 Trithemis monardi COI:N/A N/A COII:N/A 1

82

EF1α:N/A 18S:N/A 28S:EF631469,EF631355,EF631264 12S&16S:EF631579 Trithemis sp Morphologyonly N/A Uracis fastigiata COI:N/A N/A COII:N/A EF1α:EF640468 18S:N/A 28S:EF631432,EF631228 12S&16S:EF640390,EF631545 Urothemis assignata COI:N/A N/A COII:N/A EF1α:EF640539 18S:N/A 28S:EF631421,EF631313,EF631217 12S&16S:EF640460,EF631534 Urothemis sp Morphologyonly N/A Williamsonia fletcheri Morphologyonly N/A Zenithoptera fasciata COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631491,|EF631372,EF631283 12S&16S:EF631596 Zenithoptera fasciata COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631490,EF631371 12S&16S:EF631595 Zoreana bilineata Morphologyonly N/A Zygonyx natalensis COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A

183

28S:EF631405,EF631300,EF631203 12S&16S:EF631519 Zygonyx torridus COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631422,EF631314,EF631218 12S&16S:EF631535 Zyxomma elgneri COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631458,EF631344,EF631253 12S&16S:EF631568 Zyxomma petiolatum COI:N/A N/A COII:N/A EF1α:N/A 18S:N/A 28S:EF631496,EF631378 12S&16S:N/A

184

Table2:Divergenceestimatesfromar8sanalysisofthebesttreefromareducedtaxonsampledoubletmodelBayesian analysis(LnL=58249.808);analysisusedapenalizedlikelihoodandaTNalgorithm.The250millionyearageconstraint basedonoldestknownanisopteranfossils,whicharefromtheTriassic;thesplitbetweenCorduliidaeandLibellulidaehad alreadyoccurredby14.516.5Myrandprobablyoccurredasearlyas118131Myrsoweimplementedadatefromthe Wealdenformation(approximatetimeperiodssuggestedbyJarzembowskiandNel(1996)). Node Max Age Min Age Estimated Estimated Percent Estimated Percent constraint constraint Age of Age of difference Age of difference (millions (millions Node family between Node from between of years) of years) from from divergence Ware et al. divergence present Ware et estimates (submitted) estimates study al. (2008; (millions of (millions paired- years) of years) site analysis) (millions of years) Root 250.00 214.15 205.7 4% 193.74 9.5% Chloropetalia+ 158.56 186.3 15% Sinorogomphus+ remaining Libelluloidea Chloropetalia+ 108.33 Sinorogomphus Cordulegastridae 157.77 +Neopetaliidae Cordulegastridae 140.51 158.15 11% GSI+MCL 132.10 172.01 23% GSI 110.74 132.35 16% Gomphomacromia 84.60 +Archaeophya+ Synthemistidae Synthemistidae 51.70

185 sensu stricto Idomacromia+ 54.21 Macromidia+ Idionyx RemainingGSI 83.99 MCLComplex 100.76 144.0 30% Macromiidae 92.72 34.2 63% Corduliidae+ 250.00 90.88 Libellulidae Corduliidae 131.00 85.37 87.1 1.9% Pentathemis+ 53.25 Aeschnosoma Remaining 74.70 Corduliidae Libellulidae 131.00 67.68 87.6 23% CladeA 44.66 CladeB 18.54 CladeC 22.63 CladeD 23.71 CladeE 19.75 CladeF 26.87 CladeG 21.36

186 187

Table3:Libelluloidtaxonomicgroupsrecoveredamongrecentmolecularstudies;PP= posteriorprobabilityfromBayesiananalysis. Clade Ware et Pilgrim and von Letsch, 2007; 12S, Present Study; al., 2007; Dohlen, 2008; 16S, tRNA COI, COII, 12S, 16S, 12S, 16S, EF-1a, Valine, 28S 12S, 16S, 18S, D2, D3, wing 28S, EF-1a, D7 morphology adult and larval fragments morphology; of the 28S doublet model Synthemis + Yes, Notincluded Yes,100%PP, Yes,95%PP, Eusynthemis + 100%PP including only additionally Choristhemis + Synthemis, including Cordulephya + Eusynthemis, Idomacromia* Idionyx + Gomphomacromia, and Neocordulia Micromidia + Oxygastra ,and campana* Hesperocordulia Idomacromia + Gomphomacromia + Oxygastra + Macromidia + Lathrocordulia + Pseudocordulia + Syncordulia + Austrocordulia + Austrophya + Archaeophya+ Synthemiopsis Corduliinae Yes,86% Only Cordulia Yes,100%PP. Yes,96%PP, PP shurtleffii additionally included including Apocordulia* and Fylgia* . Macromiidae Yes, Only Macromia Yes,100%PP. Yes,100%PP 100%PP magnifica included Sympetrum + Yes,99% Yes,100%PP Yes,100%PP. Yes,94%PP; Leucorrhinia + PP butwiththe Celithemis possible contaminant Chlorogomphus Chalcostephia + Yes,98% Yes,94%PP,no Yes,95%PP,also No;,but Brachythemis + PP datafor including supportedby Brachydiplax + Brachydiplax , Pseudothemis ,not 57%PPif Deielia + Idiataphe, including Brachydiplax

188

Idiataphe + Zyxomma. Idiataphe or excluded Tholymis + Brachythemis Zyxomma Dythemis + Yes,96% Yes,99%PP,no Only Yes,96%PP Macrothemis + PP datafor Brechorrhoga Scapanea + Macrothemis or included. Paltothemis + Scapanea Brechmorhoga Diplacodes + Smaller No;but100%PP Yes,80%, Yes,96%PP[?], Bradinopyga + analysis alsoincluding additionally withthe Hemistigma + [?]:Yes, Neurothemis , including additional Palpopleura+ 60% Nanodiplax, Rhodothemis , inclusionof Nannophya + [46%?]; Pseudoleon ,and Thermochoria and Rhodopygia and Uracis + Acisoma Philonomon ;not Neurothemis . Thermochoria* + Erythemis + including [Pachydiplax?] Nannothemis + Acisoma , Erythrodiplax + Nannothemis , Crocothemis and Erythemis ; +Pachydiplax nodatafor Hemistigma, Pachydiplax, or Palpopleura; Pantala + Yes,68% No,<50%PP,no Yes,100%PP, No,but58%PP, Malgassophlebia PP datafor additionally for Pantala + + Trithemis + Malgassophlebia, including Trithemis + Onychothemis + Nannophlebia Oplogastra , Cannaphila* + Zygonyx + and Huonia . Atoconeura ,and Nephepeltia* + Nannophlebia Porpacithemis, no Atoconeura; no +Bironides + datafor Pantala or datafor[?] Huonia Nannophlebia. Malgassophlebia *Morphologicaldataonly.

189

Table4:Rescaledconsistencyindexesforeachmorphologicaldataset. Morphological MeanRC VarianceinRC Standard Numberof dataset deviationin characters RC Wingvenation 0.083286138 0.06495527 0.254863238 29 Externalbody 0.03804605 0.003719649 0.060988925 20 Accessory 0.052767143 0.004895385 0.069967031 14 genitalic Penile 0.098025429 0.070147723 0.264854154 14 Larval 0.108457727 0.049381177 0.22221876 22 Table5:DiversificationratesamongcladesinLibelluloidea.*=Forthediversification rateofLibelluloideawechoseanageforthestemgroupof250.00,theageoftheoldest Anisopteranfossils,whichisaconservativelyhighestimate.Theactualrateof diversificationmaybeslightlyhigher,butnothigherthantherateestimatedusingthe rootage(r ε=0.95 =0.0088;r ε=0.0 =0.0148). StemGroup Numberof Ageofnode Diversification Diversification speciesin rate; ε=0.95 rate; ε=0 stemgroup Libelluloidea* 1459 250.00* 0.007474578 0.012656221 Chlorogomphidae 46 214.14 0.002390414 0.007764817 Cordulegastridae+ 50 158.56 0.003391896 0.010714998 Neopetaliidae GSI 126 132.1027 0.006512645 0.015899528 Macromiidae 122 100.7658 0.00841743 0.020705039 Corduliidae+ 1116 90.8788 0.019300055 0.03353548 Libellulidae

190

Table6:RecoveryofmonophyleticgroupsinLibelluloideausingmorphologicaldatasets; Y=monophylysupported,N=monophylynotsupported Taxonomic Wing Penile Larval Accessory External Group venation characters characters genitalic body characters characters Cordulegastridae N N Y Y N GSI N N N N N Macromiidae N N N N N Corduliidae N N N N N Libellulidae Y N Y N Y Tetrathemistinae N N N N N Leucorrhiniinae N N N N N Libellulinae N N N N N Urothemistinae N N N N N

Table7:Morphologicalcharacters Adultcharacters– Wing venation: 1. Numberofcrossveinsbetweencostalbracesinforewing;0=several,1=one,2=none(Fraser,1957) 2. Numberofcrossveinsinmidbasalspaceofforewing;0=absent,1=present(Fraser,1957) 3. NumberofforewingCubitalAnalcrossveins:0=>2,1=<=2(Bechly,1994) 4. Basalfusionofthesectorsofthearculus:0=unfused,basallyseparated,1=fusedonlyatextremebase(<1/4arculuslength), 2=fusedbeyondbasebutdistinctly<1/2arculuslengthinatleastonepairofwings,3=fusedfor>=1/2arculuslengthinat leastonepairofwings(Carle,1995) 5. Crossveinsinsupertriangleofhindwing,0=present,1=absent(Fraser,1957) 6. Crossveinsintriangleofhindwing,0=present,1=absent(Fraser,1957) 7. Costalsideoftriangleinforewing,0=straight,1=angulated(Needhametal.,2000) 8. Hindwingtriangle,0=fardistaltoarculus,1=neararculusbutdistal,2=atorproximaltoarculus(Needhametal.,2000) 9. Formofanalloop,0=compact,1=elongatewithnomidrib,2=elongatewithzigzagmidrib,3=elongatewithstraightmidrib, 4=elongatewithexpandedtip,5=absentorgreatlyreduced(Needhametal.,2000) 10. Forewingsupertriangle0=crossveinpresent,1=crossveinabsent(Fraser,1957) 11. Forewingtriangle0=crossveinpresent,1=crossveinabsent(Fraser,1957) 12. Postanalcells,0=notdifferentiated,1=openbehind,2=oneclosed,3=twoormoreclosed,4=absent(May,unpublished) 13. Veinsr4+5andMAinforewing0=divergent,1=parallelorconvergent(Needhametal.,2000) 14. Forewingdiscoidalfield/trigonalinterspace,0=widelydivergent,1=slightlydivergent,2=parallelorconvergent(Needhamet al.,2000) 15. VeinR4+5and/orMA0=undulating,1=notundulating(NeedhamandWestfall,1955) 16. Lastantenodalcrossveininforewingcomplete=0;incomplete=1(Fraser,1957) 17. Arculusproximaltoantenodalcrossvein2inhindwing=0;atordistaltoantenodalcrossveinnumber2butcloserto2than 3=1;barelyproximaltodistaltoantenodalcrossveinnumber3=2(Fraser,1957) 18. Crossveinsunderproximalhalfofpterostigma=1ornot=0(Garrisonetal.,2007) 19. RP1,2concave=0ornot=1(Garrisonetal.,2007) 20. RSPL1row=0or2rows=1orabsent=2(Garrisonetal.,2007) 21. Anallooptoeopen=0orclosed=1(Fraser,1957) 22. Costaundulate=0;notundulate=1(Fraser,1957) 23. Bridgecrossveins1=0;>1=1(Fraser,1957) 24. Pterostigmatrapezoidal=0;nottrapezoidal=1(Fraser,1957;Needhametal.,2000) 25. Midribofanalloopstraight=0;obtuse=1;acute/90=2(Garrisonetal.,2007) 26. VeinCu1(ComstockNeedhamsystem)ofhindwingarisingatposteriorangleoftriangle=0;arisinganterodistaltoposterior angleoftriangle=1(Garrisonetal.,2007) 27. Triangleinforewingwithcostalsidebroken,short,4sided=0,notso,3sided=1(NeedhamandBroughton,1927;Fraser, 1957)

191

28. Hindwingtriangle3sided=0,4sided=1(NeedhamandBroughton,1927;Fraser,1957) 29. Discoidalfieldforewing1row=0,2ormore=1(NeedhamandBroughton,1927;Fraser,1957)

External body characters 30. Lateralabdominalcarinae:absent=0;presentononeortwosegments=1;presenton>twosegments=2(Needhametal.,2000) 31. Distalabdominalexpansion:absent=0;present=1(CarleandKjer,2002) 32. Ventrolateralprocessesonabdominalsegment1:absent=0;small/rudimentary=1;large=2(Needhametal.,2000) 33. Dorsalcarinaonabdominalsegment10:absent=0;present=1(Needhametal.,2000) 34. Ventraltoothontarsalclaws:normal=0;enlarged=1;fat&short/normallength=2(Needhametal.,2000) 35. Protibialkeel:short=0;long=1;absent=2(Fraser,1957) 36. Auricles:present=0;absent=1(Needhametal.,2000) 37. Maleeppiproct:notchedrectangular=0;intermediate=1;distallytapered=2(Needhametal.,2000) 38. Vertextuberculate=0;nottuberculate=1(Garrisonetal.,2007) 39. Posteriorlobeofpronotumwidestatbase=0/markedlyconstrictedatbase=1(Garrisonetal.,2007) 40. Inferiortoothoftarsalclawvestigialorabsent=0;welldeveloped=1(Garrisonetal.,2007) 41. Malemetafemurwithspinesveryshort,stout,hookedproximately=0;mostlyslenderandnothooked=1(Garrisonetal.,2007) 42. Malemetafemurwithspinesdistinctlydimorphicinlength=0;uniformorgraduallyincr.inlength=1(Garrisonetal.,2007) 43. LateralcarinaonS9present=0;absent=1(Garrisonetal.,2007) 44. Sternumofs9notprojecteddistally=0orprojecteddistally=1(Garrisonetal.,2007) 45. Femalesternum9elongatedtoornearlytodistalmarginofsternum10=0;hardlybeyondbaseofsternum10=1(Garrisonet al.,2007) 46. SupplementarytransversecarinaonS3present=1absent=0(Garrisonetal.,2007) 47. Femaletergum8with=0;withoutdistinctventrolateralflange=1(Garrisonetal.,2007) 48. Eyecontactbarelyornotatall=0,longer/touching=1(NeedhamandBroughton,1927;Fraser,1957) Accessory genitalic characters 49. Genitallobe:0=absent,1=rudimentary,2=large(Schmidt,1916) 50. Ventralbranchofposteriorhamule:0=short,1=long(Needhametal.,2000) 51. Posteriorhamule:0=notcompressed,1=laterallycompressed(Needhametal.,2000) 52. Medianlobeofanteriorhamule:0=absent,1=present(May,unpublished) 53. Anteriorhamule:0=largeanderect,1=notso(Needhametal.,2000) 54. Formofovipositor:0=bothgonapophyseselongate,1=bothgonapophysesshort,2=firstpairsecondarilyelongate(Fraser, 1957) 55. Vulvarlaminawithwidecleftornarrowcleft=0ornotbifid=1(Garrisonetal.,2007) 56. Vulvarlaminaprojectedventrally=0ornot.=1(Garrisonetal.,2007)

Penile characters 57. Shapeofligula:0keeled,1scooplike,2curledandflattened,3short(Schmidt,1916)

192

58. Torsionofpenismedianprocess:0absent,1present(Kennedy,1922;May,unpublished) 59. Rightsideofpenismedianprocess:0notreduced,1reduced(Kennedy,1922;May,unpublished) 60. Penisflagella:0none,1one,2two,3three(Kennedy,1922;May,unpublished) 61. Medianprotuberanceofpenisvesicleanterolateral(Kennedy,1922;May,unpublished) 62. Protuberanceofpenisvesicle,0:absent,1present(Kennedy,1922;May,unpublished) 63. Inflatablelobesofpenis:0absent,1present(Kennedy,1922;May,unpublished) 64. Erecthornatbaseofmedianprocess:0present,1absent(Kennedy,1922;May,unpublished) 65. Hoodofpenis:0prominent,1intermediate,2small(Kennedy,1922;May,unpublished) 66. Laterallobes:0smallwithnofreeedge,1largewithfreeedge,2largesclerotized(Kennedy,1922;May,unpublished) 67. LateralLobeslargeflatlateralplates=0,longandbladelike=1,longcurvedandrodlikeresemblingcornua=3,muchreduced orabsent=4 (Miller,1991) 68. Cornualongandstronglycurved=0,stout,shortandsometimespartiallyfusedtogether=1,unsclerotizedandweak=3, absent=4 (Miller,1991) 69. Apicallobelarge,inflatableandveryspinose=0,longandnarrowandlargelysclerotized=2,muchreducedorabsent=3 (Miller,1991) 70. Distalsegmentofpenisnotlongandcylindrical=0;longandcylindrical=1(Garrisonetal.,2007) Larval characters 71. Teethoflabialpalpus:0=elongate,irregular;1=wide,2=prominent,3=superprominent,4=small,5=Epopthalmia(Needhamet al.,2000) 72. Setaeonpalpalteeth,0=absent,1present(Fraser,1957) 73. Wingpads:0=divergent,1=parallel(TheischingerandWatson,1984) 74. Prothoracicepaulets:0=ridgelike,1=platelike,2=nipplelike,3=absent(Needhametal.,2000) 75. Lateralspinesonabdomen:0absent,1=present(Needhametal.,2000) 76. Proventricularmediansclerotization:0=absent,1=presentbutnotchutelike,2=presentandchutelike(Carle,1995) 77. Posteriorsurfaceofventralsclerotizedlobeofproventriculus:0=wide,1=narrow (Carle,1995) 78. Proventricularteeth:0=oneoneachlobe,1=twosetwideapartoneachlobe,2=twosetclosetogetheroneachlobe (Carle, 1995) 79. Medianprominenceonfrons:0=absent,1=tuberculate,2=platelike(Needhametal.,2000) 80. Dorsalhookspresentons4s8=0,absent=1 (Needhametal.,2000) 81. Hindtarsaeandclawaslongaslengthoftibia=0,shorter=1(Needhametal.,2000) 82. Eyesaboveocciput=0,1=below(Needhametal.,2000) 83. Sulcusonlabiumpresent=0,absent=1(TheischingerandFleck,2003) 84. Dorsalhookonsegment9?Yes=0,no=1(Tennessen,pers.comm.) 85. Lateralspinesonsegmentsotherthan8and9Yes=0,no=1(Tennessen,pers.comm.) 86. Paraproctsdowncurved?Yes=0,no=1(Tennessen,pers.comm.) 87. Transversesulcusinlarvae:transversesulcusofthoracicsternum:0=longitudinallyelongate,1=meetingatapoint,i.e.,<.1; 2=transverseandshort,i.e.,>0.1but=<0.2;3=transverseandlong,i.e.,>0.2(May,unpublished)

193

New Characters 88. Spinesongenitallobe:0=longandsilkhairsnospines,orifpresentveryrudimentary,1=shortstoutspinesalonggenitallobe andinadensepatchattheanteriormostpartofsecondaryabdominalsegment,2=shortstoutspineswellspacedevenlyalong theentiremarginofgenitallobeuptoanteriormostpart 89. Spinesonauricle:0=nospines,1=spines 90. Ventralhamulepointy=0,spatulashaped=1 91. Dorsalhamulepointy=0,spatulashaped=1 92. Lengthofdorsalhamule:longerthanventralorequal=0,shorter=1 93. Anteriorlaminawithprojectionsornot:lateralprojections,oronecentralprojection=1,noprojections=0 94. Coxalprotuberances:yes=1,no=0 95. Ventralneckbuldge:no=0,yes=1 96. Sulcion8and9:none=0,only8=2,8&9=1 (Tennessen,pers.comm.) 97. Numberofteethoninnermandible0=1rowofserratedteeth,1=2rowsofserratedteeth,2=onerowfollowedbyasmallrow withevennumberofteethlandr,3=onerowfollowedbyasmallrowwithunevennumberofteethlandr 98. Eyesprotruding?=1,flat=0 (Tennessen,pers.comm.) 99. Hairunderpostmentum?(Tennessen,pers.comm.) 100. Cleftinprementalhinge?0=no,1=yes.

194

Wing venation External Body ______0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Chlorogomphus brunneus costalis 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 2 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 1 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? 0 Chloropetalia soarer 0 1 0 0 0 0 0 0 0 ? ? 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? Sinorogomphus sp 0 1 0 0 0 0 0 0 0 ? ? 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? Neopetalia punctata 0 0 0 0 1 0 0 0 0 ? ? 0 0 0 0 1 1 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? 0 Anotogaster sieboldii 0 0 1 0 1 0 0 0 0 ? ? 0 0 0 0 1 2 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 0 0 0 ? ? ? 0 1 1 0 ? 0 ? 1 Zoreanea bilineata 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 ? 0 0 0 0 0 ? ? ? 0 1 1 0 ? 0 ? 0 Taeniogaster obliqua 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 0 0 0 ? 1 ? 0 1 1 0 ? 0 1 1 Cordulegaster maculata 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 0 0 0 ? 1 ? 0 1 1 0 1 0 1 1 Kalyptogaster erronea 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 0 0 0 ? 1 ? 0 1 1 0 ? 0 ? 1 Apocordulia macrops 2 0 1 1 1 0 0 0 2 1 0 2 1 0 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 2 0 0 0 0 1 0 2 1 ? 1 0 1 1 0 ? 0 ? 1 Austrophya mystica 2 0 1 1 1 1 0 1 1 1 1 2 0 2 1 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 1 0 2 ? ? 1 1 1 1 0 1 0 1 1 Archaeophya magnifica 2 0 1 1 1 0 0 1 1 1 1 3 1 0 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 1 0 1 ? ? 1 ? ? 0 0 1 0 1 1 Austrocordulia refracta 2 0 1 0 1 1 0 1{01} 1 1 2 0 2 0 0 0 1 0 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 2 ? ? 1 0 1 0 0 ? 0 ? 1 Cordulephya pygmea 2 0 1 1 1 1 1 0 0 1 1 2 0 2 0 0 0 ? 0 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 2 ? ? 1 0 1 0 0 ? ? ? 1 Gomphomacromia sp 2 0 1 1 1 1 0 1 0 1 1 2 0 0 1 0 0 ? 1 2 1 1 1 1 ? 0 1 0 0 0 1 0 0 0 1 0 2 ? ? 1 0 1 1 ? ? 1 1 1 Hespercordulia berthoudi 2 0 1 1 1 1 0 1 2 1 1 2 1 2 1 0 0 1 1 2 1 1 1 1 ? 0 1 0 0 0 0 1 0 0 1 0 2 1 ? 1 0 1 0 1 ? 1 ? 1 Lathrocordulia metallica 2 0 1 1 1 1 0 1 1 1 1 2 0 2 1 0 0 ? 1 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 2 ? ? 1 ? ? 0 0 ? 1 ? 1 Micromidia artifrons 2 0 1 1 1 1 0 0 2 1 1 2 0 2 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 0 0 0 2 0 0 1 0 2 1 ? 1 ? ? 0 0 ? 0 ? 1 Neocordulia batesi longipollex 2 0 1 1 1 1 0 0 3 1 1 2 0 1 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0 1 0 0 0 1 0 2 1 ? 1 1 1 1 0 1 0 1 1 Neocordulia campana 2 0 1 1 1 1 0 0 3 1 1 2 0 1 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0 1 0 0 0 1 0 2 1 ? 1 1 1 1 0 1 0 1 1 Oxygastra curtisii 2 0 1 1 1 1 0 1 3 1 1 2 0 2 0 0 0 ? 1 2 1 1 0 1 ? 0 1 0 1 0 0 0 0 0 1 0 2 ? ? 1 1 ? 0 0 1 1 1 1 Pseudocordulia circularis 2 0 1 1 1 1 0 0{01} 1 1 2 0 2 0 0 1 1 0 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 2 1 1 1 1 1 1 0 1 0 1 1 Syncordulia gracilis 2 0 1 1 1 1 0 1 1 1 1{23} ? 1 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 0 0 1 0 0 0 1 0 2 ? 1 1 0 1 ? ? ? 0 ? 1 Idionyx selysi 2 0 1 3 0 1 0 0 3 0 1 3 1{01} 1 0 1 1 1 2 1 1 1 1 ? 0 1 0 0 0 1 0 0 0 1 0 2 ? ? 1 0 1 1 1 1 0 1 1 Macromidia rapida 2 0 1 2 0 1 0 0 0 0 1 2 1{01} 1 0 1 1 1 2 1 1 1 1 ? 0 1 0 1 0 1 0 0 0 1 0 2 ? ? 1 0 1 0 1 0 0 1 1 Idomacromia proavita 2 0 0 1 0 1 0 0 3 0 1 2 ? ? ? 0 1 1 1 2 1 1 1 1 ? 0 1 0 1 0 1 0 1 0 1 0 2 1 0 1 0 1 0 0 ? 1 ? 1 Neophya rutherfordi 2 0 1 3 1 1 1{12} 3 ? ? 2 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 ? 0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? Choristhemis flavoterminata 1 1 0 3 0 1 0 0 0 0 0 2 1 0 1 0 2 1 0 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 2 ? ? 1 0 1 0 0 ? 0 ? 1 Eusynthemis brevistyla 1 1 0 3 0 0 0 0 0 0 0 1{01} 0 1 0 2 1 0 2 1 1 1 1 ? 0 1 0 1 0 0 0 0 0 1 0 2 1 1 1 0 1 0 0 ? 0 ? 1 Synthemiopsis gomphomacromioides 1 1 0 3 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 2 1 1 1 1 ? 0 1 0 1 0 0 1 1 0 1 0 0 ? 1 1 0 1 0 0 ? 0 ? 1 Synthemis eustalacta 1 1 0 3 0 1 0 0 0 0 1 1{01} 0 1 0 1 1 0 2 1 1 1 1 ? 0 1 0 1 0 0 0 1 0 1 0 1 ? ? 1 ? ? 0 0 ? 0 ? 1 Synthemis leachii 1 1 0 3 0 1 0 0 0 0 1 2 1 0 1 0 1 1 0 2 1 1 1 1 ? 0 1 0 0 0 0 0 0 0 1 0 1 ? ? 1 0 1 0 0 ? 0 ? 1 Phyllomacromia sp 2 0 1 3 1 1 0 0 0 0 1 2 1 0 0 0 1 1 1 2 1 1 1 1 ? 0 1 0 0 0 1 0 1 0 1 0 2 1 ? 1 0 1 1 0 ? ? ? 1 Didymops floridiensis 2 0 1 3 0 1 0 0 0 0 1 2 1 0 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0 1 0 1 0 1 0 2 1 ? 1 0 1 1 0 1 0 1 1 Didymops transversa 2 0 0 3 0 1 0 0 0 0 1 2 0 0 0 0 0 1 1 2 1 1 1 1 ? 0 1 0 1 0{01} 0 1 1 1 0 2 1 ? 1 0 1 1 0 1 0 1 1 Macromia illionoiensis 2 0 0 3 0{01} 0 0 0 0 1{23} 0 0 0 0 0 1 0 2 1 1 1 1 ? 0 1 0 0 0{01} 0 1 1 1 0 2 1 ? 1 0 1 1 0 1 0 1 1 Aeshnosoma forcipula 2 0 0 2 0 0 0 2 3 0 0 3 1 1{01} 0 1 1 0 2 1 1 0 1 1 0 1 0 1 2{01} 0 1 0{01} 0 2 1 ? 1 0 1 1 0 1 0 1 1 Cordulia aenea 2 0 1 1 1 0 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 0 1 ? 0 1 0 1 2 1 0 1 0{01} 0 2 1 1 1 0 1 0 0 1 0 1 1 Cordulia shurtleffi 2 0 1 1 1 0 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 1 0 1 0{01} 0 0 1 1 1 0 1 0 0 ? 0 ? 1 Dorocordulia lepida 2 0 1 1 1 1 0 2 3 1 1 3 1 2 1 0 0 1 0 2 1 1 1 1 1 0 1 0 0 2 1 0 1 0{01} 0 2 1 ? 1 0 1 1 0 1 0 1 1 Epitheca princeps 2 0 1 ? 1 0 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 0 0 0 0 1 0 2 ? ? 1 0 1 0 0 1 0 1 1 Helocordulia uhleri 2 0 1 1 1{01} 0 2 3 1{01} 3 1 2 1 0 0 1 1 2 1 1 0 1 1 0 1 0 1 2 1 0 1 0 1 0 2 ? ? 1 0 1 0 0 ? 0 ? 1 Hemicordulia tau 2 0 1 1 1 0 0 2 3 1 0 3 1 2{01} 0 0 1 1 2 1 1 0 1 1 0 1 0 1 2 0 0 0 ? ? 0 2 ? ? 1 0 1 0 0 ? 0 ? 1 Neurocordula obsoleta 2 1 1 1 1 0 0 2 3 1 0 3 1 1 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 0 0 0 0 1 1 2 1 ? 1 0 1 0 0 1 0 1 1 Pentathemis membranulata 2 0 1{12} 0 0 0 2 3 0 1 3 1 0 0 0 1 1 2 1 1 0 1 1 0 ? ? 0 3 2 1 0 0 0 0 0 2 1 ? ? 0 0 ? ? ? 1 1 1 Neurocordulia xanthosoma 2{01} 0 1{01} 0 0 2 3 0 0 3 1 1 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 0 0 0 0 1 0 2 1 ? 1 0 1 0 0 1 0 1 1 Procordulia grayi 2 0 1 1 1 0 0 2 4 ? ? 3 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 0 0 0 0 1{01} 2 ? ? ? ? ? ? ? ? ? ? ? Procordulia smithi 2 0 1 1 1 0 0 2 4 ? ? 3 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 0 0 0 0 1{01} 2 ? ? ? ? ? ? ? ? ? ? ? Rialla villosa 2 0 1 ? 1 0 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 0 0 0 0 1 0 2 ? ? 1 0 1 0 0 1 0 1 1 Somatochlora tenebrosa 2 0 1 1 1 0 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 1 1 1 0 1 0 1 2 0 0 0 0{01} 0 2 1 ? 1 0 1 0 1 1 0 1 1 Tetragoneuria cynosura 2 0 1 1 1{01} 0 2 3 1 0 3 1 2 1 0 0 1 1 2 1 1 0 1 1 0 1 0 1 2 0 0 0 0{01} 0 2 ? ? 1 0 1 0 0 ? 0 ? 1 Williamsonia fletcheri 2 0 1 1 1 1 0 2 3 1 1 3 1 ? 1 0 0 1 0 2 1 1 0 1 1 0 1 0 0 2 0 0 0 0 1 0 2 1 ? 1 0 1 1 0 ? 0 ? 1 Calophlebia interposita 2 0 1 3 1 1 ? 0 5 ? ? ? 1 1 1 0 0 1 1 0 1 1 1 1 ? 1 0 1 0 2 0 0 0 0 2 ? ? 0 ? 1 1 1 ? 0 ? 0 1 1 Neodythemis pauliani 2 0 1 3 0 0 1 1 5 0 1 1 1 1 1 0 1 1 1 2 1 1 1 1 ? 1 0 1 0 2 0 0 0 0 2 ? ? 0 ? 1 1 1 0 0 1 0 ? 1 Nannophlebia risi 2 0 1 3 1 1 1 2 5 1 1 4 1{12} 1 0 1 1 1 2 1 1 0 1 ? 1 0 1 0 ? 0 0 0 0 2 ? ? 1 ? 1 1 1 ? 0 1 0 1 1 Tetrathemis polleni 2 0 1 3 1 1 1 0 5 0 1 4 1 1 1 0 0 1 1 0 1 1 1 1 ? 1 0 1 0 2 0 0 1 0 2 1 2 0 ? 1 0 1 1 0 ? 0 ? 1 Anatya guttata 2 0 1 3 1 1 0 2 4 1 1 3 1 ? 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 2 1 0 1 ? ? 1 2 1 1 ? 1 1 0 0 1 0 1 1 Brachydiplax denticudata 2 0 1 3 1 1 0 1 4 1 1 3 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 ? ? 1 2 0 1 1 1 1 1 0 ? 0 ? 1 Brachydiplax c chalybea 2 0 1 3 1 1 0 1 4 1 1 3 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 1 0 ? 0 ? 1 Chalcostephia flavifrons 2 0 1 3 1 1{01} 2 4 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 1 0 ? 1 Elga leptostyla 2 0 1 3 1 1{01} 2 4 1 1 3 1 2 1 1 1 1 1 2 1 1 0 1 1 1 1 1 0 2 1 0 1 0 2 1 2 1 1 ? ? ? 0 0 0 0 1 1 Micrathyria aequalis 2 0 1 3 1 1 0 2 4 1 1 3 1 2 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 2 1 0 1 0 2 1 2 1 1 1 1 1 0 0 1 0 1 1 Hemistigma albipuncta 2 0 1 3{01}{01}0{12} 4 0 0 3 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 1 1 1 1 0 0 1 0 ? 1 Nannophya dalei 2 0 1 3 1 1 1 1 4 1 1 3 1 0 1 0 0 1 0 2 1 1 0 1 1 1 1 0 0 2 ? 0 ? 0 2 1 ? 1 ? 1 1 1 0 0 ? 0 ? 1 Nannothemis bella 2 0 1 3 1 1 1{12} 5 1{01} 3 1 0 1 1 0 1 0 2 0 1 0 1 1 0 1 1 1 2 0 0 1 0 2 1 2 1 0 1 1 1 0 0 0 0 1 1 Nephepeltia phyryne 2 0 1 3 1 1 1{12} 4 1 1 3 1 2 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 2 0 0 1 0 2 1 2 ? 1 1 0 1 0 0 0 0 1 1 Thermochoria equivocata 2 0 0 3 1 1 0 1 4 0 0 3 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 ? 1 ? 1 1 1 ? 0 ? ? ? 1 Oligoclada walkeri 2 0 1 2 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 2 1 0 1 0 2 1 2 1 1 0 1 1 0 0 1 0 1 1 Uracis fastigiata 2 0{01} 3 0 0 0 1 4 0 0 3 1 1 1 1 2 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 0 0 ? 1 Brachymesia furcata 2 0 1 2 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 1 0 1 1 Celithemis elisa 2 0 1 2 1 0 0 1 4 0 0 3 1 2 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 2 0 0 1 0 2 1 2 ? 0 ? ? ? ? 0 1 0 1 1 leucorrhinia intacta 2 0 1 2 1 1 0 2 4 1 0 2 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 2 1 0 1 0 2 1 2 1 1 1 1 1 0 0 1 0 1 1 Leucorrhinia glacialis 2 0 1 2 1 1 0 2 4 1 0 2 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 2 1 0 1 0 2 1 2 1 1 1 1 1 0 0 1 0 1 1 Agrionoptera longitudinalis 2 0 1 3 1 1 1 0 5 1 0 3 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 1 0 ? 0 ? 1 Cannaphila vibex 2 0 1 3 1{01} 0{12} 4 1 0 3 1{12} 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 1 0 1 0 1 1 Dasythemis esmeralda 2 0 1 3 1 1 1{01} 5 1 1 3 1{12} 1 0 1 1 0 0 1 1 0 1 ? 1 1 0 1 2 1 0 1 0 2 1 2 1 0 1 1 1 0 0 0 0 1 1 Libellula quadrimaculata 2 0 1 1 1 1 0 2 4 1 0 3 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 1 0 1 0 1 1 Libellula puchella 2 0 1 1 0 0 0 2 4 0 0 3 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 1 0 1 0 0 1 Libellula luctuosa 2 0 1 1 1 0 0 2 4{01} 0 3 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 1 0 0 1 Ladona julia 2 0 1 2 1 0 0 2 4{01}{01}3 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 1 0 1 1 Lyriothemis pachygastra 2 0 1 2 1{01} 0 2 4{01} 0 3 1{01} 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 ? 0 ? 1 Misagria parana 2 0 1 3 1 0 0 1 5 1 0 1 1 2 1 0 2 1 1 0 1 1 0 1 ? 0 1 0 1 2 0 0 1 0 2 1 2 ? 0 ? ? ? ? 0 1 0 1 1 Orthetrum sp 2 0 1 3 1 0 0 2 4 0 0 3 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 ? 0 ? 1 1 1 1 0 1 0 0 1 Orthemis ferruginea 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 1 0 0 1 Orthetrum abbotti 2 0 1 3 1 1 0 2 4 0 0 3 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 1 0 ? 0 ? 1 Orthetrum chrysis sp 2 0 1 3 0 0 0 2 4 0 0 3 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 ? ? 0 ? 1 1 1 1 0 ? 0 ? 1 Orthetrum julia 2 0 1 3 1{01} 0 2 4 0 0 3 1{01} 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 1 0 ? 0 ? 1 Orthetrum pruinosum neglectum 2 0 1 3 1 0 0 2 4 0 0 3 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 ? ? 0 ? 1 1 1 1 0 ? 0 ? 1 Plathemis lydia 2 0 1 1 1 0 0 2 4 0 0 3 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 1 0 0 1 Acisoma panorpoides 2 0 1 3 1 1{01} 2 4 1 1 3 1{01} 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 ? ? 1 1 1 1 0 ? 0 ? 1 Bradinopyga strachani 2 0 1 3 1 0 0 2 4 1 0 3 1{01} 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 2 0 0 1 0 2 1 2 0 ? 1 ? ? 1 0 1 0 1 1 Brachythemis leucosticta 2 0 1 3 1 1 0 2 4 1{01} 3 1 2 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 0 0 0 ? 0 ? 1 Crocothemis erythraea 2 0 1 3 1 1 0 2 4 1 0 3 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 ? 0 ? 1 Crocothemis divisa 2 0 1 3 1{01} 0 2 4 1 0 3 1 0 1 ? 0 1 0 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 ? 0 ? 1 Crocothemis servilla 2 0 1 3 1 1 0 2 4 1 0 3 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 0 0 1 0 1 1 Deielia phaon 2 0 1 2 1 1 0 2 4 1{01} 3 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 1 0 1 1 Diplacodes haematodes 2 0 1 3 1 1 0 2 4 1 0 3 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 ? 1 ? 1 1 1 0 0 1 0 1 1 Erythemis simplicollis 2 0 1{23} 1 1 0 2 4 1 0 3 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 2 1 0 1 0 2 1 2 ? 1 1 1 0 ? 0 ? 0 1 1 Erythrodpilax miniscula 2 0 1 3 1 1 0 2 4 1{01} 3 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 1 0 1 1 Pachydiplax longipennis 2 0 1 3 1 1{01} 2 4 1 0 3 1 2 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 2 0 0 1 0 2 1 2 ? 1 ? ? ? ? 0 1 0 1 1 Rhodopygia hollandi 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 1 1 1 1 0 0 1 0 1 1 Sympetrum janae 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 2 1 0 1 0 2 1 2 0 1 1 1 1 1 0 1 0 1 1

195

Sympetrum ambiguum 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 2 1 0 1 0 2 1 2 0 1 1 1 1 1 0 1 0 1 1 Brechmorhoga mendax 2 0 1 3 1 1 0 2 4 1 0 3 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 2 1 0 1 2 2 1 2 0 ? 0 0 1 0 0 1 0 1 1 Dythemis fugax 2 0 1 3 1 1 0 2 4 1 0 3 1{12} 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 ? 0 1 0 2 1 2 1 0 1 0 1 1 0 1 0 1 1 Dythemis multipunctata 2 0 1{23} 1 1 0 2 4 1 0 3 1 2 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 2{01} 0 1 0 2 1 2 1 0 1 0 1 1 0 1 0 1 1 Macrothemis celeno 2 0 1 3 1 1 0 2 4 1 1 3 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 2 1 0 1 1 2 1 2 1 0 1 0 1 0 0 1 0 1 1 Macrothemis hemichlora 2 0 1 3 1 1 0 2 4 1 1 3 1 2 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 2 1 0 1 1 2 1 2 1 0 1 0 1 0 0 1 0 1 1 Trithemis dorsalis 2 0 1 3 1{01} 0 2 4 1 0 3 1 2 1 0 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 ? 0 ? 1 Trithemis monardi 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 ? 0 ? 1 Trithemis sp 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 ? ? 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 ? 0 ? 0 ? 1 Onychothemis testacea 2 0 1 3 1 1 0 2 4 1 0 3 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 0 1 0 0 0 ? 0 ? 1 Onychothemis culminicola 2 0 1 3 1 1 0 2 4 1 0 3 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 0 1 0 0 0 0 0 0 1 Diastatops intensa 2 0 ? ? 0 0 0 2 4 0 0 3 1 2 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 ? ? ? ? ? ? ? ? 0 1 1 ? ? ? ? ? ? ? 0 Palpopleura portia 2 0 1 2 1 1 0 2 4 0 0 3 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 2 0 0 ? 0 2 1 ? 0 ? 1 1 1 ? ? ? 0 ? 1 Palpopleura jucunda 2 0 0 2 0 0 0 2 4 0 0 3 1 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 1 0 1 1 Palpopleura lucia 2 0 1 2 1 0 0 2 4 0 0 3 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 ? 0 ? 1 Perithemis tenera 2 0 1 2 1 1 0 2 4 1 1 3 1 2 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 2 0 0 1 0 2 1 2 0 1 1 1 1 0 0 1 0 1 1 Zenithoptera fasciata 2 0 1 1 1{01} 0 2 4 1 0 3 1 2 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 1 1 1 1 0 0 0 0 1 1 Tramea lacerata 2 0 1 1 1 1 0 2 4 1 0 3 1{01} 1 1 0 1 1 1 1 1 0 0 2 0 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 1 0 1 0 1 1 Tramea onusta 2 0 1 1 1 1 0 2 4 1 0 3 1{01} 1 1 0 1 1 1 1 1 0 0 2 0 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 0 0 0 0 1 1 Tholymis tillarga 2 0 1{23} 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 1 0 1 0 0 1 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 ? 0 ? 1 Rhyothemis semihyalina 2 0 1 3 1 1 0 2 4 0 0 3 1 1 1 1 0 1 0 1 1 1 0 ?{01} 0 1 0 1 2 1 0 1 0 2 1 2 1 ? 1 1 1 1 0 ? 0 ? 1 Miathyria marcella 2 0 1 3 1 1 0 2 4 1{01} 2 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 ? 1 1 1 0 0 1 0 1 1 Pantala flavescens 2 0 1 3 1 1 0 2 4 1 0 3 1 2{01} 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 0 0 1 1 1 1 Hydrobasileus brevistylus 2 0 1 2 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 1 1 1 0 1 2 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 0 1 0 0 ? 0 ? 1 Idiataphe amazonica 2 0 1 2 1 1 0 2 4 1 1 3 1 2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 2 0 0 1 0 2 1 2 1 0 1 ? ? 0 0 1 0 1 0 Aethriamanta rezia 2 0 1 2 1 1 0 2 4 1 1 3 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 0 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 ? 0 ? 1 Macrodiplax balteata 2 0 1 2 1 1 0 2 4 1 1 3 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 2 0 0 1 0 2 ? ? ? ? 1 1 1 0 0 1 0 ? 1 Urothemis assignata 2 0 1 2 1 1 0 2 4 1 1 3 1 2 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 0 0 ? 1 Urothemis sp 2 0 1 2 1 1 0 2 4 1 1 3 1 2 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 2 0 0 1 0 2 1 2 0 ? 1 1 1 0 0 0 0 ? 1 Zyxomma elgneri 2 0 1 1 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 0 1 0 1 2 0 1 0 1 2 1 0 1 0 2 1 2 1 ? 1 1 1 0 0 ? 0 ? 1 Zyxomma petiolatum 2 0 1 1 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 0 1 0 1 2 0 1 0 1 2 ? 0 1 0 2 ? ? 1 ? 1 1 1 0 0 ? 0 ? 1 Zygonyx torrida 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 1 1 1 0 1 2 0 1 0 1 2 1 0 1 0 2 1 2 1 ? 1 0 1 0 0 ? 0 ? 1 Zygonyx natalensis 2 0 1 3 1 1 0 2 4 1 0 3 1{12} 1 1 0 1 1 0 1 1 0 1 2 0 1 0 1 2 1 0 1 1 2 1 2 0 ? 1 0 1 0 0 ? 0 ? 1 Scapanea frontalis 2 0 1 3 1 1 0 2 4 1 0 3 1 2 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 2 1 0 1 2 2 1 2 ? ? 1 0 0 ? 0 1 0 1 1 Paltothemis lineatipes 2 0 1 3 1{01} 0 2 4 1 0 3 1{02}{01}1 0 1 1 1 1 1 0 0 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 0 0 0 1 0 1 1 Hadrothemis defecta 2 0 1 3 1 1 0 2 4 1 0 3 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 1 0 ? 0 ? 1 Huonia oreophila 2 0 1 3 1 1 0 1 4 1 1 3 1 1 1 1 0 1 1 0 1 1 0 1 2 1 1 0 1 2 1 0 1 0 2 1 2 1 ? 1 1 1 0 0 ? 0 ? 1 Elasmothemis cannacriodes 2 0 1 3 1 1 0 2 4 1 0 3 1{12} 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 2 0 0 1 0 2 1 2 0 0 1 1 1 0 0 1 0 1 1 Fylgia sp 2 0 1 3 1 1 1 2 5 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 ? 1 0 0 0 ? ? ? ? ? ? ? ? ? ? 1 1 1 ? ? ? 0 ? 1 Psudothemis zonata ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Tauriphila sp 2 0 1 2 1 1 0 2 4 1 0 3 1 2 1 1 0 1 1 0 1 1 0 1 2 0 1 0 1 2 0 0 1 0 2 1 2 1 0 1 1 1 0 0 1 0 1 1

196

Accessory Genitalia Penile Larval New characters ______1 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

Chlorogomphus b. costalis 0 1 0 1 0 1 ? ? 0 0 0 0 0 0 0 1 0 0 ? ? ? ? 0 0 0{01} 0 0 0 0 2 1 0 1 0 1 1{01} 0 ? ? ? ? ? ? 0 ? 0 0{01} 1 0 Chloropetalia soarer 0 1 0 1 0 0 ? ? 0 0 0 0 0 0 0 1 0 0 ? ? ? ? 0 0 0 ? 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Sinorogomphus sp 0 1 0 1 0 1 ? ? 0 0 0 0 0 0 0 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Neopetalia punctata 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 ? ? ? 0 0 0 1 0 1 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Anotogaster sieboldii 1 1 0 0 0 0 ? ? 0 0 0 0 1 1 0 1 0 0 ? ? ? 0 0 0 0 0 0 ? ? ? 2 1 0 1 0 1 1{01} 0 ? ? ? ? ? ? 1 1 2 1 1 0 1 Zoreanea bilineata ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 1 ? 0 0 2 1 0 1 0 1 1{01} 0 ? ? ? ? ? ? 1 1 2 1 1 1 1 Taeniogaster obliqua 1 1 1 1 0 0 ? ? 0 0 0 0 1 1 0 1 0 ? ? ? ? 0 0 0 0 0 0 1 0 0 2 1 0 1 0 1 1{01} 0 2 1 1 2 1 1 1 1 2 1 1 1 1 Cordulegaster maculatus 1 1 1 1 0 0 ? ? 0 0 0 0 0 0 0 1 0 ? ? ? ? 0 0 0 0 0 1 1 0 0 2 1 0 1 0 ? 1{01} 0 2 1 1 2 1 1 ? 1 2 1 1 1{01} Kalyptogaster erronea 1 1 1 1 0 0 ? ? 0 0 0 0{01} 1 0 1 0 ? ? ? ? 0 0 0 0 0 1 1 0 0 2 1 0 1 0 1 1{01} 0 2 1 0 2 1 0 0 1 2 1 1 1 1 Apocordulia macrops 2 1 0 0 1 1 ? ? ? 1 1 2 ? ? ? 1 2 2 ? ? ? 0{12} 1 1 2 1 ? ? ? 1 1 1 0 0 1 1{01} 1 0 0 0 2 1 0 1 1 1 2 1 1{01} Austrophya mystica 2 1 0 1 1 1 ? 1 ? 1 1 1 1 1 ? 1 0 ? ? ? ? 0{12} 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Archaeophya magnifica 1 0 0 1 1 1 ? 1 1 0 0 0 1 0 0 0 0 ? ? ? ? 0{013}0 1 1 0 ? ? ? 2 1 1 1 0 1 1{01} 2 ? ? ? ? ? ? 1 1 1 2 1 1 1 Austrocordulia refracta 2 0 0 1 1 1 ? ? 1 1 1 1 1 0 0 1 0 ? ? ? ? 0{123}1 1{02} 1 ? ? ? 1 0 1 0 0 1 0{01} 2 0 1 1 2 1 0 1 1 1 3 1 0 0 Cordulephya pygmea 2 0 0 ? 1 1 ? ? ? 1 ? 0 1 1 ? 1 2 ? ? ? ? 0 0 1 1 2 1 ? ? ? 2 1 1 1 0 1 0{01} 2 0 0 0 1 0 0 1 1 1 2 1 0 1 Gomphomacromia sp 0 0 0 1 1 0 ? ? 1 0 0 0 0 1 0 0 2 ? ? ? ? ? ? ? ? ? ? ? 1 1 ? ? ? ? ? ? ? ? 2 0 1 ? ? ? ? ? ? ? ? ? ? ? Hespercordulia berthoudi 2 1 0 1 1 1 ? ? 1 1 1 1 1 1 0 1 2 ? ? ? ? 0 2 1 1 1 1 ? ? ? 1 1 1 0 0 1 0 1 2 0 0 0 1 1 1 1 1 1 2 1 0 1 Lathrocordulia metallica 2 1 0 1 0 1 ? ? 1 1{01} 2 1 0 0 1 1 ? ? ? ? 0{12} 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 2 0 1 0 1 1 0 0 1 1 2 1 ? 0 Micromidia artifrons 2 1 0 0{01} 1 ? ? 1 1 1 1 1 1 0 1 0 ? ? ? ? 0 2 1 1 2 0 ? ? ? 0 ? ? ? 0 ? 1 ? 3 0 0 0 0 0 1 ? ? ? ? 0 ? ? Neocordulia batesi longipollex 2 1 0 ? 1 1 ? ? ? 1 1 1 1 0 0 1 0 ? ? ? ? 0{23} 1 1{01} 1 2 1 1 2 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 2 1 1 0 Neocordulia campana 2 1 0 0 1 1 ? ? ? 1 1 1 1 0 0 1 0 ? ? ? ? 0 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 2 0 0 ? ? ? ? ? ? ? ? ? ? ? Oxygastra curtisii 2 1 0{01} 1 1 ? ? 1 1 1 1 1 0 0 1 0 ? ? ? ? 0 2 1 1 2 1 1 1 1 0 1 1 1 0 1 1{01} ? 0 0 ? ? ? ? 0 1 1 2 1 1 1 Pseudocordulia circularis 1 0 0 1 1 1 ? 1 1 1 0 2 1 1 0 1 0 ? ? ? ? 0 2 0 1 ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Syncordulia gracilis 2{01} 0 0 1 2 ? ? 1 1 1 1 1 1 0 0 2 ? ? ? ? 0 2 1 1 0 1 ? ? ? 0 ? ? ? ? ? ? ? ? 0 0 0 1 0 0 ? ? ? ? ? ? ? Idionyx selysi 2 1 0 1 1 1 ? 1 1 1 1 2 1 1 0 1 0 ? ? ? ? 0 2 1 0 1 1 ? ? ? 0 ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? Macromidia rapida 2 1 0 1 1 1 ? 1 1 1 ? 2 1 0 0 0 0 2 ? ? ? 0 2 1 0 2 1 ? ? ? 0 ? ? ? ? ? ? ? 2 0 0 0{01} 0 0 ? ? ? ? ? ? ? Idomacromia proavita 2 1 0 1 1 2 ? ? 1 1 1 1 1 1 0 1 0 ? ? ? ? 0 ? ? ? ? ? 2 1 1 ? ? ? ? ? ? ? ? 2 0 0 ? ? ? ? ? ? ? ? ? ? ? Neophya rutherfordi 2 ? 0 1 1 1 ? ? 1 1 1 2 1 1 0 0 2 ? ? ? ? ? 2 1 1 3 1 1 1 1 0 ? ? ? ? ? ? ? 2 ? ? ? ? ? ? ? ? ? ? ? ? ? Choristhemis flavoterminata 0 0 0 1 1 0 ? ? 1 0 0 0 1 0 0 0 0 ? ? ? ? 0 2 0 0 1 0 ? ? ? 2 0 1 1 0 1 1{01} ? 0 1 0{01} 0 0 1 1 2 2 1 1 1 Eusynthemis brevistyla 0 0 0 1 1 1 ? ? 1 0 0 0 1 1 0 0 0 ? ? ? ? ? 2 0 0 1 0 ? ? ? 2 1 1 0 0 1 1 0 1 0 1 0{01} 1 0 1 1 1 2 1 1 1 Synthemiopsis gomphomacromioides 0 0 0 1 1 0 ? ? 1 0 0 0 0 1 0 0 2 ? ? ? ? ? 2 0 0 ? 0 ? ? ? ? 1 ? 0 0 1 1 ? 2 0 1 1 1 1 0 ? ? ? ? ? ? ? Synthemis eustalacta 0 0 0 1 1 0 ? ? 1 0 0 1 0 1 0 0 2 ? ? ? ? 0 2 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 ? 0 1 ? ? ? ?{01} 1 1 2 1 1 1 Synthemis leachii 0 0 0 1 1 0 ? ? 1 0 0 1 0 1 0 0 2 ? ? ? ? 0 2 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 ? 0 1 0 1 0 1 2 2 1 1 1 Phyllomacromia sp 2 1 1 ? 0 0 ? ? ? 1 0 3 1 0 0 1 2 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 2 1 0 ? ? ? ? ? ? ? Didymops floridiensis 2 1 1 0 0 1 ? 1 2 1 1 1 1 0 0 1 2 ? ? ? ? 0 0 1 1 2 ? 2 1 1 1 0 1 1 0 ? 1 1 ? 1 0 0 2 1 0 1 1 1 ? ? ? ? Didymops transversa 2 1 1 1 0 1 1 1 2 1 1 1 1 0 0 1 2 ? ? ? ? 0 2 1 1 2 1 2 1 2 1 0 1 1 0 0 1 1 2 1 0 0 2 1 0 1 1 1 2 1 1 1 Macromia illionoiensis 2 1 1 1 0 1 1 1 2 1 1 1 1 0 0 1 2 ? ? ? ? 0 2 1 1 2 1 1 1 2 1 0 1 1 0 0 1 1 ? 1 0 0 2 1 0 1 1 1 2 1 1 1 Aeshnosoma forcipula 2 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 2 ? ? ? ? 0 2 1 0 2 1 ? ? ? 0 ? ? ? ? ? ? ? ? 0 0 1 1 0 0 ? ? ? ? ? ? ? Cordulia aenea 2 1 1 1 1 1 0 1 2 1 1 2 1 1 1 0 2 ? ? ? ? 0 4 1 1 2 1 2 1 2 0 ? ? ? ? ? ? ? ? 0 0 0 1 1 0 ? ? ? ? ? ? ? Cordulia shurtleffi 2 1 1 1 1 1 ? ? 2 1 1 2 1 1 1 0 2 ? ? ? ? 0 4 1 1 2 1 2 1 2 0 1 1 1 0 1 1{01} ? 0 0 0 1 1 0 1 1 1 2 1 1 1 Dorocordulia lepida 2 1 1 1 1 1 0 1 2 1 1 2 1 1 1 0 2 ? ? ? ? 0 2 1 1 2 1 ? ? ? 0 1 1 1 0 1 1{01} ? 0 0 0 1 1 0 1 1 1 2 1 1 0 Epitheca princeps 2 1 1 ? 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 2 1 1 2 1 ? ? ? 0 0 1 1 0 0 1{01} ? 0 0 0 1 1 0 1 1 1 2 1 1 1 Helocordulia uhleri 2 1 1{01} 1 1 ? ? 1 1 1 2 1 1 1 0 2 ? ? ? ? 0 2 1 1 2 1 2 1 1 0 0 1 1 0 0 1{01} ? 0 ? 1 1 1 0 1 1 1 3 1 1 1 Hemicordulia tau 2 1 1{01} 1 1 ? ? 1 1 1 2 1 1 1 1 2 ? ? ? ? 0 3 1 1 2 1 ? ? ? 0 1 1 1 0 1 1 1 ? 0 ? 0 2 1 0 1 1 1 2 1 0 1 Neurocordula obsoleta 2 1 1 0 1 1 1 1 2 1 1 2 1 1 1 0 2 ? ? ? ? 0 3 1 1 2 1 2 1 1 0 0 1 0 0 0 1 1 3 0 0 0 2 1 0 1 1 1 2 1 1 1 Pentathemis membranulata 2 0 0 ? 1 1 0 ? ? 1 ? ? 1 1 1 ? ? ? ? ? ? 0 2 1 1 2 1 ? ? ? 0 1 1 0 0 1 1{01} 3 0 0 0 1 0 0 1 1 1 2{01} ? 1 Neurocordulia xanthosoma 2 1 1 1 1 1 1 1 2 1 1 2 1 1 1 0 2 ? ? ? ? 0 3 1 1 2 1 2 1 1{02} 0 1 0 0 0 1 1 3 0 0 0 2 1 0 1 1 1 2 1 1 0 Procordulia grayi 2 ? 1 1 1 1 ? ? 1 1 1 1 2 1 1 1 0 ? 2 ? 0 ? 2 2 1 ? 1 ? ? ? 0 ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? Procordulia smithi 2 ? 1 1 1 1 ? ? 1 1 1 1 2 1 1 1 0 ? 2 ? 0 ? 2 2 1 ? 1 ? ? ? 0 ? ? ? ? ? ? ? 1 1 ? ? ? ? ? ? ? ? ? ? ? ? Rialla villosa 2 1 1 0 1 1 0 1 2 1{01} 2 1 1 1 0 2 ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 0 0 2 1 0 ? ? ? ? ? ? ? Somatochlora tenebrosa 2 1 1{01} 1{12} 1 0 2 0 0 2 1 1 1 1 2 ? ? ? ? 0 2 1 0 2 1 ? ? ? 0 0 1 0 0 0 1 0 ? 0 0 0 2 1 0 0 1 1 2 1 1 1 Tetragoneuria cynosura 2 1 1{01} 1 1 ? ? 1{01}{01}2 1 1 1 0 2 ? ? ? ? 0 4 1 1 2 1 2 1 1 0 0 1 0 0 0 1{01} 1 0 0 0 1 1 0 1 1 1 2 1 1 0 Williamsonia fletcheri 2 1 1 1 1 2 ? ? 2 0 0 1 1 1 1 0 2 ? ? ? ? 0 2 1 1 0 1 ? ? ? 2 0 1 1 0 0 1 1 1 0 0 ? ? ? ? 0 1 1 2 1 1 1 Calophlebia interposita ? ? ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Neodythemis pauliani ? ? ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Nannophlebia risi ? ? ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 1 1 0 1 0 1 ? ? ? ? ? ? 1 1 1 2 0 0 1 Tetrathemis polleni 2 1 1 0 1 ? ? ? 3 0 0 0 1 0{01} 0 2 ? 4 4 0 ? 2 1 2 2 1 ? ? ? 0 ? ? ? ? ? ? ? ? 0 ? 0 2 1 0 ? ? ? ? ? ? ? Anatya guttata 2 0 0 0 1 1 ? 1 3 0 0 0 1 0 ? 1 0 ? 0 1 0 ? 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1{01} 3 0 ? 0 1 0 0 1 1 1 3 0 1 1 Brachydiplax denticudata 2{01} 0 0 1 ? ? ? 3 0 0 0 1 0 ? 1 0 ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Brachydiplax c chalybea 2 0 0 0 1 ? ? ? 3 0 0 0 1 0 ? 1 0 ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Chalcostephia flavifrons 2 0 0 0 1 1 0 ? 3 0 0 0 1 0 ? ? 0 ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 1 ? ? ? ? ? ? ? Elga leptostyla ? ? ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1 1 2 ? ? ? ? ? ? 1 1 1 3 0 1 1 Micrathyria aequalis 2 0 0 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 1 0 1 0 1 1 3 0 1 1 HEMISTIGMA albipuncta 2 0 0 0 1 1 ? 0 3 0 0 0 1 0 ? ? 0 ? 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 1 0 ? ? ? ? ? ? ? Nannophya dalei 2 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 0 1 ? ? ? 0 0 1 0 1 1 1 1 3 0 ? 0 1 0 0 1 1 1 2 0 1 1 Nannothemis bella 2 0 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 1 4 1 1{01} 1 ? ? ? 0 1 1 0 1 1 1 1 2 0 ? 0{01} 0 0{01} 1 1 2 0 1 0 Nephepeltia phyryne 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1{03} 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 1 1 0 0 1 1 3 1 1 0 Thermochoria equivocata 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Oligoclada walkeri 2 0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 2 1 1 3 1 ? ? ? 0 0 1 0 1 0 1 1 3 0 ? 0 1 0 0 1 1 1 3 1 1 1 Uracis fastigiata 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? 0 1 0 0 ? ? ? ? ? ? ? Brachymesia furcata 2 1 0 0 1 1 0 1 3 0 0 0 1 0 ? ? 0 ? 0 ? 0 1 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1{01} 2 0 ? 0 1 1 1 0 1 1 2 0 1 1 Celithemis elisa 2 0 0 0 1 1 0 1 3 0 0 0 1 0 ? ? 0 ? 0 1 0 0 4 1 1 2 1 ? ? ? 0 0 1 0 0 1 1 1 2 0 ? 0 0 0 0 0 1 1 3 0 1 0 leucorrhinia intacta 2 1 0 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1{02} 1 ? ? ? 0 0 1 0 1 1 1 1 2 0 0 0 0 0 0 0 1 1 3 0 1 1 Leucorrhinia glacialis 2 1 0 0 1 1 ? 1 3 0 0 0 1 0 ? ? 0 ? 0 0 ? ? 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 0 0 0 0 1 1 3 0 1 1 Agrionoptera longitudinalis 2 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 0 1 0 0 1 1 3 0 0 1 Cannaphila vibex 2 0 0 0 1 1 ? 1 3 0 0 2 1 0 0 ? ? ? 0 4 ? ? 4 1 1 2 1 ? ? ? 0 1 1 1 1 1 1 1 1 0 ? 0 1 1 0 0 1 1 3 0 0 0 Dasythemis esmeralda 2 1 0 0 1 1 0 1 3 0 0 2 1 0 ? ? 0 ? 0 ? ? ? 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 1 1 0 0 1 1 3 0 0 1 Libellula quadrimaculata 2 1 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? 1 0 0 0 4 1 1 2 1 ? ? ? 0 0 1 0 1 1 1 1 2 0 ? 0 1 1 0 0 1 1 3 1 1 0 Libellula puchella 2 1 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 2 0 ? 0 1 1 0 0 1 1 3 1 1 1 Libellula luctuosa 2 1 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 2 1 2 0 0 1 0 1 1 1 1 2 0 ? 0 1 1 0 0 1 1 3 1 1 1 Ladona julia 2 1 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 2 1 2 0 0 1 0 1 1 1 1 2 0 ? 0 1 0 0 0 1 1 3 1 1 1 Lyriothemis pachygastra 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1 1 ? 0 ? 0 0 0 0 0 1 1 3 1 0 1 Misagria parana 2{12} 0 0 1 ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 1 ? ? ? ? ? ? ? Orthetrum sp 2 0 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? Orthemis ferruginea 2 0 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ?{04} 0 3 0 2 1 1{02} 1 ? ? ? 0 1 1 0 1 1 1 1 2 0 ? 0 1 0 0 0 ? 1 3 1 1 1 Orthetrum abbotti 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 1 1 1 0 ? ? ? ? ? ? Orthetrum chrysis sp ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? Orthetrum julia 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 1 1 ? 3 0 ? 0 1{01} 1 0 1 1 3 1 1 1 Orthetrum pruinosum neglectum ? ? ? ? ? 1 ? ? ? ? ? 1 ? ? ? ? ? ? 1 4 0 ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? Plathemis lydia 2 1 0 0 1 1 0 1 ? ? ? 0 ? ? ? ? ? ? 0 4 3 ? 2 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 1 1 0 ? 0 1 0 1 0 1 1 3 1 1 1 Acisoma panorpoides 2 1 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Bradinopyga strachani 2 1 0 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Brachythemis leucosticta 2 1 0 0 1 1 ? ? 3 0 0 1 1 0 ? ? 0 ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 2 1 0 ? ? ? ? ? ? ? Crocothemis erythraea 2 0 0 0 1 1 ? ? 3 0 0 0 1 0 ? ? ? ? 0 4 0 ? 4 1 1{03} 1 ? ? ? 0 1 1 ? 1 1 1 1 1 2 ? 0 1 0 0 0 1 1 3 0 1 1 Crocothemis divisa 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? 0 1 0 0 ? ? ? ? ? ? ? Crocothemis servilla 2 0 0 0 1 1 1 0 3 0 0 0 1 0 ? ? 0 ? 0 4 0 ? 4 1 1{03} 1 ? ? ? 0 1 1 ? 1 1 1 1 2 2 ? 0 1 0 0 0 1 1 2 0 0 1 Deielia phaon 2 1 0 0 1 ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 1 2 1 ? ? 2 0 0 1 1 1 0 1 ? 2 0 ? 0 1 1 0 1 1 1 3 1 1 1 Diplacodes haematodes 2 0 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 0 1 ? ? ? 0 1 1 1 1 1 1 0 1 0 ? ? ? ? ? 0 1 1 3 0 1 1 Erythemis simplicollis 2 1 0 0 1 1 1 0 3 0 0 0 1 0 0 1 2 ? 0 4 0 0 4 1 1 0 0 2 1 2 0 1 1 0 1 1 1{01} 3 0 ? 0 1 0 0 0 1 1 2 0 1 1 Erythrodpilax miniscula 2 0 0 0 1 1 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 0 1 ? ? ? 0 1 1 0 1 1 1 0 2 0 ? 0 1 0 0 0 1 1 3 0 1 1 Pachydiplax longipennis 2 0 0 0 1 1 0 1 3 0 0 0 1 0 ? 1 ? ? 0 1 0 0 4 1 1 2 1 2 1 1 0 1 1 0 1 1 1 1 1 0 ? 0 1 0 0 0 1 1 2 0 1 1 Rhodopygia hollandi 2 0 0 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 ? ? ? 0 1 1 0 1 1 1 0 3 0 ? 0 1 0 0 0 1 1 2 0 1 1

197

Sympetrum janae 2 1 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 3 1 ? ? ? 0 0 1 0 1 1 1 1 2 0 ? 0 0 1 0 0 1 1 3 0 1 1 Sympetrum ambiguum 2 1 0 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1{02} 1 ? ? ? 0 0 1 0 1 1 1 1 2 0 ? 0 1 1 0 0 1 1 3 0 1 1 Brechmorhoga mendax 2 1 0 0 1 ? 0 1 3 0 0 0 1 0 0 1 2 ? 0 0 0 ? 4 1 1{02} 1 ? 0 1 0 0 1 0 1 0 1 1 1 0 ? 0 1 1 0 1 1 1 2 0 0 1 Dythemis fugax 2 1 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1{01} 1 0 ? 0 0 1 0 1 1 1 3 0 1 1 DYTHEMis muLTIPUNCTATA 2 1 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1{02} 1 ? ? ? 0 0 1 0 1 0 1 1 1 0 ? 0 1 1 0 1 1 1 3 0 1 1 Macrothemis celeno 2 1 1 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 1{02} 1 ? ? ? 0 1 1 0 1 1 1 1 2 0 ? 0 2 0 0 1 1 1 3 0 1 1 Macrothemis hemichlora 2 1 1 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 1{02} 1 ? ? ? 0 0 1 0 1 0 1 1 3 0 ? 0 2 1 0 1 1 1 3 0 1 1 Trithemis dorsalis 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 ? 1 ? ? ? 0 1 1 0 1 1 1 ? 1 0 ? 0 1 1 1 0 1 1 3 0 1 1 Trithemis monardi 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 1 1 ? ? ? ? ? ? ? Trithemis sp 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? Onychothemis testacea 2 0 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Onychothemis culminicola ? ? ? ? ? 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Diastatops intensa ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 4 1 1 2 1 ? ? ? 0 0 1 ? 1 0 1 ? ? ? ? ? ? ? ? 0 ? 1 3 0 1 1 Palpopleura portia 2 0 0 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Palpopleura jucunda 2 0 0 0 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Palpopleura lucia 2 0 0 0 1 1 ? ? 3 ? ? 0 1 0 ? ? ? ? 0 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Perithemis tenera 2 0 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? 0 4 3 ?{24} 1 1 2 1 2 1 1 0 0 1 0 1 0 1 1 3 0 ? 0 2 1 0 1 1 1 3 0 1 1 Zenithoptera fasciata 2 0 0 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Tramea lacerata 2 1 0 0 1 1 0 1 3 0 0 0 1 0 0 1 2 ? ? ? ? 0 4 1 1 0 1 2 1 2 0 1 1 0 1 1 1 1 1 0 ? 0 2 1 0 0 1 1 3 0 0 1 Tramea onusta 2 1 1 0 1 1 ? 1 3 0 0 0 1 0 ? ? ? ? 0 ? 0 0 4 1 1 0 1 2 1 2 0 1 1 0 1 1 1 1 2 0 ? 0 2 1 0 0 1 1 2 0 0 1 Tholymis tillarga 2 1 0 0 1 ? ? ? ? ? ? 1 ? ? ? ? ? ? 0 4 0 ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1 1 2 0 ? 0 2 1 0 1 1 1 3 0 0 1 Rhyothemis semihyalina 2 1 0 0 1 ? ? ? ? ? ? 0 ? ? ? ? ? ? 0 ? 0 ? 4 1 1{02} 1 ? ? ? 0 0 1 0 1 0 1 1 ? 0 ? 0 1 1 0 1 1 1 3 0 1 1 Miathyria marcella 2 1 1 0 1 1 ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 0 1 ? ? ? 0 0 1 0 1 1 1{01} 1 0 ? 0 2 1 0 0 1 1 3 0 1 1 Pantala flavescens 2 0 0 0 1 1 ? 1 ? ? ? 1 ? ? ? ? ? ? 0 4 0 0 2 1 1{03} 1 2 1 2 0 1 1 0 1 1 1 1 2 0 ? 0 1 1 1 1 1 1 3 0 ? ? Hydrobasileus brevistylus 2 1 0 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1{01} 1 ? ? ? 0 0 1 1 1 1 1 1 1 0 ? 0 ? 0 0 0 1 1 2 1 1 1 Idiataphe amazonica 2 0 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 1 1{02} 1 2{01} 1 0 0 1 0 1 0 1 1 1 0 ? 0 1 0 1 1 ? 1 3 0 1 0 Aethriamanta rezia 2 1 1 0 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 2 1 0 ? ? ? ? ? ? ? Macrodiplax balteata ? ? ? ? ? 1 ? ? 3 0 0 0 1 0 0 1 1 ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 1 1 1 2 ? ? ? ? ? ? 0 1 1 3 0 1 1 Urothemis assignata 2 1 1 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 2 1 0 ? ? ? ? ? ? ? Urothemis sp 2 1 1 0 1 1 0 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 2 1 0 ? ? ? ? ? ? ? Zyxomma elgneri 2 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 0{02} 1 ? ? ? 0 0 ? 1 1 0 1 1 2 0 ? 0 1 1 0 1 ? 1 2 ? ? 1 Zyxomma petiolatum ? ? ? ? ? 1 ? ? ? ? ? 1 ? ? ? ? ? ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Zygonyx torrida 2{01} 0 0 1 ? ? ? ? ? ? 1 ? ? ? ? ? ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 1 ? ? ? ? ? ? ? Zygonyx natalensis 2 0 0 0 1 ? ? ? ? ? ? 1 ? ? ? ? ? ? 0 4 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 1 ? ? ? ? ? ? ? Scapanea frontalis 2 1 1 0 1 ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 2 1 1{02} 1 2 1 1 0 0 1 0 1 0 1 1 2 0 ? 0 1 0 0 1 1 1 3 0 0 1 Paltothemis lineatipes 2 1 1 0 1 ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 2 1 1{02} 1 ? ? ? 0 0 1 0 1 1 1 1 2 0 ? 0 1 1 0 1 1 1 2 0 ? ? Hadrothemis defecta 2 0 0 0 1 ? ? ? ? ? ? 0 ? ? ? ? ? ? ? 1 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? 0 1 1 Huonia oreophila 2 0 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 ? 0 1 0 0 ? ? ? ? ? ? ? Elasmothemis cannacriodes 2 0 0 ? 1 ? ? 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 1 1 0 0 1 3 0 1 0 1 0 1 1 1 1 2 0 1 1 Fylgia sp ? ? ? ? ? ? 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1 2 1 ? ? ? 0 0 1 0 1 0 1 0 1 ? ? ? ? ? ? 0 1 1 3 1 1 1 Psudothemis zonata ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 1{02} 1 ? ? ? 0 0 1 0 1 0 1 1 2 ? ? ? ? ? ? 1 1 1 3 0 1 1 Tauriphila sp 2 0 0 0 1 1 0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 0 4 1 1 0 1 ? ? ? 0 0 1 0 1 1 1 1 1 0 0 0 2 1 0 0 1 1 3 0 ? ? Table8:Miller’spenilecharactersarrangedbyourphylogenetichypothesis.1=Large,inflatableandusuallyveryspinoseapical lobe;2=As1,butbilobed;3=As1,butwithdorsallyevaginatinglobe;4=Long,narrowandlargelysclerotized,andatmost sparinglyinflatableapicallobe;5=muchreducedorabsentapicallobe;6=Large,flat,lateralplatesaslaterallobes;7=Long andbladelikelaterallobes;8=Long,curvedandrodlikelaterallobes,resemblingcornua;9=muchreducedorabsentlateral lobes;10=Centralplateofmedialprocesswithlarge,prominentandwellsclerotizedprocess;notextensivelyornotatall inflatable;11=As10,butwithasingle,terminalandinflatablelobeincentralplateofmedialprocess;12=Lesssclerotizedand extensivelyinflatablecentralprocessofmediallobe;13=Singleflagellum,sometimeswithaterminalbarborterminalprocess; 14=Bifurcatedflagella,eachpartendinginanexpandedregionorabarblikeprocess;15=Cornualongandstronglycurved; 16=Cornuashortandstoutandsometimespartiallyfusedtogether;17=Cornuaunsclerotizedandweak;18=Broadinnerlobes capableofconsiderableinflation;19=Long,narrow,spinyinnerlobesthatarewellsclerotized,resemblingflagellaandinflating mainlyinthelateralplane;20=Broadinnerlobes,extendingverygreatlyinlengthwithinflation;21=Muchreducedinner lobes. Taxon Clade Apical Lobe Lateral Lobes Medial Medial Medial Medial process: Process: Process: Process: Central Plate Flagellum Cornua Inner Lobes Potamarcha congener Taxon not 2 6 ? no flagella no cornua 18 present in our analysis Parazyxomma Taxon not 1 6 10 14 no cornua 19 flavicans present in our analysis Indothemis carnatica Taxon not 1 6 11 no flagella no cornua ? present in our analysis Tetrathemis polleni a 1 9 10 no flagella no cornua ? Urothemis assignata b 1 6 10 no flagella no cornua 20

198

Urothemis edwardsi b 1 6 10 no flagella no cornua 20 Trithemis pallidinervis c 1 6 10 no flagella no cornua 18 Trithemis annulata c 4 6 10 no flagella no cornua 19 Trithemis aurora c 4 6 10 no flagella no cornua 19 Trithemis donaldsoni c 4 6 10 no flagella no cornua 19 Trithemis furva c 4 6 10 no flagella no cornua 19 Trithemis stictica c 4 6 10 no flagella no cornua 19 Trithemis arteriosa c 3 6 12 no flagella no cornua 19 Trithemis kirbyi c 4 6 12 no flagella no cornua 19 ardens Zygonyx natalensis c 3 6 12 no flagella no cornua 19 Zygonyx torridus c 3 6 12 no flagella no cornua 19 Pantala flavescens c 1 6 10 13 no cornua ? Sympetrum danae d 1 6 10 no flagella 15 18 Sympetrum d 1 6 10 no flagella 15 18 depressiusculum Sympetrum d 1 8 10 no flagella 15 18 sanguineum Rhyothemis d 1 6 10 no flagella 16 18 semihyalina Sympetrum d 1 6 12 no flagella 15 18 fonscolombei Sympetrum d 1 6 12 no flagella 15 18 meridionale Celithemis eponina d 1 6 ? no flagella 16 18 Sympetrum d 1 6 10 no flagella no cornua 20 striolatum Brachythemis e 1 6 10 13 no cornua 19 lacustris Brachythemis e 1 6 10 14 no cornua 19 contaminata Zyxomma petiolatum e 1 6 10 14 16 ? Brachythemis e 1 6 10 no flagella no cornua ? leucosticta Tholymis tillarga e 1 6 10 no flagella no cornua ? Tramea basilaris e 5 9 11 no flagella no cornua ? Tramea limbata e 5 9 11 no flagella no cornua ? Chalcostephia e 1 6 12 no flagella no cornua ? flavifrons Diplacodes g 5 6 10 no flagella no cornua 15 bipunctaata Diplacodes trivialis g 1 6 10 no flagella 16 18 Neurothemis tullia g 1 6 12 no flagella 17 18 Neurothemis fulvia g 1 6 12 no flagella no cornua 18 Crocothemis g 1 6 10 no flagella no cornua 18 erythraea Crocothemis g 1 6 10 no flagella no cornua 18 sanguinolenta Crocothemis servilia g 1 6 10 no flagella no cornua 18

199

Pachydiplax g 1 6 12 no flagella 16 18 longipennis Diplacodes lefebvrei g 1 6 10 no flagella 16 ? Palpopleura lucia g 1 6 10 no flagella 16 ? Hemistigma g 1 6 10 no flagella no cornua ? albipuncta Acisoma panorpoides g 1 6 10 no flagella no cornua ? Erythemis g 1 6 10 no flagella no cornua ? simplicicollis Bradinopyga cornuta g 1 6 11 no flagella no cornua ? Bradinopyga g 2 6 11 no flagella no cornua ? geminata Perithemis tenera h 5 6 12 no flagella no cornua 18 Libellula incesta h 2 8 12 no flagella no cornua 18 Nesciothemis farinosa h 2 9 12 no flagella no cornua 18 Libellula h 1 7 ? no flagella 15 18 quadrimaculata Hadrothemus coacta h 1 6 ? no flagella 16 20 Hadrothemis infesta h 1 6 ? no flagella 16 20 Hadrothemis h 5 ? ? no flagella 16 20 camerensis Hadrothemis defecta h 1 ? ? no flagella 16 20 pseudodefecta Allorhizuca preussi h 4 6 10 13 no cornua ? Libellula depressa h 1 7 10 no flagella no cornua ? Libellula lydia h 5 6 12 no flagella no cornua ? Libellula cyanea h 2 8 12 no flagella no cornua ? Lokia coryndoni ? 1 6 ? 13 15 ? Orthetrum h 1 7 13 no flagella no cornua ? caledonicum Orthetrum h 1 7 13 no flagella no cornua ? cancellatum Orthetrum h 1 7 13 no flagella no cornua ? chrysostigma Orthetrum h 1 7 13 no flagella no cornua ? coerulescens Orthetrum pruinosum h 1 7 13 no flagella no cornua ? h 1 7 13 no flagella no cornua ? h 1 7 13 no flagella no cornua ? Orthemis ferruginea h 5 6, 9 15 no flagella no cornua ?

200 201

Chapter 5: Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology 1JessicaWare, 2JesseLitman, 3KlausDieterKlass, 4LaurenSpearman 1Department of Entomology, Rutgers University, New Brunswick, NJ, 08901, USA; 2Department of Entomology, Cornell University, Ithaca, NY, 14850, USA; 3State Natural History Collections Dresden, Museum of Zoology, Königsbrücker Landstrasse 159, 01109 Dresden, Germany; 4Department of Ecology and Evolution, Rutgers University, New Brunswick, NJ, 08901, USA

Abstract Dictyoptera,comprisingBlattaria,Isoptera,andMantodea,arediverseinappearance andlifehistory,andarestronglysupportedasmonophyletic.WedownloadedCOII,16S,

18S,and28Ssequencesof39dictyopteranspeciesfromGenBank.RibosomalRNA sequencesweremanuallyalignedwithreferencetosecondarystructure.Weincluded morphologicaldata(maximumof175characters)for12ofthesetaxaandanadditional

15dictyopterantaxa(forwhichwehadonlymorphologicaldata).Wehadtwodatasets, one59taxondatasetwith5outgrouptaxaincludingPhasmatodea(2taxa),

Mantophasmatodea(1taxon),Embioptera(1taxon),andGrylloblattodea(1taxon),anda

62taxondatasetincluding3additionaloutgrouptaxafromPlecoptera(1taxon),

Dermaptera(1taxon)and Orthoptera(1taxon).Weanalyzedthecombinedmolecular morphologicaldatasetusingboththedoubletandMKmodelsinMrBayes,andusinga parsimonyheuristicsearchinPAUP.WithinthemonophyleticMantodea, and then areconfirmedasthemostbasalbranches;themonophylyofmostofthe morederivedfamiliesascurrentlydefinedisnotsupported.Uniquetoourstudy,one

BayesiananalysisplacesPolyphagoideaassistertoallotherDictyoptera;otheranalyses and/ortheadditionofcertainorthopteransequences,however,placedPolyphagoidea

202 moredeeplywithinDictyoptera.Isopterafallswithinthe,sistertothegenus

Cryptocercus .Separateparsimonyanalysesofindependentgenefragmentssuggestthat geneselectionisanimportantfactorintreereconstruction.Whenwevariedtheingroup taxaand/oroutgrouptaxa,theinternaldictyopteranrelationshipsdifferedintheposition ofseveraltaxaofinterestincluding , Polyphaga , Periplaneta and Supella .

Thisprovidesfurtherevidencethatthechoiceofbothoutgroupandingrouptaxagreatly affectstreetopologies.

1. Introduction TheDictyopteraincludestheeusocialIsoptera(ca.3,000species),predatory

Mantodea(ca.2,450species)andBlattaria(ca.4,000species),whichshowextreme divergenceinbothappearanceandlifehistory.Yet,themonophylyofthisgroupis generallyacceptedbasedonmorphologicalsynapomorphiesinthemaleandfemale genitalia,proventriculus,tentorium,andwings(Kristensen,1975,1981,1991;Klass,

1995,1998a,b,2000,2003;GrimaldiandEngel,2005;BeutelandGorb,2006;Klassand

Meier,2006).Thishasbeenconfirmedbymanymolecularbasedcladisticanalyses

(Maekawaetal.,1999;Wheeleretal.,2001;Kjer,2004;TerryandWhiting,2005;Kjer etal.,2006).

AncestralPaleozoic'roachoids'datefromtheUpperCarboniferous(320millionyears ago)andthereareabundantfossilsinthecoalofthatperiod(KukalováPeck,

1991;GrimaldiandEngel,2005).However,itisdoubtfulwhethermanyofthesefossils belongtothestemgroupofDictyopteraorothermajorlineagesof.Extant

DictyopteraprobablyshareaJurassic,omnivorous,detritusfeedingancestor(200150

203 millionyearsago),whichpossessedtheshortenedovipositorcommontomodern

Dictyoptera(GrimaldiandEngel,2005).Theoldestfossilsofmodernfamiliesmaydate fromtheearlyCretaceous(Ross,2001;Vršanský,2002;Grimaldi,2003;Grimaldiand

Engel,2005).However,suchsystematicassignmentisnecessarilytentative,becausethe characterscrucialforthephylogenybasedclassificationofBlattariaandMantodeaarein thegenitalia(McKittrick,1964;Klass,1997,1998a;Grandcolas,1996),whicharenot sufficientlyrecognizableinfossils.

WhilethemonophylyofDictyopteraisgenerallyaccepted,therelationshipswithin thisgrouphavebeenstronglydisputedduringthelast15years(Figure1;Table2;see

Deitzetal.,2003andKlassandMeier,2006forafurthersummaryofpriorphylogenetic hypotheses).

ThemoststrikingpointinthisdisputehasbeentherelationshipofIsopteraandthe blattariangenus Cryptocercus ,whichincludesseveralspeciesfromNorthAmericaand northeasternAsia.Thisrelationshiphasgeneratedgreatinterest,because Cryptocercus sharessomekeylifehistoryattributeswith"lower"(i.e.,Isopteraexcludingthe highlyderivedfamily):xylophagy,broodcare(atleastpartlybiparental),anal trophallaxis,and–uniqueamong–arichhindgutfaunaofflagellatesfromthe taxaOxymonadidaandHypermastigida(e.g.,Clevelandetal.,1934;NalepaandBandi,

2000;seeKlassandMeier,2006forasummaryandforabsenceofsuchflagellatesinthe genus Parasphaeria ,contraPellensetal.,2002,2007).Mostolder contributionssuggestedthatIsopteraisthesistergroupofBlattariaorevenofBlattaria+

Mantodea(morphology:McKittrick,1964;Hennig,1981;ThorneandCarpenter,1992; molecules:Kambhampati,1995).SeveralstudieshaveevenusedIsopteraasoutgroup

204 taxainanalysesofblattarianphylogeny(morphology:Grandcolas,1996;molecules:

Kambhampatietal.,1996;MaekawaandMatsumoto,2000;GrandcolasandD'Haese,

2001). Cryptocercus wasalsoproposedtobedeeplynestedwithintheblattarianfamily

Polyphagidae,closetothegenus Therea (Grandcolas,1994,1997a).Later,however, whenmorphologicaldatasetswererevisited,enlarged/expanded,andsubjectedtomore refinedanddiverseanalyticaltreatments,awellsupportedIsoptera+ Cryptocercus was consistentlyfoundnestedwithinBlattaria(morphology:Deitzetal.,2003;Klassand

Meier,2006;molecules:Loetal.,2003;TerryandWhiting,2005;Kjeretal.,2006;

Pellensetal.,2007;Loetal.,2007;Inwardetal.,2007).Inparallel,itwasshownthatthe assignmentof Cryptocercus toPolyphagidaecannotbeupheld,becauseithadbeenbased onspuriousmorphologicalinterpretations(Klass,1997,2001),andbecauseinmolecular analysesincludingboth Cryptocercus andsomepolyphagid(s)thesetaxadonotcluster

(Loetal.,2003;Kjeretal.,2006;Pellensetal.,2007;Inwardetal.,2007;Loetal.,

2007).Insummary,currentevidencestronglysupportsalineage Cryptocercus +Isoptera.

Someauthorshaveused"Blattodea"toincludeextantandextinctcockroaches,andlimit theuseofBlattariatodescribeextantcockroaches.Werefertothecladecomprising

BlattariaandIsopteraas"Blattodea",followingHennig(1969,1981).Thisusageof

“Blattodea”isnotcommoninrecentdictyopteranphylogeneticsstudies(althoughitis usedinInwardetal.,2007).

WithintheIsoptera,alongacceptedsistergrouprelationshipbetweentherelic

Australian, darwiniensis ,andallothertermites(e.g.Hennig,1981) isbasedonthemanymorphologicalplesiomorphiesin Mastotermes thatareunique withinIsopterabutreminiscentofBlattaria(Klass,1995;Donovanetal.,2000;Klassand

205

Meier,2006).Examplesareacompleteovipositor(Klass,1998b),theformationofan ootheca(thoughsomewhatreduced;NalepaandLenz,2000),fivetarsomeres,ananal fieldinthehindwing(thoughsmall;KukalováPeckandPeck,1993),ahighnumberof

Malpighiantubules(seeKlassandMeier,2006:character151),andbacteriocytes containing inthefatbody(e.g.Sacchietal.,1998,2000;Loetal.,

2003).Molecularanalyseshaveoverwhelminglyconfirmedthishypothesized relationship(Kambhampatietal.,1996;Thompsonetal.,2000a;Kjeretal.,2006;Inward etal.,2007).OnlyThorneandCarpenter(1992)arrivedatacladecomprising

Mastotermitidae+asopposedtoTermopsidae(othertermitefamiliesnot included),butthisresultedfromproblemswiththeirmorphologicaldataset(Deitzetal.,

2003).

ForBlattaria,McKittrick(1964)andMcKittrickandMackkerras(1965)distinguish fivefamilies:(withthesubfamiliesBlattinae,Polyzosteriinae,Tryonicinae,

Lamproblattinae),Cryptocercidae,Polyphagidae,Blattellidae(withthesubfamilies

Anaplectinae,Plectopterinae=Pseudophyllodromiinae,,Ectobiinae,

Nyctiborinae),and.Inrecentyears,theoutlineandrelationshipsofthemajor blattarianlineageshavebecomeamajorpointofdebateresultingfromthemorphological contributionsbyP.GrandcolasandK.D.Klass(Grandcolas,1994,1996,1997b,1999a, b;Klass,1997,2001,2003;KlassandMeier,2006;Fig.1F versus E,K),whoboth predominantlyusemalegenitaliccharacters.Itisuncontroversialamongtheseauthors thatthebasaldichotomyisbetweenBlattidaeandtheremainingBlattaria;that

BlattellidaeisparaphyleticwithrespecttoBlaberidae;thatAnaplectinaeissistertoall otherblattellidlineages;andthatPolyphagidaeanditsrelativesaresistertotheblattellid

206

+blaberidclade.Onepointofcontroversy,however,istheplacementof Cryptocercus

(seeabove).AnotherconcernstheandLamproblattidae(elevatedtofamily rankbyKlassandMeier,2006),bothincludingonlyafewspecies,whichareassignedto

BlattidaebyGrandcolasbutconsideredisolatedlineagesbyKlass(Figure1E,K).The proposedrelationshipswithinthecladeBlattellidae+Blaberidaearealsoverydifferent.

Furthermore,theidenticalcladesproposedbyGrandcolasandKlassarelargelybasedon differentapomorphies(seeKlass,2001).Thisismainlyrootedindifferenthypothesesof topographichomologies,i.e.whichstructuralcomponentsofthephallomeres(e.g., sclerites,projections)correspondamongdifferenttaxaandshouldbecomparedwithin thesamecharacter(‘alignment’ofstructuralcomponents).Thisissue,whichisthebasis formostofthecontroversy,isextensivelydocumentedinKlass(2001).

Fromthemolecularside,littlehadbeencontributedtotheresolutionofblattarian phylogenyuntilrecently,mainlybecausethemostdisputedtaxa(Lamproblattidae,

Tryonicidae)andotherkeytaxa(suchasAnaplectinae,mostsubgroupsofPolyphagidae, andtheenigmatic)hadnotyetbeenincluded,anddictyopterantaxon samplesweregenerallyquitepoor(Kambhampati,1995,Kambhampatietal.,1996;

Maekawaetal.,1999;MaekawaandMatsumoto,2000;Loetal.,2003;Terryand

Whiting,2005;Kjeretal.,2006).Threeveryrecentcontributions,however,haveseta newscene:Pellensetal.(2007),Loetal.(2007)andespeciallyInwardetal.(2007)

(Figure1L–N).ThePellensetal.(2007)taxonsampleisstronglydominatedby

BlaberidaeandIsoptera,andtheresultsarenotsorelevanttodeeperdictyopteranor blattarianrelationships.ThetwootherpapersincludeNocticolidae,andInwardetal.

(2007)includeavarietyofPolyphagidaeamongalargesampleof107dictyopterantaxa.

207

Yet,Lamproblattidae,Tryonicidae,andAnaplectinaearenotrepresentedinanyofthese analyses.ApartfromthewellsupportedCryptocercidae+Isopteracladecommontoall threecontributions,therelationshipsamongthemajordictyopteranlineagesarevery different(andalsodifferfromthemorphologybasedhypothesisofKlassandMeier,

2006:compareFigure1K–N).Themoststrikingfindingsofthesestudiesare:(a)the sistergrouprelationshipbetweenCryptocercidae+Isopteraandtheremaining

Dictyoptera(includingMantodea!)inLoetal.(2007;weaklysupported);(b)theclade

Polyphagidae+(Nocticolidae+Mantodea)inthesamepaper(weaklysupported);and(c) thesistergrouprelationshipbetweenNocticolidae+Polyphagidae("Polyphagoidea")and theremainingBlattodea(i.e.,incl.Isoptera)inInwardetal.(2007;stronglysupported;

MantodeasistertoallotherDictyoptera).

IncontrasttoIsoptera,Mantodeaareusuallyconsideredtobepositionedoutside

Blattaria,asitssistergroup.Thisissuggestedbothbymorphologicalwork(Klass,1995;

KlassandMeier,2006)andbymolecularanalyses(Maekawaetal.,1999;Loetal.,2000,

2003:figure2;TerryandWhiting,2005;Kjeretal.,2006;Pellensetal.,2007;Inwardet al.,2007).However,asmentionedabove,Loetal.(2007)findMantodeanestedin

Blattodea(Figure1M).Beier(1968)dividedthegroupinto8families:Mantoididae,

Chaeteessidae,Metallyticidae,,,,

Hymenopodidae,and(maintainedbyKlassandEhrmann,2005).Other classifications(e.g.VickeryandKevan,1983;Balderson,1991;Wang,1993;Terra,

1995;Kaltenbach,1996,1998;Roy,1999;Ehrmann,2002;OtteandSpearman,2005) differmainlyintheuprankingofsubfamiliesofMantidaetofamilylevel(Mantidae s.str. ,,,,Sibyllidae,,,

208 andToxoderidaeinOtteandSpearman,2005),andintheinclusionoffossiltaxa

(Grimaldi,2003).Commontoallthesesystemsistheconsiderationofthemonogeneric

Mantoididae( Mantoida ),Chaeteessidae( Chaeteessa ),andMetallyticidae( ) assistertothe"higherMantodea".Phylogeneticworkbasedonmorphologyhasonly focusedonthemostbasaldichotomies(Klass,1995,1997;KlassandMeier,2006)and hasrecoveredtherelationships Mantoida +( Chaeteessa +( Metallyticus andremaining

Mantodea)).ThemolecularstudyofSvensonandWhiting(2004)basedonfivegenes

(mitochondrial16SrRNAandCOII,nuclear18SrRNA,28SrRNA,andhistone3)and

63generaconfirmedthepositionof Mantoida ,asdidInwardetal.´s(2007)andLoet al.´s(2007;usingdownloadedmantodeansequencesfromSvensonandWhiting,2004) studiesbasedonmuchsmallertaxonsamples.However,noneofthesethreestudies includedChaeteessidae,andMetallyticidaeisrepresentedonlyinInwardetal.(2007), whereitisnestedinthe"higherMantodea".Grimaldi(2003)givesanexcellentrevision ofearlyfossilMantodea,butcouldnotprovideaclearpictureofthebasalrelationships amongextantMantodea.Histentativesuggestionofasistergrouprelationshipbetween

Chaeteessa andallotherextantMantodea(figure27therein)hasbeendiscussedand rejectedinKlassandMeier(2006:16f).Ingeneral,theclassificationofMantodeaisin phylogeneticchaos,withmanymonogenerictaxa,unknowncharacterpolarities,and frequentparallelevolutionofcharacters.Currentlydefinedmantodeanfamiliesarenot effectiveguidesforselectingexemplartaxa.TheresultsofSvensonandWhiting(2004) alsoshowthatthecurrentfamilylevelclassificationsofhigherMantodeaneedextensive revision.

209

Inthepresentstudy,apartfromgenerallyrevisitingdictyopteranphylogeny,we especiallywanttoinvestigatesomecrucialphylogeneticissues,suchastheplacementof

Isoptera, Cryptocercus ,andPolyphagidaewithinDictyoptera,and Mastotermeswithin

Isoptera.Forthispurposewegatheredmultiplegenesfromseveralpreviousstudies,fora fairlylargetaxonsample.WeadditionallyusedthemorphologicaldatamatrixfromKlass andMeier(2006)andthusprovidethefirstcladisticanalysesforDictyopterawhere extensivemorphologicalandmoleculardataarecombined.Furtherinnovationsofour studyarethealignmentofribosomalRNA(rRNA)sequenceswithreferenceto secondarystructure,andourselectionofapairedsitesdoubletmodel.Thisdoublet modelconsiderspairednucleotidesinrRNAstemregionstobeinterdependent,andhas beenshown,inmanycases,tobeanappropriatemodelforrRNAdatasets(Jowetal.,

2002).Althoughsuchpairedsitesmodelshavebeenshowntobemorebiologically realisticforrRNAdata,theyhavenotpreviouslybeenusedindictyopteran phylogenetics.Wealsotestedtheextenttowhichrecoveredingrouprelationshipsdepend on(a)theselectionofoutgrouptaxa,(b)theinclusionofingrouptaxa,and(c)gene selection.Thephylogeneticworkpresentedherewillhopefullyhelpshapethetaxonand geneselectionoffuturestudiesondictyopteranphylogeny.

2. Materials and Methods

Taxon and character sampling

Wechosemitochondrial(COII,16S)andnuclear(18S,28S)sequencesfrom

GenBankrepresentingabroadsampleofdictyopterantaxafromMantodea,Blattariaand

210

Isoptera.Tolimitmissingmoleculardata,weusedonlydictyopterantaxaforwhich18S sequenceswereavailable(thegenefragmentavailableforthemajorityofthesequenced dictyopterantaxa;wechoseonlyarepresentativesamplingofMantodeafromSvenson andWhiting,2004).Inthecaseof Blattella ,wecombinedgenesfrom3differentspecies intooneterminaltaxon.ThesequencesfromInwardetal.(2007)werenotused,because theywerepublishedaftercompletionofouranalyses.Alimitednumberofsequences fromLoetal.(2007)andPellensetal.(2007)wereaddedtoourdatasetatthefinal stagesofmanuscriptcompletionandtheentiredatasetwasreanalyzed:theseaddedtaxa includeda Therea 18SsequencefromPellensetal.(2007)andtwo Nocticola 18S sequencesfromLoetal.(2007).Both Therea and Nocticola wereincludedtoincrease oursamplingwithinthePolyphagoidea(sensuInwardetal.,2007).Itwasbeyondthe scopeofthecurrentpapertoaddtheother,nonpolyphagidtaxafromPellensetal.

(2007)andLoetal.(2007).

The175morphologicalcharactersinourdatasetweretakenfromKlassandMeier

(2006),whoscoredthem(orpartofthem)for4mantodean,20blattarian,and3isopteran taxa(tables1–3therein).Both""(characternotapplicable)and"?"(characternot examined)inthatmatrixwereheretreatedas"missingdata"(notasgaps).

Wecombinedmolecularandmorphologicalcharactersofcloselyrelatedtaxainafew caseswheremolecularcharacterswereavailableonlyfortheonetaxonand morphologicalcharactersonlyfortheother.Suchcombinedterminaltaxaare(seeTable

1): Blattella spp.(DNA)+ (morphology), Statilia apicalis (DNA)+

Sphodromantis sp.(morphology), Gromphadorhina portentosa (DNA)+ Blaberus craniifer (morphology), Hodotermopsis japonica (DNA)+Termopsinae(morphology),

211

Cryptotermes (DNA)+Kalotermitidae(morphology),and Sclerophasma paresisense

(DNA)+ Karoophasma biedouwense (morphology).

Outgrouprepresentativesforourstandardanalyseswereselectedfrom

Mantophasmatodea(1taxon),Phasmatodea(2taxa),Grylloblattodea(1taxon)and

Embioptera(1taxon)(i.e.,the5outgroupanalysis,5OG),andwealsoanalyzedthedata underadditionofrepresentativesofDermaptera,Plecoptera,andOrthoptera(1taxon each)(i.e.,the8outgroupanalysis,8OG).Thisappearsappropriateconsideringthe unresolvedrelationshipsamongthemajorlineagesofNeoptera(seeKlassandMeier,

2006:chapter2.3.;Klass,2007).Inspecificanalysesaimedattestingtheinfluenceofthe selectionoftaxaandmarkers,weincludedvariousmembersoftheaforementioned neopteranoutgrouptaxaand,inaddition,membersofthenonneopteranOdonataand

Archaeognathaasmoredistantoutgrouptaxa.

Alignment

WefirstusedClustalX(Thompsonetal.,1997)toperformapreliminarysequence alignment,withthedefaultsettingsforgapcosts(gapopeningpenalty=10.00;gap extensionpenalty=0.20).TheresultingfileswerethenalignedmanuallyinMicrosoft

WordusingthestructuralmethodsdescribedinKjeretal.(1994),Kjer(1995),Kjeretal.

(2006a,b)andsecondarystructuremodelsbasedonGutelletal.(1993).Manual alignmenthasstrongsupportasthemostaccuratemethodavailableforaligning ribosomaldata(Kjer,1995,2004;EllisandMorrison1995;TitusandFrost,1996;

Hicksonetal.,1996,2000;MorrisonandEllis,1997;Lutzonietal.,2000;Mugridgeet al.,2000;Gillespieetal.,2005a;Deansetal.,2006;MorseandNormack,2006). Regions

212 ofambiguousalignment,definedasareaswithmultiplesinglegapsandflankedby hydrogenboundstemregionpairs,werecodedinINAASEandincludedalongwiththe stepmatricesinparsimonyanalysis(Lutzonietal.,2000).Theseambiguousregionswere notincludedintheBayesiananalysis.TheresultingalignmentcontainedaCOIIfragment of776nucleotides,a16Sfragmentof210nucleotides,an18Sfragmentof1643 nucleotides,anda28Sfragmentof1708nucleotides.

Cladistic analyses

Parsimony analyses

WeperformedparsimonyanalysesinPAUP(Swofford,2000)underequalweighting ofallmolecularandmorphologicalcharacterswith10,000randomadditionsequence replicateheuristicanalysisunderTBRbranchswapping.Gapsofuniformlengthwere treatedaspresence/absencecharacters;othergapsweretreatedasmissingdata,except thoseencodedwithINAASEasdescribedabove.Toestimatebranchsupport,weran

1000parsimonynonparametricbootstrapreplicateswith10randomadditionsequence replicatesunderTBRbranchswapping.Wealsoranadditional,separatebootstrap analysesontheentiredatasetwitheachdatapartitionweighted1000fold,toevaluateany differencesthatmightoccurbetweengenesand/ormorphology.

Bayesian analyses

Weusedthedoubletmodel(SchonigerandvonHaeseler,1994)inMr.Bayes3.1.2, whichallowsindependentmodelingofnucleotidesubstitutionsinbothstemandloop regionsofribosomalDNA(HuelsenbeckandRonquist,2001,2002).TwoMCMC

213 analyseswererunforeachofthe8OGand5OGdatasets:oneranfor20million generationseach(withfourchains:onecoldandthreehot),andoneranfor10million generationseach(withfourchains:onecoldandthreehot).Eachanalysishad printfreq=500.ThemorphologicalcharacterswereanalyzedwiththeMKmodel(Lewiset al.,2005).Aftertheanalyseswerecompleted,weverifiedthateachrunhadstabilized usingTracer1.4(RambautandDrummond,2007),andcalculatedtheburninregions.The

8OG20milliongenerationanalysishadaburninof5%foreachchain;the10million generationanalysishadaburninof8%foronechainand10%fortheotherchain.Both

5OGanalyseshadaburninof5%foreachchain.

WeranboththeMr.BayesandPAUPanalyseswith39ingroup(dictyopteran)and either5or8outgroup(nondictyopteran)taxaforwhichwehaddownloadednucleotide sequences,plus15ingrouptaxaforwhichwehadonlymorphologicalinformation(59or

62taxatotal).Withregardtotheingroupsamplingwecallthisourstandarddataset(see

Table1),butwevariedthecompositionoftheoutgroup,conducting5and8outgroup analyses.

Tests of the influence of taxon sampling

Totestpreliminaryresultsthatingroupandoutgrouptaxonselectionaffected internaldictyopteranrelationships,weranseveralanalysesusingandmodifyingthe datasetsfromMaekawaandMatsumoto(2000)andfromKjeretal.(2006).Allanalyses wererunusingparsimonyinPAUP,with10,000replicateheuristicsearchesunderTBR branchswapping.

214

WeranMaekawaandMatsumoto’s(2000)COIIdatasetwith Grylloblatta and2 dragonflyspeciesasoutgroups,bothwithandwithoutmantodeanCOIIsequences.We analyzedKjeretal.’s(2006)dataset(reducedtoonlydictyopterantaxaandthegenes usedinourstudy,i.e.,COII,16S,18Sand28S)withoutgrouptaxathatwere(a)close relativesand(b)distantrelativesoftheingroup.Closelyrelatedoutgrouptaxaincluded membersofMantophasmatodea,Phasmatodea,Embioptera,Dermaptera,

Grylloblattodea,PlecopteraandOrthoptera(i.e.,variousNeoptera),whilemoredistantly relatedtaxaincludedmembersofOdonataandArchaeognatha.Todeterminewhetherthe presence/absenceoftheCOII,16Sor28Sfragmentsinfluencedtheresulting phylogenetichypotheses,wealsorantheanalysesofKjeretal.’s(2006)dictyopteran taxawithjustthe18Sfragment,whichwaspresentforalltaxa(forfurtherclarificationof thetaxausedineachanalysis,seeTables2and3).

3. Results

Phylogenetic analyses using our standard dataset with distantly and/or closely related outgroups

Maximum parsimony (MP) results

Intheanalysiswithfivecloselyrelated(neopteran)outgrouptaxa(5OGanalysis), thedatasetconsistedof2608constantcharacters,923variablebutparsimony uninformativecharactersand988parsimonyinformativecharacters.Thescoreofthe besttreewas4625.Intheanalysiswithanadditionalthreeclosely relatedoutgrouptaxa

(8OGanalysis),therewere2396constantcharacters,1083variablebutparsimony

215 uninformativecharactersand1040parsimonyinformativecharacters.Thescoreofthe besttreewas11155.Figures2Aand2Bshowresultsfromanalysesincluding8OGsor

5OGs(strictconsensustreesfrom206and156mostparsimonioustrees,respectively).

Asinpreviousanalyses,MantodeaandIsopteraaremonophyletic(5OGbootstrap support,bo=94%and100%respectively;8OGbo=95%and100%respectively);within

“Blattodea”,Blaberoidea, i.e .,Blattellidae+Blaberidaeisalsomonophyletic(5OG bo=88%;8OGbo=88%),whichhasbeenpreviouslyrecoveredinallmorphological studies.Similarly,Blattellidaeisparaphyletic,andBlaberidaeismonophyletic(butwith bo<50%inboththe5and8OGanalyses); Anaplecta and Nahublattella arebasalin

Blaberoidea.Blattidaearealsoclearlyobtainedasmonophyletic(bo=83%inboththe5 and8OGanalyses).UnlikeinInwardetal.(2007),bothanalysesleavethevarious polyphagoidtaxainabasalblattodeanordictyopteranpolytomy.

Severaloftheresultsofourparsimonyanalyses(MP)differeddependingonwhichof theoutgrouptaxaweincluded(Figure2A,B).Thetopologyincorporatingonlyfive outgrouptaxaislessresolved,withapolytomyoccurringbetweenthemajorgroupsof

Dictyoptera:Mantodea,Blattidae,Blattellidae+Blaberidae,Cryptocercidae+Isoptera,

Tryonicidae,the3polyphagidtaxa,2 Nocticola species,and Lamproblatta .Theanalysis includingthethreeadditionaloutgrouptaxaismoreresolved.Inthistree,Mantodeais sistertotheremainingDictyoptera(Figure2A;butwithbo<50%).The8OGtreeis unresolvedonlywithintheBlaberoidea,formingapolytomybetween Nahublattella,

Supella and Blattella + Nyctibora .Theresolutionofthispolytomy,whichisnotpresent intheBayesiananalysis,maybepossiblewiththeadditionofmoredata.Bycontrast,the

Blaberoideawerewellresolvedinthe5OGanalysis(Figure2B).

216

CryptocercidaeissistertotheIsopterawithstrongsupportinbothanalyses(5OG bo=91%;8OGbo=92%).WithintheIsoptera,inboththe5and8OGanalysesthe

Hodotermitidae,,andTermitidaeformaclade(bo<50%),andtheir relationshipsareidentical: +( Nasutitermes +( Reticulitermes +

Copotermes )(5OGbo=54%forTermitidae+Rhinotermitidaeand83%forthe

Rhinotermitidae;8OGbo=52%forTermitidae+Rhinotermitidaeand82%for

Rhinotermitidae).Whileinthe5OGanalysisthebaseoftheisopterantreeisan unresolvedpolytomy,the8OGanalysisyields–thoughwithbo<50%–Mastotermes mostbasal,followedbya Hodotermopsis + Cryptotermes cladeandthenbythe aforementionedisopterans.

AlthoughthereisdisagreementabouttherelativepositionofMantodeawithin

Dictyoptera,theinnermantodeanrelationshipsareconsistentbetweenanalyses.Sevenof the15currentlyrecognizedextantfamilies(OtteandSpearman,2005)arerepresented.

Mantoida isthesistertoallotherMantodea(5OGbo=75%;8OGbo=78%for remainingMantodea),whichagreeswithboththemolecularresultsinSvensonand

Whiting(2004)andthemorphologicalresultsinKlassandMeier(2006).Thisbasalsplit isfollowedbyapolytomycomprisedof Bantia , Hoplocorypha (bothfromThespidae),

Chaeteessa , Metallyticus ,andacladeincludingalltheremainingMantodea(thelatter weaklysupportedbybo<50%). Followingthepolytomyistheclade Litaneutria +

Heterochaetula (bo=57%inbothanalyses).WefindIridopterygidaeand

Amorphoscelidaeformingamonophyleticgroup(5OGbo=61%;8OGbo=59%),a resultsimilartothatofSvensonandWhiting(2004),inwhichLiturgusidaewasalso groupedwithIridopterygidaeandAmorphoscelidae(ourstudydidnotinclude

217

Liturgusidae).AsinSvensonandWhiting(2004),taxafromMantidaeandThespidaeare foundtobebroadlypolyphyletic,withrepresentativetaxafoundatbothbasalandapical positionsonthetree.

Bayesian analysis (MB) results

The20milliongeneration8OGBayesiananalysishadanaveragelikelihoodscoreof

2.889E4,and2.885E4inthe10milliongenerationanalysis.Posteriorprobabilitiesfrom amajorityruleconsensusof112,400treesfromthe10millionand20milliongeneration analysesareshowninFigure3A.The20milliongeneration5OGBayesiananalysishad anaveragelikelihoodscoreof2.740E4;the10milliongenerationanalysishadan averagelikelihoodscoreof2.741E4.Posteriorprobabilitiesfromamajorityrule consensusof114,000treesfromthe10millionand20milliongenerationanalysesare showninFigure3B.

AsintheMPanalysis,andpreviousstudies,MantodeaandIsopteraaremonophyletic

(Mantodea:8OGposteriorprobability,pp=100%;and5OGpp=100%;Isoptera:8OG pp=100%and5OGpp=100%).Similarly,Cryptocercidaeissupportedstronglyassister totheIsoptera(8OGpp=99%;5OGpp=99%).WithinBlaberoidea,Blattellidaeis paraphyletic.Blaberidaeisamonophyleticgroupinginbothanalyses(8OGpp=72%;5

OGpp=58%).Blattidaeismonophyletic(8OGpp=99%;5OGpp=99%).Inboththe5

OGand8OGanalyses,TryonicidaeisinapolytomywithBlattidaeandCryptocercidae

+Isoptera.Regardingthepolyphagoidcockroaches,the8OGanalysisfindsa

Polyphagidae+ Lamproblatta + Nocticola clade(pp=92%)sistertotheremaining

Blattodea(pp=73%forBlattodea).The5OGanalysisyields Lamproblatta andaclade

218 comprisingtheotherpolyphagoidcockroachesasseparatelineagesofabasal dictyopterantrichotomy,whosethirdclade(withpp=77%)includestheremaining

BlattodeaplusMantodea.

WithinIsoptera, Mastotermes isneverrecoveredatthebaseofIsoptera,butineach analysisitspositionissupportedwithlessthan60%pp.Twoothergroupingsoccur:

Microhodotermes + Hodotermopsis + Cryptotermes and Nasutitermes + Reticulitermes

+ Coptotermes inboththe5and8OGanalyses(bothgroupswithpp=100%inthe8

OGand5OGanalyses).

SeveraloftherelationshipswithinMantodeaareconsistentbetweenourtwo

Bayesiananalyses,andbothMPanalyses. Mantoida isrecoveredineveryanalysisas sistertotheremainingMantodea(8OGpp=95%;5OGpp=96%),thereisa Litaneutria

+ Heterochaetula clade(8OGpp=92%;5OGpp=91%),andacladecomprisingall

Iridopterygidaeandtheamorphoscelid(8OGpp=85%;5OGpp=85%).Asabove,taxa fromMantidaeandThespidaearefoundtobebroadlypolyphyletic,withrepresentative taxafoundatbothbasalandapicalpositionsonthetree.Apicalto Mantoida ,as comparedtotheMPanalyses,only Bantia and Chaeteessa arefoundinabasalposition

(8OGpp=84%,5OGpp=85%forthemonophylyoftheremainingMantodea),while

Metallyticus and Hoplocorypha aremoredeeplynestedintheremainingMantodea.

Bantia and Chaeteessa areeitherplacedinatrichotomy(8OGanalysis)orformaclade sistertotheotherMantodea(5OGanalysis);thelatterresultisintriguing,becausefor

Chaeteessa wescoredonlymorphologicaldata,andfor Bantia onlymoleculardata.

219

Additional phylogenetic analyses for testing ingroup/outgroup influence on topology in

Dictyoptera

Tests based on COII data of Maekawa and Matsumoto (2000)

ToinspectthesignalcomingfromCOIIsequenceswerananalysesontheCOII datasetusedbyMaekawaandMatsumoto(2000).Initially,weadded Grylloblatta and twoOdonatatotheoriginaldataset(whichlacksmantodeans)inordertoproviderooting

(Figure4A).Therecovereddictyopteranrelationshipswere Cryptocercus +((( Ergaula +

Polyphaga )+Isoptera)+remainingBlattaria).Thistreeisconsistentwiththeoriginal topologyinMaekawa&Matsumoto(2000:figure1Aor1B)ifrootedbetween

Cryptocercus andtheremainingtaxa.Treeswitheither Grylloblatta ortheOdonataused asoutgroupsshowedthesamerelationships.

Basedonthedatasetwithboth Grylloblatta andOdonatausedasoutgrouptaxawe sequentiallyadded1,5,and21mantodeanspecies.Thishadadramaticinfluenceon ingrouprelationships.Regardlessofthenumberorspeciesofmantodeansthatwere added,therelationshipIsoptera+( Cryptocercus +(paraphyleticroaches+(( Polyphaga +

Ergaula )+Mantodea)))isrecovered,i.e.,termitesaredraggedtothebaseofthetree,and

PolyphagidaearesistertotheMantodea.

Altogether,withourvariousexpansionsofMaekawaandMatsumoto´s(2000)data set(Figure4A,B),werecoveredPolyphagidaeassistertoeitherMantodeaorIsoptera, suggestingthat Polyphaga and Ergaula aretaxawhosepositiondiffersgreatlywhen mantidsareincluded.COIIisagenefragmentthatismoresuitedforresolvinggenusand specieslevelphylogenies,andlessexpectedtoresolveinterordinalrelationships,sowe

220 chosetoevaluatetheeffectofingroup/outgroupselectionwithadditional,lessrapidly evolvinggenes(16S,18Sand28S)usingdatafromKjeretal.(2006).

Tests based on multiple gene data of Kjer et al. (2006)

SomeofourresultsonthepositionofPolyphagidaeconflictwithKjeretal.(2006), whichissurprisingsinceourtaxonsamplingwithinDictyopterawassimilar.Weusedthe datasetfromKjeretal.(2006)(sequencesandalignment)totrytodeterminethecauseof thediscrepancybetweenourstudies.Ourdictyopterantaxonsetformoleculardata comprised11blattarians,7isopteransand21mantodeans,whereasKjeretal.´s(2006) datasetcomprised6blattarians,8isopteransand6mantodeans.Thirteenoftheir dictyopterantaxawerealsomembersofouringrouptaxonset(andtheirdatasetcontained allfamilyleveltaxathatweusedasoutgrouptaxa).Thus,wechosetousetheseshared ingrouptaxaplusoutgrouptaxafromthesamefamiliesthatweusedinour5OG analysesasabasistorunouradditionalingroup/outgrouptestinganalyses(taxoncontent asinFigure4Cwith:Mantodea= Tenodera and Gongylus ;Blattaria= Polyphaga ,

Blatella , Supella ,Gromphadorhina , Periplaneta and Cryptocercus ;andIsoptera=

Mastotermes , Coptotermes , Hodotermopsis , Microhodotermes ,andTermitidae).Thenwe sequentiallyaddedingrouptaxaandvariedthesetofoutgrouptaxa.Alltheseanalyses wereconductedusingmaximumparsimony,running1000replicateheuristicsearches withtenrandomadditionsearchesandTBRbranchswapping.Formostingroupand outgrouptaxatheGenbanksequenceinKjeretal.´s(2006)datasetwasthesame sequencethatwehaddownloadedforaparticularspecies;theonlyexceptionsarethe

COIIsequencesfor Blattella , Gromphadorhina ,and Tenodera ;andthe16Ssequencefor

Cryptocercus punctulatus.

221

FirstweexcludedalldictyopterantaxaandgenefragmentsfromKjeretal.'s(2006) moleculartaxonsetexceptforthosethatwehadusedinourstudy(COII,16S,18S,28S), andalloutgrouptaxaexceptforthosefiveneopterantaxausedinour“5OG”study(with thefollowingexceptions:weincluded Lobophasma and Carausius anddidnotinclude

Timema) .Thisanalysisrecoveredtheclade Polyphaga +Mantodeasistertothe remainingDictyoptera(congruentwiththetreeinLoetal.2007),butwithbootstrap support<50%fortheremainingDictyoptera(Figure4C;bootstrapsupportnotshown).

Thus,itappearsthatthediscrepanciesbetweenKjeretal.(2006)andthe5OGstudyare aresultofoutgrouprooting(Figure4).

Usingthedictyopteransampleintheaforementionedbasicanalysis,weassessedthe effectofaddingdifferentoutgrouptaxatothosewehadalreadyincluded(startingfrom thesampleinFigure4C).Asafirstseriesofmodificationsweaddedorthopteranand furtherphasmatodeantaxaintothealignmentblock,onebyone.Theadditionof Gryllus ,

Timema and Tettigonia, separatelyortogether,alteredneitherthepositionof Polyphaga northeotheringrouprelationships(Figure4D).

Nextwerananalysesinwhichonlyoneortwooutgrouptaxawereaddedtothe dictyopteransamplefrominKjeretal.(2006)(thedatasetdescribedabove).Usinga memberofGryllotalpidae(Figure4E)resultedin Polyphaga placedassistertothe remainingBlattodea(withtheexceptionoftheoddlyplaced Supella ),andMantodea beingsistertoallotherDictyoptera. Inaddition,incontrasttothepreviousanalyses

(Figure4C,D),thisanalysisyieldsa Cryptocercus +Isopteraclade.Theuseofasingle outgrouptaxonfromotherordersalsochangedingrouprelationships,inparticularthose of Polyphaga and Cryptocercu s.Anembiopteranoutgroup, Oligotoma ,resultsin

222

Cryptocercus + Polyphaga assistertoMantodea(Figure4F).Thephasmatodean outgroup Carausius yields Polyphaga +( Cryptocercus (remainingBlattaria+Isoptera))

(Figure4G).Anarchaeognathanoutgroup, Allomachilis ,resultsin( Cryptocercus +

Polyphaga )+Isoptera(Figure4H).Usingthemantophasmatodean Sclerophasma (Figure

4I)orthedermapteran Forficula (Figure4J)asoutgrouptaxonprovidedmore conventionaltopologies,bothshowinga Cryptocercus +Isopteracladesisterto

Polyphaga .Theadditionof Grylloblatta (Figure4K)resultedinacladecomprising

Polyphaga +Mantodeaand Cryptocercus +Isopteraassistergroups,nestedin paraphyleticBlattaria.Aninterestingaspectofsomeoftheseoutgrouptaxa(Figure

4F,G,I,J,K)isthateitherthesoleblattidofthesample( Periplaneta ;dermapteran, embiopteran,andmantophasmatodeanoutgroup)oroneoftheblattellid+blaberid representatives( Supella ;archaeognathanandgrylloblattodeanoutgroup)isdraggedtothe verybaseofthedictyopterantree,Supella thenfarremotefromthetwoothermembersof

Blattellidae+Blaberidae( Blattella and Gromphadorhina ).Insomeoftheseanalyses

(Figure4F,J)themorphologybasedhypothesis( Polyphaga +( Cryptocercus +Isoptera)) isrecovered.

ForsomeoftheoutgrouptaxathatweusedintheseanalysessequencedataforCOII,

16S,and/or28Swerelacking(Table1),anditisthusuncleartowhatextentdifferences intheresultsoftheseanalysesareeffectsofdifferentoutgroupselectionorofgene selectionintheoutgroup.Toevaluatewhetheroutgroupselectionaloneaffectedresults ondictyopteranphylogeny,weranthesametestsasabovewithjustthe18Sgene fragment,forwhichalltaxahadsequenceinformation.TheresultsareshowninFigure

5A–F.Thesephylogeneticreconstructionsdifferedgreatlyfromthoseabove,andalso

223 amongeachother.Theadditionofagryllotalpid(Figure5A),oradermapteran(Figure

5E),oranarchaeognathan(Figure5D)resultedin Cryptocercus beingdraggedtothe baseofthedictyopterantree,followedbyIsoptera;exceptfortheplacementof

Periplaneta ,ingrouprelationshipsareidenticalusingthesethreeoutgrouptaxa.Usingthe embiopteran Oligotoma asanoutgrouptaxon(Figure5B),Isopteraisthesistertoall otherDictyoptera,followedby Cryptocercus assistertocockroaches+mantodeans.

Usingaphasmatodean(Figure5C)oragrylloblattodean(Figure5F),theblattellid

Supella isdraggedtothebaseofthedictyopterantree,andaclade Cryptocercus +

Isopteraisrecovered;theotherdictyopteranrelationshipsareverydifferentbetween thesetwolatteranalyses.Altogether,agreatvarietyofincongruentdictyopteranclades receivessupportfromanalysesusingdifferentoutgrouptaxa.

Gene selection

Toevaluatefurthertheeffectofgeneselectionondictyopteranphylogenetic reconstructionweusedaversionofKjeretal.’s(2006)Dictyopteradatasetasdescribed abovewith Grylloblatta campodeiformis or Grylloblatta sculleni asanoutgrouptaxon

(taxoncontentasforFigure4K,with Grylloblatta campodeiformis usedinthe18S analysis).Inseparateanalyses,weweightedeachgenefragment1000foldandran parsimonyanalysesasdescribedabove(thusmaintainingthesametaxonlistforeasier comparisonbetweengenes).Wefoundthatthetopologydiffereddependingonthegene fragment.Eachfragmentyieldedadifferentdictyopteranlineageassistertothe remainingDictyoptera(topologiesnotshown): Periplaneta with16S(butwithbo<50%);

Supella with18S(remotefromotherBlattellidae+Blaberidae;thisistheanalysisshown

224 inFigure5F;bo=72%),andMantodea+ Polyphaga withCOII(butwithbo<50%).The

28Syieldsamoreconventionaltopology(butnotetherearenopolyphagoid28S sequences):Mantodea+(paraphyletic “Blattaria”+( Cryptocercus +Isoptera)))(butwith bo<50%forthemonophylyofDictyoptera).InallcasesexceptCOII, Cryptocercus is sistertotheIsoptera(althoughwithbo<50%).IntheCOIIanalysis, Cryptocercus issister to Supella and Periplaneta issistertoIsoptera(butwithbo<50%).The16Sanalysis recovers Polyphaga assistertoMantodea(again,withbo<50%).Inthe18Sanalysis,

Polyphaga issisterto Periplaneta +(Mantodea+( Cryptocercus +Isoptera))(with bo<50%).

4. Discussion

Gene selection and ingroup and outgroup taxon selection

Geneselectionisoftenadifficultdecisionforresearcherswhowishtorevealboth ancientandyoungercladogeneticevents.LinandDanforth(2004)extensivelytestedthe performanceofbothmitochondrialandnucleargenesforavarietyofinsectdatasets.

Theyfoundthatmitochondrialgenes,ingeneral,weremuchmoreheterogeneouswith respecttoamongsiteratevariation,withafewsitesevolvingandsaturatingquickly, therebyleadingtohighlevelsofhomoplasy.Theysuggestthat,withtheexceptionof studiesfocusingonverycloselyrelatedtaxa,nucleargenesaremoreinformativethan mitochondrialgenessuchasCOII.Danforthetal.(2005)suggestthatwhen reconstructingdivergencesofMesozoicageorolder,weshouldrelyoneithernuclear

225 ribosomalgenesornuclearproteincodinggenesratherthanusingmitochondrialgenes thatmaybetoorapidlyevolvingtobeinformative.

Inourstudyweshowedthattherelationshipsamongthedictyopteranlineagesvaried greatlydependingongeneselection.Thisisinpartdisagreementbetweenthe mitochondrialandnucleardata.WenotethatCOIIiscommonlysequencedfor

Dictyopterayetitisarapidlyevolvinggeneandmayaddconsiderablehomoplasytothe analysis.ThisallsuggeststhatresolvingfamilylevelrelationshipsinDictyoptera,which areprobablymostlyduetocladogeneticeventsintheearlytomiddleMesozoic,will likelyrequiremorenucleargeneinformation.

Theselectionofoutgrouptaxaisadecisionthatshouldbemadewithcare,as outgrouptaxathataretoodistantmayerroneouslypolarizecharacters(Maddisonetal.,

1984;Wheeler,1990;Maddisonetal.,1992;Smith,1994;LyonsWeileretal.,1998;

Nylander,2001;SandersonandShaffer,2002).Theselectionofingrouptaxaisanother vitalstep,onethatisdependentonoutgroupselectionbecausedifferentcombinationsof ingroupandoutgrouptaxaaffecttreetopology(andthereforephylogenetichypotheses)

(MilinkovitchandLyonsWeiler,1998).Itisdifficulttoassesswhichtaxonsampling willrecoverthetruetree,butbyevaluatingdifferenttaxonsetsduringstandardanalyses, researcheswillbebetterabletodeterminewhichnodesareunstablewithrespecttotaxon selection.Hypotheses,suchasthoseregardingcharacterevolution,shouldbetreatedwith cautionwhentreetopologiesareunstablewithrespecttooutgrouporingroupselection.

Inthisstudy,theinitialselectionandadditionofingroupandoutgrouptaxagreatly affectedtheinterrelationshipsamongdictyopterantaxaasisevidentfromtheabove descriptionsandsubsetsofFigures4and5.Thebasalplacementof Supella and

226

Periplaneta underuseofcertainoutgroupsareparticularlyimpressiveexamples.

Samplingtaxacloselyrelatedtosuchroguetaxamightbeastrategytostabilizeingroup relationshipsunderuseofdifferentoutgroups.Ofcourse,themutualinteractionsbetween geneselection,outgroupselection,andingroupsamplingaredifficulttoconceiveand evaluate.

Phylogenetic implications

Relationships among major dictyopteran lineages

TheresultsonthedeeperrelationshipswithinDictyopteraarehighlyincongruent amongtherecentmolecularbasedphylogeneticanalysescompletedbyInwardetal.

(2007),Pellensetal.(2007),andLoetal.(2007),andthemorphologybasedstudyof

KlassandMeier(2006)findsyetdifferentrelationships(Figure1K–N).Theonly consistentelementsthereinarethemonophylyofMantodea,ofMantodeaexcluding

Mantoididae(seealsoSvensonandWhiting,2004),ofthecladeBlattellidae+

Blaberidae,ofthecladeCryptocercidae+Isoptera,andofIsoptera;asfarasdecent samplesareincluded,theBlattidae(sensuKlassandMeier,2006:excluding

LamproblattidaeandTryonicidae)andPolyphagidaealsoappearasmonophyla.Further, smallertaxatobetakenintoconsiderationas"major"lineagesaretheLamproblattidae,

Tryonicidae,andNocticolidae,allsparselyrepresentedinstudies,ornotatall.

Ourown5OGand8OGMPandBayesiananalyses(Figures2and3)haveaddeda fewadditionalpossibilitiesfordeepdictyopteranrelationships.Thenumberof possibilitiesisevenfurtherincreasedconsideringourvariousexperimentalanalyses

(Figures4and5),thoughtheseweretestsnotaimedatresolvingthephylogeny.Whileit

227 appearsimpossibletomutuallycompareanddiscussallthedifferenthypothesesinherent inouranalysesandthepreviouslypublishedones,wewanttoaddresssomeparticular issues.

OnemajorpointisthemostbasalsplittingeventwithinDictyoptera.Thishas traditionallybeenassumedtoseparateBlattodea(includingcockroachesandtermites) andMantodea,butaccordingtotheaforementionedmolecularstudiesaswellasourown, thePolyphagoidea(Polyphagidae,Nocticolidae,andperhapsLamproblattidae)mayalso beinvolved,andtheCryptocercidae+Isopteracladeisanother(thoughunlikely) candidatetobesistertoallotherDictyoptera.

TheBlattodeaMantodeadichotomyhasbeenconfirmedbyInwardetal.(2007: pp=87%forBlattodea),whofindthemostbasalinnerblattodeansplitbetweenaclade

Polyphagidae+NocticolidaeandtheremainingBlattodea(thelattersupportedby pp=96%;LamproblattidaeandTryonicidaenotsampled).Thesamebasaldichotomyis wellsupportedinPellensetal.(2007:jackknifesupportja=95%forBlattodea)andin

KlassandMeier(2006),butacladePolyphagidae+Lamproblattidaeismoredeeply subordinateinBlattodea(sistertoCryptocercidae+IsopterainKlassandMeier,2007;

LamproblattidaenotsampledinPellensetal.,2007,andNocticolidaemissinginboth studies).

Incontrast,Loetal.(2007)findthebasaldictyopterandichotomybetweenthe

Cryptocercidae+Isopteracladeandtheremainingrepresentatives,thoughthisisweakly supported(bo<50%forremainingDictyoptera).InthisstudytheMantodeaaredeeply subordinateinBlattodea–insideacladePolyphagidae+(Nocticolidae+Mantodea), whichisplacedinatrichotomyotherwisegivingorigintoBlattidaeandaBlattellidae+

228

Blaberidaeclade.AfterrerootingtheLoetal.(2007)treebetweenMantodeaand

Nocticolidae,itwouldbequitesimilartothatofInwardetal.(2007),yetsome differenceswouldremain(e.g.,NocticolidaeandPolyphagidaewouldbesuccessivebasal cladesofBlattodearatherthanformingonemonophyleticbasalclade).Nonetheless,one mightsuspectthatoutgroupchoiceisonecrucialissueresponsibleforthedifferences betweenthetrees.

Amongouranalyses,the8OGmaximumparsimonyandBayesiananalyses(Figures

2Aand3A)alsoyieldthebasalMantodeaBlattodeadichotomy,thoughBlattodeais weaklysupported(bo<50%inMP,pp=73%inMB);intheMPtreethesampled polyphagoidspeciesoriginateallseparatelyfromalargepolytomyatthebaseof

Blattodea,whileintheMBtreetheyareaggregatedtoaclade,whichissistertothe remainingBlattodea.ThelatterresultagreeswiththatinInwardetal.(2007),whoin theirBayesiananalysisuseasimilarsetofgenefragments(theyhaveH3inaddition,but lack16S),butadifferentmethodforsequencealigmentandadifferentmodelof evolution.The5OGMPanalysis(Figure2B)resultsinalargebasaldictyopteran polytomy.

Incontrast,our5OGBayesiananalysis(Figure3B)obtainsthepolyphagoidtaxaas sistergrouptoallotherDictyoptera,thelatterhavingasupportofpp=77%.Thisisa topologynotobtainedinanypreviousstudy.Withthishypothesis,fromataxonomic perspective,Mantodea(likeIsoptera)wouldbeasubgroupofBlattodea,i.e.highly derivedcockroachesadaptedtoapredatorylifestyle,andtheterms"Blattodea"and

"Dictyoptera"arethensynonymous.Evolutionaryscenarioswouldalsohavetobe revised.Forinstance,Blattariaand Mastotermes producetheiroothecainthevestibulum

229

(thespaceabovethesubgenitalplate,coxosternumVII;McKittrick,1964;Klass,1998b;

NalepaandLenz,2000),whereasMantodeabuilditexternallyuponsomesubstrate.

Whilepreviouslytheinternalizedproductionoftheoothecawasparsimoniously consideredapomorphicforBlattodea(seeKlassandMeier,2006:22),thisphylogenetic hypothesiswouldrathersuggestthattheexternalproductioninMantodeaisderivedfrom internalproduction.

YetwetentativelysuggestthataMantodeaBlattodeadichotomyisstillthemost plausiblehypothesisforbasaldictyopteranrelationships.Withthisviewpoint,thenext issuetodiscussinthemostbasalsplittingeventinBlattodea.

ThemolecularresultsofInwardetal.(2007),andperhapsthoseofLoetal.(2007;if rerootingisadvocated),aswellasourcombinedmolecularmorphologicalresults suggestthatNocticolidaeandPolyphagidae(andLamproblattidae)arethemostbasal subgroupsofBlattodea.Theymaytogetherformasinglecladesistertotheremaining

Blattodea(ourBayesiananalyses,Figure3;Inwardetal.,2007,with Lamproblatta lacking),orformtwosuccessivebasalclades,i.e.,Nocticolidae+(Polyphagidae+other

Blattodea)(Loetal.,2007ifrerooted).Thelatterpossibilitywouldnicelyagreewiththe absenceofbacteriocytesinNocticolidae(Loetal.2007;likeinMantodeaandnon dictyopterans),therespectivesymbiosisbeingasynapomorphyofPolyphagidaeandthe

"otherBlattodea".

ThebasalpositionofPolyphagidaeinBlattodeawouldsuggestareinterpretationof thepolarityofmanymorphologicalcharactersinDictyoptera,includingthoseofthemost usefulcharactersystem,themalegenitalia(concerningboththeinterpretationsof

Grandcolas,1996andKlassandMeier,2006).Inaddition,muchhomoplasywouldhave

230 tobeassumedforthischaractersystem.However,relatedrevisionsshouldwaitformore elaboratecombineddatasetswithamorecompleteoverlapbetweenthetaxasampledfor morphologicalandmoleculardata.Inaddition,thelackinginclusionofkeytaxasuchas

LamproblattidaeandTryonicidaeinlargemolecularanalyses,andthestrikinginstability ofbasaldictyopteranrelationshipsdependingongeneselectionandtaxonsampling(see

Figures4and5: Polyphaga eitherassistertotheMantodea,Blattaria,orIsoptera)still advisecautionwiththemolecularresults.

Anyway,PolyphagidaeandNocticolidaeareevidentlycrucialinanalysesof dictyopteranphylogeny.Nocticolidaeincludesonlyafewgeneraandisquite homogenous;therearehardlyanyusefuldataonthemorphologyoftheirmaleand femalegenitalia,whilesuchdatawouldbehighlydesirable.Polyphagidaeascurrently delimited(Grandcolas,1994;butwith Cryptocercus excluded),however,iswidespread andcomposedofseveralsubfamiliesthataremorphologicallyandecologicallyquite diverse.Mostphylogeneticanalyses(includingours)onlysampledmembersofthe subfamilyPolyphaginae( Polyphaga , Ergaula and Therea ).Representativesofthe

EuthyrrhaphinaeandLatindiinaewerelimitedtotheanalysisofKambhampati(1996), who,however,sequencedonly12S.AmongtherecentlargescaleanalysesonlyInward etal.(2007)includedmembersofthepolyphagidsubfamiliesEuthyrrhaphinaeand

Tiviinae,whichalongwithPolyphaginaeandNocticolidaeformedawellsupported monophyleticgroup(pp=100%).InouranalysesthesampledPolyphaginae–Polyphaga ,

Ergaula and Therea – remainasamonophyleticgroup,withtheexceptionoftheMP analyses,inwhichtheyareplacedseparatelyinalargepolytomy.Thisisnotlikelyahard polytomy,butratherasoftonethatmoredata(seepatchycoverageintermsofsequence

231 datainTable1)and/oranincreasedpolyphagidtaxonsamplemightresolve.Inan additional5OGMPanalysis(notshown)thatexcludedNocticolidae,Polyphaginaewas recoveredassistertoallremainingDictyoptera(asinthe5OGBayesiananalysis,Figure

3B).

Onestepupintheblattodeantreethenextproblematicissueistherelationshipamong thelargeblattodeancladesBlattidae(sensuKlassandMeier,2006),Blattellidae+

Blaberidae,andCryptocercidae+Isoptera,andthesmalltaxonTryonicidae(notyet sampledformolecularanalyses)–andthePolyphagoideaiftheirbasalpositionisnot accepted.ThemorphologybasedanalysisofKlassandMeier(2007)yieldsBlattidaeas sistertoallotherBlattodea;thelatterhaveTryonicidaeasthebasalmostbranch,andthe restfallsintoacladeBlattellidae+BlaberidaeandacladeincludingPolyphagidae+

LamproblattidaeandCryptocercidae+Isoptera(Figure1K).Incontrast,mostmolecular studiestendtoobtainacloserelationshipbetweenBlattidaeandCryptocercidae+

Isoptera.ThiscladeisstronglysupportedinInwardetal.(2007:pp=100%)andPellenset al.(2007:ja=84%)andwasalsofoundinthestudyofLoetal.(2003)(aclade

Cryptocercidae+Blattidae,i.e.withoutIsoptera,wasrecoveredinKambhampati,1995).

ThetreeinLoetal.(2007)showsrelationshipsaltogetherverydifferentfromtheother analyses(Figure1M);ifrerootedbetweenMantodeaandBlattaria(seeabove),theclades

Blattidae,Blattellidae+Blaberidae,andCryptocercidae+Isopteraareplacedinan unresolvedtrichotomy.

Amongourstandardanalyses,the5OGand8OGBayesiananalyses(Figure3)and the8OGMPanalysis(Figure2A)alsoshowaBlattidae+(Cryptocercidae+Isoptera) clade,whichfurthermoreincludesTryonicidae.However,thesupportforthiscladeisat

232 mostmoderate(pp=80%,pp=74%,orbo<50%),thoughthismaybeduetothelackof moleculardataforTryonicidae.The5OGMPanalysis(Figure2B)obtainsallthesetaxa asbranchesofthelargepolytomyatthebaseofDictyoptera.

Altogether,therelationshipsamongtheprincipallineagesofBlattodearemainanarea ofcontinuedconflict.TheinclusionofmoleculardataforafewTryonicidae(only

Lauraesilpha or Tryonicus ;seeKlass,2001)wouldbethemostimportantimprovement ofthedatabase.However,theavailablesamplesforBlattidaeandbasalBlattellidae+

Blaberidae(mainlythebasalgroupsAnaplectinaeandPlectopterinae=

Pseudophyllodromiinae)shouldalsobeincreased.Ontheotherhand,theBlaberidaeare usually"oversampled"inanalysesondictyopteranphylogeny.

The Cryptocercus + Isoptera clade

OurBayesianandparsimonyanalysesstronglysupporttheclade Cryptocercus +

Isoptera(bo=91or92%;pp=99%),confirmingthepredominantprevioushypothesis

(Boudreaux,1979;Nalepaetal.,1997;Loetal.,2000;Loetal.,2003;Deitzetal.,2003;

TerryandWhiting,2005;Kjer2004;Kjeretal.,2006;Lo,2003,Klass,1995,2003).The cladisticanalysesbyKlassandMeier(2006),Loetal.(2007),Pellensetal.(2007)and

Inwardetal.(2007)alsorecoveredthisrelationship,allwithstrongsupport(exceptfor

Loetal.,2007).

Someearliermolecularstudiescontradictedthisresult,butthesestudieswerebased eitheronsmalltaxonsamplesorshortsequences(Vawter,1991;DeSalleetal.,1992), predefinedIsopteraasanoutgrouptaxon(MaekawaandMatsumoto,2000;

Kambhampati,1996),orhaveotherwisebeenrevisedbysubsequentstudies(e.g.,

233

GrandcolasandD'Haese,2001forKambhampati,1995).Morphologicalstudiesnot recovering Cryptocercus +Isopterawereshowntobebasedonuncertainmorphological data(ThorneandCarpenter,1992revisedinDeitzetal.,2003;Grandcolas,1994,1996,

1997arevisedinKlass,1997,2001)oralsousedIsopteraasanoutgrouptaxon

(Grandcolas,1996).

Whilethecurrentevidencefora Cryptocercus +Isopteracladeisoverwhelming,in ourtestsbasedonKjeretal.´s(2006)datawefoundthatthiscladeisnotrobustto changesinoutgroupselection.Indeed,onlywitheitheragryllotalpidorthopteran,a mantophasmatodean,adermapteran,oragrylloblattodeanoutgroup(Figure4E,I,J,K)the cladewasobtained.Mostofthesameanalysesledtotheproblemthatparticular blattarians( Periplaneta or Supella )aredraggedtothebaseofDictyoptera.Nonetheless, theseweretestsratherthananalysesoptimizedforresolvingdictyopteranrelationships.

Relationships within Isoptera

Asourtermitesampleisfairlysmall,weonlydiscussherethemostbasalsplitinside theIsoptera.Thetraditionalviewthatthisisbetween Mastotermes andallotherIsoptera

(Hennig,1969,1981;Klass,1995;seealsoKrishna,1970;Thompsonetal.,2000a)has beencontradictedbyThorneandCarpenter(1992;butseeDeitzetal.,2003fora revision),whileithasbeenconfirmedbymostsubsequentstudies,bothmorphological

(KlassandMeier,2006,butthereintheonlytermitetaxaadditionallyincludedarethe lowerisopteranTermopsinaeandKalotermitidae)andmolecular(Kambhampatietal.,

1996;Loetal.,2003).Amongtherecentlargescalemolecularanalyses,Pellensetal.

(2007:ja=100%)andInwardetal.(2007:nosupportvaluesindicated)alsofindthis

234 relationship,whileLoetal.(2007)obtainapolytomyof4cladesatthebaseofIsoptera

(oneofthemis Mastotermes ).

Alsofromouranalysesthepositionof Mastotermes cannotbedetermined,despitethe inclusionofthemorphologicaldatafromKlassandMeier(2006).InourBayesian analyses(Figure3)itformsacladetogetherwiththeother"lowertermites",butthe supportislow(pp=55%orpp=60%).InourMPanalyses Mastotermes iseitherplacedin abasalisopteranpolytomy(5OGanalysis,Figure2B),oritindeedappearsassisterto allotherIsoptera(8OGanalysis,Figure2A),butwithlowsupport(bo<50%)forthe cladecomprisingtheremainingtermites.Thelatterresultwasalsoobtainedina5OG

BayesiananalysisruninexclusionofNocticolidae(notshown).Abasalplacementof

Mastotermes mightbemorestronglyfavoredassoonasthemorphologicalcharacters havebeenscoredforalltermitetaxasampled,asthe(apomorphic)statesaremostlythe sameinalltermitesexceptfor Mastotermes .

Altogether,thebasalpositionof Mastotermes withinIsopteramaybeconsideredthe mostconvincinghypothesis,butiscurrentlynottoostronglysupported.

Relationships within Mantodea

ThemajorityofourmoleculardataonMantodeaarefromthepreviousstudyby

SvensonandWhiting(2004).Yet,ourdatasetsaredifferentinseveralways:Although bothofususedCOII,16S,18S,and28S,SvensonandWhitingadditionallyincludedH3, whereasweaddedmorphologicaldatafor4taxa(seeTable1);themorphologicaldata, however,duetothelimitedtaxonsample,canaffectonlytheverybasalmantodean dichotomies.WealignedrRNAsequencesmanuallywithreferencetosecondary

235 structure,whereasSvensonandWhitingappliedamanualalignmentinSequencher followedbysubsequentalignmentbydirectoptimization.Intheiranalysis,Svensonand

WhitingusedanunspecifiedmodeldeterminedbyModeltest3.06PPC(Posadaand

Crandall,1998)whereasweusedastandardGTR+I+GmodelforCOIIandadoublet modelforrRNA.Nevertheless,themantodeantopologieswereconstructedarelargely congruent.

Oneparticularlyinterestingissueisthephylogeneticpositionsofthe3generausually consideredmostbasalamongthemantodeans(e.g.Beier,1968): Mantoida , Chaeteessa , and Metallyticus .Notably,allthreegenerashowcharactersthatmakethemgood candidatestobesistertoallremainingMantodea.In Mantoida themalegenitaliaarein severalcharactersstronglyreminiscentofblattariangenitaliaandlackapomorphies sharedbyallotherexaminedMantodea,including Chaeteessa and Metallyticus (Klass,

1995,1997). Chaeteessa ispeculiaramongMantodeabythesimplestructureofthe spinationofitsraptorialforelegs;forinstance,theterminalclawofthetibiaishardly differentiatedfromtheothertibialspines,andallspinesareveryslender,setalike(Beier,

1968). Metallyticus showssomecharactersofwingvenationthatresembleconditionsin

Blattaria,mainlytheextensivebranchingofsomemajorveinsandthepresenceofa2nd analveininthehindwing(Smart,1956).

Klass(1995,1997)andKlassandMeier(2006)foundtherelationships Mantoida +

(Chaeteessa +( Metallyticus andremainingMantodea))usingmorphologicalcharacters.

Basedonmoleculardata,bothSvensonandWhiting(2004)andLoetal.(2007)found

Mantoida tobethemostbasalmantodeanlineage,butneitherstudydidinclude

Chaeteessa or Metallyticus .Inwardetal.(2007),whosampled Mantoida and

236

Metallyticus ,alsofoundtheformermostbasal,while Metallyticus wasplacedapicalto themostbasal"highermantodean"(theiridopterygid Ichromantis ).

Ouranalysesconsistentlyconfirm Mantoida tobethesistergroupoftheremaining

Mantodea(supportforthelatter:bo=78or75%,pp=95or96%).Thepositionsof

Metallyticus and Chaeteessa (bothonlyrepresentedbymorphologicaldata)arenotso wellresolved.IntheMPanalyses(Figure2)thetwoareplacedinapolytomy immediatelyapicalto Mantoida ,whichadditionallyincludestheThespinae Bantia and

Hoplocorypha (bothonlyrepresentedbymoleculardata),andalineagecomprisingthe remainingMantodea.IntheBayesiananalyses(Figure3)relationshipsaresimilarbut appearmoreresolved: Metallyticus and Hoplocorypha bothfallintothelargeapical mantodeanclade,while Bantia eitherremainsinabasaltrichotomyorissisterto

Chaeteessa .AlltheseresolutionsarecongruentwiththeresultsinKlassandMeier

(2006; Bantia notsampled).Yet,thepositionof Bantia sisterto Chaeteessa isintriguing.

Thisisalsotrueinatechnicalsense,since Bantia isonlyrepresentedbymoleculardata and Chaeteessa onlybymorphologicaldata,andtheythuscannotshareanymatrix characterstatethatcouldprovideasynapomorphy.Apparentlythescatteredavailability ofdataacrossthemantodeantaxaleadstoproblemsintheanalyses.

Forforthcomingstudies,moleculardatawouldbehighlydesirablefor Chaeteessa

(theyaremeanwhileavailablefor Metallyticus :Inwardetal.,2007).Morphologicaldata, especiallyonthemalegenitalia,areurgentlyneededforthemajorityofthemantodean taxa,andfor Bantia and Hoplocorypha inparticular.

Concerningthe"higherMantodea",itisclearfromSvensonandWhiting(2004)and fromthisstudy’sresultsthatthemonophylyofmostofitsfamiliesisunlikely,and

237 familylevelclassificationisthusnotausefulguidefortaxonsampling.Extensive, broadlyrepresentativetaxonsamplingisstillneededfortheelucidationofmantodean phylogeny;thechanceofmissingalineagethathasbeenmistakenlylumpedintothe wrongmantodeanfamilyishigh.

Asmentionedabove,themantodeantopologiesarelargelycongruentbetween

SvensonandWhiting(2004)andourstudy.Forexample,bothstudiesrecover

Litaneutria + Heterochaetula, Phyllovates + Anamiopterx and Bolbe + Ima +

Gyromantis. Themainareasofconflictlieinthepositionsof Pseudocreobotra, and

Stagmomantis + Tenodera. Pseudocreobotra + Gongylus + Phyllocrania isrecoveredin thethe8OGBayesianstudies,andinbothMPanalyses.ThisisnotfoundbySvenson andWhiting(2004),whoinsteadfind Chrysomantis tobesisterto Pseudocreobotra .

Tenodera and Stagmomantis are supportedassistertaxainbothMPanalyses(although withbo<50%),withpp=96%inour8OGanalysisandpp=96%inour5OGanalysis, whiletheiranalysisrecovers Stagmomantis with Melliera with100%posterior probabilityand100%nonparametricbootstrap.Althoughthesesupportvaluescannotbe directlycompared,wesimplywishtoacknowledgethatdifferencesoccurbetweenour results.However,thisisprobablyaresultofdifferingmodelselections(thedoublet modelweimplementedtakesintoaccounttheinterdependenceofhydrogenbondedstem pairsinrRNAdata).WhenwerananadditionalanalysisinMr.BayeswithaGTR+I+

Gmodelintheexclusionofmorphology(5milliongenerations;notshown)

Stagmomantis and Melliera formacladewithpp=99%posteriorprobability, Tenodera beingitssistertaxon,supportedbypp=96%.

238

Conclusions

ThisstudyisacomprehensiveanalysisofDictyopteraphylogeny,incorporating nucleotidesequencesfromamitochondrialproteincodinggeneandbothmitochondrial andnuclearrRNAgenes(structurallyaligned),plusmorphologicaldata.Datawere analysedaccordingtomaximumparsimonyandBayesianmethodology.

Inouranalysesaswellasthoseofotherauthors,therelationshipsamongthemajor dictyopteranlineagesstillshowconsiderablevariation.Perhapsthemostinstructive findingofthepresentstudyisthestrongeffectofingroupandoutgroupsamplingon dictyopteranmolecularanalyses.Forinstance,theadditionofMantodeagreatly influencestheresultingdictyopterantopology;thus,studiesconsideringonlyBlattodea arenotunlikelytoarriveaterroneousresults.Studiesshouldusebothdistantlyand closelyrelatedoutgrouptaxaforrooting,andthenevaluatewhetherthepositionsof dictyopteranlineagesarestableunderdifferentcombinations.Ouroutgroupanalyses suggestthatseveralblattariansareroguetaxa,whoseplacementinmolecularstudies shouldbeviewedwithcaution.Ourevidenceforgeneselectioninfluencingingroup topologiesismorecommonplace.

Forfurtherprogressinthereconstructionofdictyopteranphylogeny,thesamplingof additionaltaxa,andsequencingofadditional(preferablynuclear)genesisevidently needed.WhiletaxonsamplingwithinDictyopteragenerallyneedstobegreatly expanded,importanttaxastilltobesampledformolecularstudiesareChaeteessidae,

Tryonicidae,Lamproblattidae,andAnaplectinae,aswellascertainenigmaticgenerasuch

239 asthemyrmecophilous Atticola and Attaphila ,andadditionalpolyphagidgenera.Future studiesshouldendeavortouseasmanyindependentgenefragmentsaspossible,withas manycloselyanddistantlyrelatedoutgrouptaxaasisfeasibletostabilizethepositionof thesetaxainthetree.

Acknowledgments WewouldliketothankJeremyHuffforhisalignmentofthe16Sand18Sportionof ourdataset.WearegratefultoJeremyHuff,Drs.MichaelMay,JohnLapolla,andKarl

Kjerforcommentsandsuggestionsonthemanuscript.Wewouldliketothankallofthe investigatorswhosesequenceswedownloaded.

References Balderson,J.,1991.Mantodea(prayingmantids). The Insects of Australia (ed.byI.D. Naumann,P.B.Carne,J.F.Lawrence,E.S.Nielsen,J.P.Spradberry,R.W.Taylor,M.J. WhittenandM.J.Littlejohn),pp.348–356.CSIRODivisionofEntomology,Melbourne UniversityPress,Melbourne. Beier,M.,1968.Mantodea(Fangheuschrecken). Handbuch der Zoologie, IV. Band Arthropoda, 2. Hälfte Insecta, Lieferung 12 (ed.byJ.G.Helmcke,D.StarkandH. Wermuth),147pp.DeGruyter,Berlin. Beutel,R.G.,Gorb,S.N.,2006.Arevisedinterpretationoftheevolutionofattachment structuresinHexapoda(Arthropoda),withspecialemphasisonMantophasmatodea. Systematics & Phylogeny , 64(1) ,3–25. Boudreaux,H.B.,1979. Arthropod Phylogeny with Special Reference to Insects .John Wiley&Sons,NewYork. Cleveland,L.R.,Hall,S.K.,Sanders,E.P.,Collier,J.,1934.Thewoodfeedingroach Cryptocercus ,itsprotozoa,andthesymbiosisbetweenprotozoaandroach. Memoirs of the American Academy of Arts and Sciences , 17 ,185–342. Danforth,B.N.,Lin,C.P.,Fang,J.,2005.Howdoinsectnuclearribosomalgenes comparetoproteincodinggenesinphylogeneticutilityandnucleotidesubstitution patterns? Systematic Entomology , 30 ,549–562.

240

Deans,AndrewR.,Gillespie,JosephJ.,Yoder,MatthewJ.,2006.Anevaluationof ensignwaspclassification(Hymenoptera:Evaniidae)basedonmoleculardataand insightsfromribosomalRNAsecondarystructure Systematic Entomology 31 (3) ,517– 528. Deitz,L.L.,Nalepa,C.,Klass,K.D.,2003.PhylogenyoftheDictyopterareexamined (Insecta). Entomologische Abhandlungen , 61 ,69–91. DeSalle,R.,Gatesy,J.,Wheeler,W.,Grimaldi,D.,1992.DNAsequencesfromafossil termiteinOligoMioceneamberandtheirphylogeneticimplications. Science , 257 ,1933– 1936. Donovan,S.E.,Jones,D.T.,Sands,W.A.,Eggleton,P.,2000.Morphological phylogeneticsoftermites(Isoptera). Biological Journal of the Linnean Society , 70 ,467– 513. Eggleton,P.,2001.Termitesandtrees:areviewofrecentadvancesintermite phylogenetics. Insectes Sociaux , 48 ,187–193. Ehrmann,R.,2002. Mantodea: Gottesanbeterinnen der Welt .NaturundTier,Münster. Ellis,J.,Morrison,D.,1995.Effectsofsequencealignmentonthephylogenyof Sarcocystis deducedfrom18SrDNAsequences. Parasitology Research, 81(8): 696699 . Gillespie,J.J.,McKenna,C.H.,Yoder,M.J.,Gutell,R.R.,Johnston,J.S.,Kathirithamby, J.,Cognato,A.I.,2005.Assessingtheoddsecondarystructuralpropertiesofnuclear smallsubunitribosomalRNAsequences(18S)ofthetwistedwingparasites(Insecta: Strepsiptera). Insect Molecular Biology , 14 ,625643. Grandcolas,P.,1994.PhylogeneticsystematicsofthesubfamilyPolyphaginae,withthe assignmentofCryptocercus Scudder,1862tothistaxon(Blattaria,Blaberoidea, Polyphagidae). Systematic Entomology , 19 ,145–158. Grandcolas,P.,1996.Thephylogenyofcockroachfamilies:acladisticappraisalof morphoanatomicaldata. Canadian Journal of Zoology , 74 ,508–527. Grandcolas,P.,1997a.Whatdidtheancestorsofthewoodroach Cryptocercus looklike? AphylogeneticstudyoftheoriginofsubsocialityinthesubfamilyPolyphaginae (Dictyoptera,Blattaria).Theoriginofbiodiversityininsects:phylogenetictestsof evolutionaryscenarios(ed.byP.Grandcolas). Mémoires du Muséum National d'Histoire Naturelle Paris , 173 ,231–252. Grandcolas,P.,1997b.SystématiquephylogénétiquedelasousfamilledesTryonicinae (Dictyoptera,Blattaria,Blattidae).In Zoologia Neocaledonica vol.4(ed.byJ.Naitand L.Matile). Mémoires du Muséum National d'Histoire Naturelle Paris , 171 ,91–124.

241

Grandcolas,P.,1999a.Reconstructingthepastof Cryptocercus (Blattaria: Polyphagidae):phylogenetichistoriesandstories. Annals of the Entomological Society of America , 92 ,303–307. Grandcolas,P.,1999b.Systematics,endosymbiosis,andbiogeographyof Cryptocercus clevelandi and C. punctulatus (Blattaria:Polyphagidae)fromNorthAmerica:a phylogeneticperspective. Annals of the Entomological Society of America , 92 ,285–291. Grandcolas,P.,D’Haese,C.,2001.Thephylogenyofcockroachfamilies:isthecurrent molecularhypothesisrobust? Cladistics , 17 ,48–55. Grimaldi,D.,Engel,M.S.,2005. Evolution of insects .CambridgeUniversityPressNew York. Grimaldi,D.,2003.ArevisionofCretaceousandtheirrelationships,including newtaxa(Insecta:Dictyoptera:Mantodea). American Museum Novitates , No. 3412 ,47 pp. Guttell,R.R.,Gray,M.W.,Schinare,M.N.,1993.Acompilationoflargesubunit(23S and23Slike)ribosomalRNAstructures. Nulcleic Acids Research, 21 :30553074. Hennig,W.,1969. DieStammesgeschichtederInsekten.Frankfurt:VerlagWaldemar Kramer. Hennig,W.,1981. Insect phylogeny .WileyIntersciencePublication,JohnWiley&Sons, Chichesteretc. Hickson,R.E.,Simon,C.,Cooper,A.,Spicer,G.S.,Sullivan,J.,Penny,D.,1996. Conservedsequencemotifs,alignment,andsecondarystructureforthethirddomainof animal12SrRNA. Molecular Biology and Evolution 13 :150169. Hickson,R.E.,Simon,C.,Perrey,S.W.,2000.Theperformanceofseveralmultiple sequencealignmentprogramsinrelationtosecondarystructurefeaturesforanrRNA sequence. Molecular Biology and Evolution 17 :530539 Huelsenbeck,J.P.,Ronquist,F.,2001.MRBAYES:Bayesianinferenceofphylogenetic trees. Bioinformatics , 17 ,754–755. Huelsenbeck,J.P.,Ronquist,F.,2002.MrBayes3:Bayesiananalysisofphylogeny. Computerprogramdistributedbytheauthors.DepartmentofEcology,Behaviorand Evolution,UniversityofCalifornia,SanDiego. Inward,D.,Beccaloni,G.,Eggleton,P.,2007.Deathofanorder:acomprehensive molecularphylogeneticstudyconfrimsthattermitesareeusocialcockroaches. Biology Letters April5.

242

Jow,H.,Hudelot,C.,Rattray,M.,Higgs,P.G.,2002.Bayesianphylogeneticsusingan RNAsubstitutionmodelappliedtoearlymammalianevolution. Molecular Biology and Evolution 19,15911601. Kaltenbach,A.P.,1996.UnterlagenfüreineMonographiederMantodeadessüdlichen Afrika;1.Artenbestand,geographischeVertreitungundAusbreitungsgrenzen. Annalen des Naturhistorischen Museums in Wien, Serie B , 98B ,193–346. Kaltenbach,A.P.,1998.UnterlagenfüreineMonographiederMantodea(Insecta)des südlichenAfrika;2.BestimmungstabellenfürdiehöherenTaxa,Nachträgezum Artenbestand. Annalen des Naturhistorischen Museums in Wien, Serie B , 100B ,19–59. Kambhampati,S.,1995.AphylogenyofcockroachesandrelatedinsectsbasedonDNA sequenceofmitochondrialribosomalRNAgenes. Proceedings of the National Academy of Sciences of the United States of America , 92 ,2017–2020. Kambhampati,S.,1996.Phylogeneticrelationshipamongcockroachfamiliesinferred frommitochondrial12SrRNAgenesequence. Systematic Entomology , 21 ,89–98. Kambhampati,S.,Kjer,K.M.,Thorne,B.L.,1996.Phylogeneticrelationshipamong termitefamiliesbasedonDNAsequenceofmitochondrial16SrRNAgene. Insect Molecular Biology , 5,229–238. KjerK.M.,1995.UseofrRNAsecondarystructureinphylogeneticstudiestoidentify homologouspositions:anexampleofalignmentanddatapresentationfromthefrogs. Molecular Phylogenetics and Evolution, 4 (3) :314330 Kjer,K.M.,2004.Aligned18Sandinsectphylogeny. Systematic Biology , 53(3) ,506– 514. Kjer,K.M.,Baldridge,G.D.,Fallon,A.M.,1994.Mosquitolargesubunitribosomal RNA:Simultaneousalignmentofprimaryandsecondarystructure. Biochim Biophys Acta , 1217 ,147–155. Kjer,K.M.,Carle,F.L.,Litman,J.,Ware,J.,2006a.Amolecularphylogenyof Hexapoda. Arthropod Systematics and Phylogeny , 64(1) ,35–44. Kjer,K.M.,Gillespie,J.J.,Ober,K.A.,2006b.StructuralhomologyinribosomalRNA, andadeliberationonPOY. Arthropod Systematics and Phylogeny. 64 ,71–76. Klass,K.D.,1995. Die Phylogenie der Dictyoptera .PhDthesis,LudwigMaximilians UniversitätMunich.Cuvillier,Göttingen,Germany. Klass,K.D.,1997.TheexternalmalegenitaliaandthephylogenyofBlattariaand Mantodea. Bonner Zoologische Monographien , 42 ,1–341.

243

Klass,K.D.,1998a.TheproventriculusoftheDicondylia,withcommentsonevolution andphylogenyinDictyopteraandOdonata(Insecta). Zoologischer Anzeiger , 237 ,15–42. Klass,K.D.,1998b.TheovipositorofDictyoptera(Insecta):Homologyandgroundplan ofthemainelements. Zoologischer Anzeiger , 236 ,69–101. Klass,K.D.,2000.Themaleabdomenoftherelictermite Mastotermes darwiniensis (Insecta:Isoptera:). Zoologischer Anzeiger , 239 ,231–262. Klass,K.D.,2001.Morphologicalevidenceonblattarianphylogeny:“phylogenetic historiesandstories”(Insecta,Dictyoptera). Deutsche Entomologische Zeitschrift , 48 , 223–265. Klass,K.D.,2003.RelationshipsamongtheprincipallineagesofDictyopterainferred frommorphologicaldata.Proceedingsofthe1 st DresdenMeetingonInsectPhylogeny: “PhylogeneticRelationshipswithintheInsectOrders”(Dresden,September1921, 2003),Entomologische Abhandlungen , 61 ,119–172. Klass,K.D.,2007.DieStammesgeschichtederHexapoden:einekritischeDiskussion neuererDatenundHypothesen. Denisia 20:413–450. Klass,K.D.,Ehrmann,R.,2005.13.OrdnungMantodea,Fangschrecken, Gottesanbeterinnen. Lehrbuch der Speziellen Zoologie, Band I: Wirbellose, 5. Teil: Insecta, 2nd edn. (ed.byH.H.DatheandH.E.Gruner),pp.182–197.Spektrum AkademischerVerlag,Heidelberg,Berlin. Klass,K.D.,Meier,R.,2006.AphylogeneticanalysisofDictyoptera(Insecta)basedon morphologicalcharacters. Entomologische Abhandlungen , 63 ,3–50. Krishna,K.,1970.Taxonomy,phylogeny,anddistributionoftermites. Biology of Termites (ed.byK.KrishnaandF.M.Weesner),pp.127–153.AcademicPress,New York. Kristensen,N.P.,1975.Thephylogenyofhexapod“orders.”Acriticalreviewofrecent accounts. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung , 13 ,1–44. Kristensen,N.P.,1981.Phylogenyofinsectorders. Annual Review of Entomology , 26 , 135–157. Kristensen,N.P.,1991.Phylogenyofextanthexapods. The Insects of Australia (ed.by I.D.Naumann,P.B.Carne,J.F.Lawrence,E.S.Nielsen,J.P.Spradberry,R.W.Taylor, M.J.WhittenandM.J.Littlejohn),pp.125–140.CSIRODivisionofEntomology, MelbourneUniversityPress,Melbourne. KukalováPeck,J.,1991.Fossilhistoryandtheevolutionofhexapodstructures. The Insects of Australia (ed.byI.D.Naumann,P.B.Carne,J.F.Lawrence,E.S.Nielsen,J.P.

244

Spradberry,R.W.Taylor,M.J.WhittenandM.J.Littlejohn),pp.141–179.CSIRO DivisionofEntomology,MelbourneUniversityPress,Melbourne. KukalováPeck,J.,Peck,S.B.,1993.Zorapterawingstructures:evidencefornewgenera andrelationshipwiththeblattoidorders(Insecta:Blattoneoptera). Systematic Entomology , 18 ,333–350. Lewis,P.O.,Holder,M.T.,Holsinger,K.E.,2005.PolytomiesandBayesianPhylogenetic Inference. Systematic Biology , 54(2) ,241–253. Lin,C.P.,Danforth,B.N.,2004.Howdoinsectnuclearandmitochondrialgene substitutionpatternsdiffer?InsightsfromBayesiananalysesofcombineddatasets. Molecular Phylogenetics and Evolution , 30 ,686–702. Lo,N.,Tokuda,G.,Watanabe,H.,Rose,H.,Slaytor,M.,Maekawa,K.,Bandi,C.,Noda, H.,2000.Evidencefrommultiplegenesequencesindicatesthattermitesevolvedfrom woodfeedingcockroaches. Current Biology , 10 ,801–804. Lo,N.,Bandi,C.,Watanabe,H.,Nalepa,C.,Beninati,T.,2003.Evidencefor cocladogenesisbetweendiversedictyopteranlineagesandtheirintracellular endosymbionts. Molecular Biology and Evolution , 20 ,907–913. Lo,N.,2003.MolecularphylogeneticsofDictyoptera:insightsintotheevolutionof termiteeusocialityandbacterialendosumbiosisincockroahces. Entomologische Abhandlungen , 61(2) ,137–138. Lo,N.,Beninati,T.,Stone,F.,Walker,J.,Sacchi,L.,2007.Cockroachesthatlack Blattabacterium endosymbionts:thephylogeneticallydivergentgenus Nocticola . Biology Letters March 21 . Lutzoni,F.,Wagener,P.,Reev,V.,Zoller,S.,2000.Integratingambiguouslyaligned regionsofDNAsequenceinphylogeneticanalyseswithoutviolatingpositional homology. Systematic Biology , 49 ,628–651. LyonsWeiler,J.,Hoelzer,G.A.,Tausch,R.J.,1998.Optimaloutgroupanalysis. Biological Journal of the Linnean Society , 64 ,493–511. Maddison,D.R.,Ruvolo,M.,Swofford,D.L.,1992.Geographicoriginsofhuman mitochondrialDNA:phylogeneticevidencefromcontrolregionsequences. Systematic Biology , 41 ,111–124. Maddison,W.P.,Donoghue,M.J.,Maddison,D.R.,1984.Outgroupanalysisand parsimony. Systematic Zoology , 33 ,83–103. Maekawa,K.,Kitade,O.,Matsumoto,T.,1999.Molecularphylogenyoforthopteroid insectbasedonthemitochondrialcytochromeoxidaseIIgene. Zoological Science , 16 ,

245

175–184. Maekawa,K.,Matsumoto,T.,2000.Molecularphylogenyofcockroaches(Blattaria) basedonmitochondrialCOIIgenesequences. Systematic Entomology , 25 ,511–519. McKittrick,F.A.,1964.Evolutionarystudiesofcockroaches. Memoirs of the Cornell University Agricultural Experiment Station. , 389 ,1–197. McKittrick,F.A.,Mackkerras,M.J.,1965.PhyleticrelationshipswithintheBlattidae. Annals of the Entomological Society of America, 58 ,224–230. Milinkovitch,M.C.,LyonsWeiler,J.,1998.Findingoptimalingrouptopologiesand convexitieswhenthechoiceofoutgroupsisnotobvious . Molecular Phylogenetics and Evolution , 9(3) ,348–357. Morrison,D.A.,Ellis,J.T.,1997.Effectsofnucleotidesequencealignmentonphylogeny estimation:acasestudyof18SrDNAsofapicomplexa. Molecular Biology and Evolution , 14 :428441. Morse,G.E.,Normark,B.B.,2006.Amolecularphylogeneticstudyofarmouredscale insects(Hemiptera:Diaspididae), Systematic Entomology 31 :338349 Mugridge,N.B.,Morrison,D.A.,Jäkel,T.,Heckeroth,A.R,Tenter,A.M.,Johnson, A.M.,2000.EffectsofSequenceAlignmentandStructuralDomainsofRibosomalDNA onPhylogenyReconstructionfortheProtozoanFamilySarcocystidae. Molecular Biology and Evolution 17: 18421853 Nalepa,C.A.,Byers,G.W.,Bandi,C.,Sironi,M.,1997.Descriptionof Cryptocercus clevlandi (Dictyoptera:Cryptocercidae)fromthenorthwesternUnitedStates,molecular analysisofbacterialsymbiontsinitsfatbody,andnotesonbiology,descriptionand biogeography. Annals of the Entomological Society of America , 90 ,416–424. Nalepa,C.A.,Bandi,C.,2000.Characterizingtheancestors:Paedomorphosisandtermite evolution. Termites: Evolution, Sociality, Symbiosis, Ecology (ed.byT.Abe,D.E. BignellandM.Higashi),pp.53–75.KluwerAcademicPublishing,Dordrecht. Nalepa,C.A.,Lenz,M.,2000.Theoothecaof Mastotermes darwiniensis Froggatt (Isoptera:Mastotermitidae):homologywithcockroachoothecae. Proceedings of the Royal Society London , Series B, 267 ,1809–1813. Nylander,J.A.A.,2001. Taxon sampling in phylogenetic analysis: problems and strategies reviewed. Ph.D.dissertation,UppsalaUniversity. Otte,D.,Spearman,L.A.,2005. Mantida Species File: A Catalog of the Mantids of the World .InsectDiversityAssociation,PublicationNumber1,ISBN:1929014066. AcademyofNaturalSciences,Philadelphia,PA,USA.

246

Pellens,R.,Grandcolas,P.,DomingosdeSilvaNeto,I.,2002.Anewandindependently evolvedcaseofxylophagyandthepresenceofintestinalflagellatesinthecockroach Parasphaeria boleiriana (Dictyoptera,Blaberidae,Zetoborinae)fromtheremnantsofthe BrazilianAtlantic. Canadian Journal of Zoology , 80 ,350–359. Pellens,R.,D'Haese,C.A.,Bellés,X.,Piulachs,M.D.,Legendre,F.,Wheeler,W.C., Grandcolas,P.,2007.Theevolutionarytransitionfromsubsocialtoeusocialbehaviourin Dictyoptera:Phylogeneticevidenceformodificationofthe“shiftindependentcare” hypothesiswithanewsubsocialcockroach. Molecular Phylogenetics and Evolution ,doi: 10.1016/j.ympev.2006.12.017. Posada,D.,Crandall,K.A.,1998.ModelTest:TestingthemodelofDNAsubstitution. Bioinformatics , 14 ,817–818. Rambaut,A.,Drummond,A.J.,2007.Tracerv1.4,Availablefrom http://beast.bio.ed.ac.uk/Tracer Ross,K.G.,2001.Molecularecologyofsocialbehaviour:analysesofbreedingsystems andgeneticstructure. Molecular Ecology , 10 ,265–284. Roy,R.,1999.MorphologyandTaxonomy.In The Praying Mantids .Eds:Prete,F.R., Wells,H.,Wells,P.H.&Hurd,L.E,TheJohnsHopkinsUniversityPress,London.pp. 19–40. Sacchi,L.,Nalepa,C.A.,Bigliardi,E.,Lenz,M.,Bandi,C.,Corona,S.,Grigolo,A., Lambiase,S.,Laudani,U.,1998.Someaspectsofintracellularsymbiosisduringembryo developmentof Mastotermes darwiniensis (Isoptera:Mastotermitidae). Parassitologia , 40 ,309–316. Sacchi,L.,Nalepa,C.A.,Lenz,M.,Bandi,C.,Corona,S.,Grigolo,A.,Bigliardi,E., 2000.Transovarialtransmissionofsymbioticbacteriain Mastotermes darwiniensis (Isoptera:Mastotermitidae):ultrastructuralaspectsandphylogeneticimplications. Annals of the Entomological Society of America , 93 ,1308–1313. Sanderson,M.J.,Shaffer,H.B.,2002.Troubleshootingmolecularphylogeneticanalyses. Annual Review of Ecological Systematics , 33 ,49–72. Schoniger,M.,vonHaeseler,A.,1994.Astochasticmodelandtheevolutionof autocorrelatedDNAsequences. Molecular Phylogenetics and Evolution , 3,240–247. Smart,J.,1956.Onthewingvenationof Chaeteessa andothermantids(Insecta: Mantodea). Proceedings of the Zoological Society of London , 127 ,545–553,plate1. Smith,A.B.,1994.Rootingmoleculartrees:problemsandstrategies. Biological Journal of the Linnean Society , 51 ,279–292.

247

Svenson,G.J.,Whiting,M.F.,2004.PhylogenyofMantodeabasedonmoleculardata: evolutionofacharismaticpredator. Systematic Entomology , 29(3) ,342–352. Swofford,D.L.,2000.PAUP:phylogeneticanalysisusingparsimony(*andother methods).SinauerAssociates,Sunderland,MA. Terra,S.P.,1995.RevisãoSistemáticadosgenerosdeLouvaadeusdaRegião Neotropical(Mantodea). Revista Brasileira de Entomologia , 39(1) ,13–94. Terry,M.D.,Whiting,M.F.,2005.Mantophasmatodeaandphylogenyofthelower neopterousinsects. Cladistics , 21(3) ,240–257. Thompson,G.J.,Kitade,O.,Lo,N.,Crozier,R.H.,2000a.Phylogeneticevidencefora single,ancestraloriginofa‘true’workercasteintermites. Journal of Evolutionary Biology , 13 ,869–881. Thompson,G.J.,Miller,L.R.,Lenz,M.,Crozier,R.H.,2000b.Phylogeneticanalysisand traitevolutioninAustralianlineagesofdrywoodtermites(Isoptera,Kalotermitidae). Molecular Phylogenetics and Evolution , 17(3) ,419–429. Thompson,J.D.,Gibson,T.J.,Plewniak,F.,Jeanmougin,F.,D.G.Higgins,1997.The ClustalXwindowsinterface:flexiblestrategiesformultiplesequencealignmentaidedby qualityanalysistools.NucleicAcidsRes.24:48764882. Thorne,B.L.,Carpenter,J.M.,1992.PhylogenyofDictyoptera. Systematic Entomology , 17 ,253–268. Titus,T.A.,Frost,D.R.,1996.Molecularhomologyassessmentandphylogenyinthe lizardfamilyOpluridae(Squamata:Iguania). Molecular Phylogenetics Evolution 6:4962 Vawter,L.,1991.EvolutionofblattoidinsectsandofthesmallsubunitribosomalRNA gene.UniversityofMichigan,AnnArbor. Vickery,V.R.,Kevan,D.K.,1983.AMonographoftheorthopteroidinsectsofCanada andadjacentregions. Mem. Lyman Ent. Mus. Res. Lab ., 13 ,1–1462. Vršanský,P.,2002.Originandearlyevolutionofmantisea. AMBA Project , 6(1) ,1–16. Wang,T.,1993. Synopsis on the Classification of Mantodea from China .Shangahi ScientificandTechnological,LiteraturePublishingHouse,Shanghai. Wheeler,W.C.,Whiting,M.,Wheeler,Q.D.,Carpenter,J.M.,2001.Thephylogenyofthe extanthexapodorders. Cladistics , 17 ,113–169. Wheeler,W.C.,1990.Nucleicacidsequencephylogenyandrandomoutgroups. Cladistics , 6,363–367.

248

Yager,D.D.,Hoy,R.R.,1986.Thecyclopeanear:Anewsenseforthepraying. Science , 231 ,727–729. Yager,D.D.,Hoy,R.R.,1987.Themidlinemetathoracicearoftheprayingmantis, Mantis religiosa . Cell Tissue Research , 250 ,531–541. Yager,D.D.,Hoy,R.R.,1989.Auditionintheprayingmantis, Mantis religiosa L.: Identificationofaninterneuronmeadiatingultrasonichearing. Journal of Comparitive Physiology , 165 ,471–493. Yager,D.D.,May,M.L.,1990.Ultrasoundtriggeredflightgatedevasivemaneuversin theprayingmantis Parasphendale agrionina .II.Tetheredflight. Journal of Experimental Biology , 152 ,41–58. Yager,D.D.,May,M.L.,Fenton,M.B.,1990.Ultrasoundtriggeredflightgatedevasive maneuversintheprayingmantis Parasphendale agrionina .I.Freeflight. Journal of Experimental Biology , 152 ,17–39.

249

Figure 1: Previousphylogenetichypothesesofdictyopteranrelationships.(out)=taxa formallyusedasoutgrouprepresentativesfordictyopteraningroup.*includingthegenus Cryptocercus ;**includingtheTryonicidaeandLamproblattidae.

250

Figure 2: ParsimonyanalysisofCOII,16S,18S,28Sandmorphologicaldata,strict consensusofmostparsimonioustrees;bootstrapvaluesshownabovebrancharefroma 1000bootstrapreplicatesearchusing10randomadditionsearchesandTBRbranch swapping.Mantodeanfamilies:AMAmorphoscelidae;CHChaeteessidae;EM Empusidae;HY;IRIridopterygidae;MDMantoididae;ML Metallyticidae;MTMantidae;THThespidae.(A)8OGanalysis,shortesttreerecovered: 11155steps??,(B)5OGanalysis,shortesttreerecovered:4625steps??.SeeTable1for thedatapartitionsincludedforthevariousterminaltaxa.

251

Figure 3: BayesiandoubletanalysisofCOII,16S,18S,28Sandmorphologicaldata, majorityruleconsensustrees;posteriorprobabilitiesshownabovebranch.Mantodean families:AMAmorphoscelidae;CHChaeteessidae;EMEmpusidae;HY Hymenopodidae;IRIridopterygidae;MDMantoididae;MLMetallyticidae;MT Mantidae;THThespidae.(A)8OGanalysis,(B)5OGanalysis.SeeTable1forthedata partitionsincludedforthevariousterminaltaxa.

252

Figure 4: Effectofingroupandoutgroupselectiononphylogenyreconstruction (maximumparsimony):(A)MaekawaandMatsumoto(2000)COIIdata+Odonata (Sympetrum and Argia )sequences+ Grylloblatta sequence;(B)Maekawaand Matsumoto(2000)COIIdata+Mantodea+Odonata( Sympetrum and Argia )+ Grylloblatta ;(C)Kjeretal.(2006)COII,16S,18S,28Swithtaxonlistfromcurrent study;(D)Kjeretal.(2006)COII,16S,18S,28Swithcurrenttaxonlistplus Timema, Gryllus and Tettigonia ;(E)Kjeretal.(2006)COII,16S,18S,28Swithorthopteran outgroup;(F)Kjeretal.(2006)COII,16S,18S,28Swithembiopteranoutgroup;(G) Kjeretal.(2006)COII,16S,18S,28Swithphasmatodeanoutgroup;(H)Kjeretal. (2006)COII,16S,18S,28Switharchaeognathanoutgroup;(I)Kjeretal.(2006)COII, 16S,18S,28Swithmantophasmatodeanoutgroup;(J)Kjeretal.(2006)COII,16S,18S, 28Swithdermapteranoutgroup;(K)Kjeretal.(2006)COII,16S,18S,28Swith grylloblattodeanoutgroup.NotethatinC–Kformostoutgrouptaxanotalldatapartitions areincluded.

253

Figure 5: Effectofoutgroupselectiononmaximumparsimonyphylogenyreconstruction usingonly18SsequencesfromtaxaincludedinKjeretal.(2006);compositionof ingroup(Dictyoptera)constant.(A)withorthopterangryllotalpidoutgroup;(B)with embiopteranoutgroup;(C)withphasmatodeanoutgroup;(D)witharchaeognathan outgroup;(E)withdermapteranoutgroup;(F)withgrylloblattodean outgroup.

Table 1: Taxonsampleanddatausedinthepresentstudy.MorphologicaldatatakenfromKlassandMeier(2006:table2).Forspecies belongingtoourstandarddataset,tableentriesareongreybackground.Thoseonwhitebackground*=Taxononlyusedinsome experimentalanalyses Order Family Specimen/Gene COII 16S 18S 28S Morphology

Mantodea Mantidae Litaneutria minor AY491311 AY491133 AY491195 AY491254 X Choeradodis rhombicollis AY491282 AY491106 AY491167 AY491226 X Tenodera australasiae AY491291 AY491114 AY491176 AY491235 X Orthodera sp. AY491299 AY491122 AY491184 AY491243 X Melliera brevipes AY491293 AY491116 AY491178 AY491237 X Heterochaetula sp. AY491300 AY491123 AY491185 AY491244 X Statilia apicalis AY491315 AY491136 AY491198 AY491257 Sphodromantis sp. Stagmomantis limbata AY491297 AY491120 AY491182 AY491241 X Phyllovates chlorophaea AY491292 AY491115 AY491177 AY491236 X Empusidae Gongylus gongylodes AY491274 AY491100 AY521860 AY521789 X Hymenopodidae Pseudocreobotra occellata AY491283 AY491107 AY491168 AY491227 X Chrysomantis sp. AY491273 AY491099 AY491157 AY491216 X AY491277 X AY491162 AY491221 X Amorphoscelidae Gyromantis occidentalis AY491321 AY491144 AY491206 AY491265 X Mantoididae Mantoida schraderi AY491275 AY491101 AY491160 AY491219 Mantoida schraderi Iridopterygidae Bolbe sp. AY491305 AY491128 AY491189 AY491248 X Ima fusca AY491303 AY491126 AY491187 AY491246 X Neomantis australis AY491317 AY491140 AY491202 AY491261 X Thespidae Bantia sp. AY491314 AY491134 AY491199 AY491258 X Hoplocorypha sp. AY491308 AY491130 AY491192 AY491251 X Anamiopteryx sp. AY491295 AY491118 AY491180 AY491239 X Metallyticidae Metallyticus violacea X X X X Metallyticus violacea Chaeteessidae Chaeteessa caudata X X X X Chaeteessa caudata Blattaria Blattidae Periplaneta americana M83971 AF262620 AF321248 AJ577262 Periplaneta Archiblatta hoeveni X X X X Archiblatta hoeveni Deropeltis sp. X X X X Deropeltis sp. Eurycotis floridana X X X X Eurycotis floridana Polyphagidae Polyphaga aegyptiaca AB014069 X AF220575 X Polyphaga aegyptiaca Therea petiveriana X AJ294932 EF36325 X Ergaula sp. AB014070 X X X Ergaula capucina Blattellidae Supella longipalpa AY491269 AY491095 AY121130 AY491210 Supella longipalpa Blattella germanica B. lituricollis B. vaga AF220573 AF005243 Parcoblatta lata AB005906 U17775 Anaplecta sp. X X X X Anaplecta sp. Euphyllodromia angustata X X X X Euphyllodromia angustata Nyctibora sp. X X X X Nyctibora sp. Nahublattella sp. X X X X Nahublattella sp. Blaberidae Gromphadorhina portentosa DQ181523 Z97626 AY491145 AY491207 Blaberus Nauphoeta cinerea X X X X Nauphoeta cinerea Blaptica sp. X X X X Blaptica sp. Phoetalia pallida X X X X Phoetalia pallida Cryptocercidae Cryptocercus relictus AB005908 AY631412 AB085771 AF322489 Cryptocercus Cryptocercus punctulatus AY491268 AF126773 AY491148 AF322486 X Nocticolidae Nocticola sp. X X EF203097 X X Nocticola australiensis X X EF203096 X X Lamproblattidae Lamproblatta albipalpus X X X X Lamproblatta albipalpus Tryonicidae Tryonicus parvus X X X X Tryonicus parvus

254

Lauraesilpha angusta X X X X Lauraesilpha angusta Isoptera Mastotermitidae Mastotermes darwiniensis AB014071 AY302717 AY121141 AY125281 Mastotermes darwiniensis Termitidae Nasutitermes sp. X X AY491151 AY125280 X Hodotermitidae Microhodotermes viator AF220599 AF262619 AF220569 X X Termopsidae Hodotermopsis japonica AB005586 AF262575 AF220567 AY521783 Termopsinae Rhinotermitidae Reticulitermes tibialis AF525355 DQ278594 AF423782 X X Coptotermes lacteus AY536410 AY302710 AF220564 X X Kalotermitidae Cryptotermes domesticus AF189087 D89835 Cryptotermes sp. Cryptotermes sp. Kalotermitidae AY491150 AY521781 Grylloblattodea Grylloblattidae Grylloblatta sculleni DQ457368 DQ457264 DQ457301 X Grylloblatta Grylloblatta campodeiformis* X X AY121139 AY125279 X Mantophasmatodea Mantophasmatidae Sclerophasma paresisense X AY318884 X AY521791 Karoophasma Austrophasmatidae Lobophasma redelinghuisense* AY318942 AY318910 X X X Embioptera Oligotomidae Oligotoma nigra X X AY121134 AY125274 X Orthoptera Gryllidae Gryllus assimilis* X AF248684 AY521869 AY521798 X Tettigoniidae Tettigonia viridissima* X Z97622 Z97587 X X Gryllotalpidae Gryllotalpa sp. * AY165658 AF514475 AF514521 Gryllotalpidaesp. X AY521803 Acrididae Locusta sp. X Z93294 AF370793 AF370809 Locusta Phasmatodea Timematidae Timema knulli X Phyllium AF423806 AY125302 Timema bioculatum Z93319 Heteronemiidae Carausius morosus X X AY121170 AY125310 X Phylliidae Phyllium bioculatum* X Z93319 AY121161 AY125301 X Dermaptera Forficulidae Forficula sp. * X X AY521836 AY521752 X Echinosoma sp. E. yorkense AY121132 E. micropteryx Echinosoma AY144636 AY707377

Odonata Coenagrionidae Argia sp. * AY179159 X AY121144 AY125284 X Libellulidae Sympetrum sanguineum* DQ166804 X AF461245 AF461214 X Archaeognatha Meinertellidae Allomachillis froggarti* X AF370870 AF370788 AF370806 X Plecoptera Perlidae Dinocras sp. X X Hesperaperla pacifica X Dinocras sp. AF311470

255

Table 2: Previoushypothesesofdictyopteranrelationships;expandedfromEggleton(2001). Reference Focal taxon and Data used Methods of analysis sampling for Dictyoptera Kjer(2004) Hexapoda(13 18S Maximumparsimony dictyopteranspecies) (equallyanddifferently weighted) Maximumlikelihood Kjeretal.(2006) Hexapoda(20 COI,COIaminoacids, Maximumparsimony, dictyopteranspecies) COII,COIIaminoacids, Maximumparsimony 12S,16S,18S,28S, (withpseudoreplicatere Morphology weighting) allrRNAalignedwith Maximumlikelihood referencetosecondary structure TerryandWhiting(2005) PolyneopteranPterygota Morphology,18S,28S, Maximumparsimony (18dictyopteranspecies) H3 usingdirectoptimization (POY),Maximum parsimonyusing CLUSTALXalignment, Bayesiananalysisusing CLUSTALXanalysis ThorneandCarpenter Dictyoptera(6highlevel Morphology Maximumparsimony (1992) taxa) Kambhampati(1995) Dictyoptera(36species) 16S,12S Maximumparsimony Loetal.(2000) Dictyoptera(16species) 18S,COII, Maximumlikelihood endoß1,4glucanase Deitzetal.(2003) Dictyoptera(6highlevel Morphology Maximumparsimony taxa) KlassandMeier(2006) Dictyoptera(27species) Morphology Maximumparsimony Pellensetal.(2007) Dictyoptera(50species, COII,12S,16S,18S Directoptimization, focusonBlaberidae) Maximumlikelihood

256

Inwardetal.(2007) Dictyoptera(107species) COII,12S,18S,28S,H3 Maximumparsimony Maximumlikelihood Loetal.(2007) Dictyoptera(50species) COII,18S,H3 Maximumparsimony Maximumlikelihood Loetal.(2003) BlattariaandIsoptera(17 COII,12S,16S,18S, Maximumparsimony species) 16Sof Blattabacterium Maximumlikelihood MaekawaandMatsumoto “Blattaria”(19species) COII Neighborjoining (2000) Donovanetal.(2000) Isoptera(49species) Morphology Maximumparsimony Kambhampatietal. Isoptera(10species) 16Salignedwith Maximumparsimony (1996) referencetosecondary Neighborjoining structure Kambhampatiand Isoptera(20species) ND5 Maximumparsimony Eggleton(2000) (withsuccessivecharacter weighting) Thompsonetal.(2000) Isoptera(12speciesin COII,COIIaminoacids, Maximumlikelihood mostrelevantanalysis) 16SallrRNAaligned withreferenceto secondarystructure Miuraetal.(1998) Termitidae(15species) COII Maximumparsimony Miuraetal.(2000) Nasutitermes (17species) COII,16SrRNA,aligned Maximumparsimony withreferenceto Neighborjoining secondarystructure Thompsonetal.(2000) AustralianKalotermitidae COII,Cytb Maximumlikelihood (25species) SvensonandWhiting Mantodea(63species) COII,H3,16S,18S,28S Directoptimization (2004) Maximumlikelihood

257

Table 3: Analytical methods

Taxon set Analytical Resulting Figure Number Gene selection method Current5outgroup Bayesianand Parsimony:Figure2b; COII,16S,18S,28S dataset(59taxa) Parsimony Bayesian:Figure3b Current8outgroup Bayesianand ParimonyFigure2a; COII,16S,18S,28S dataset(62taxa) Parsimony Bayesian:Figure3a Kjeretal.,2006 Parsimony Figure4c COII,16S,18S,28S dictyopterandataset withtaxonselection andgeneselection basedoncurrentstudy (14taxa) Maekawaand Parsimony Figure4a,b COII Matsumoto(2000) dataset Kjeretal.,2006 Parsimony Figure4dkandFigure5 COII,16S,18S,28S dictyopterandatasetfor outgroupselection studies(20ingroup taxa)

258 259

Jessica L. Ware BevierFellow, Rutgers,TheStateUniversityofNewJersey, CookCollege,93LipmanDrive,NewBrunswick,NewJersey08901 Phone:7324703543;7329328872 Fax:7329327229

Education:

2001,BachelorofScience,UniversityofBritishColumbia,DepartmentofZoology Focus :InvertebrateZoology;3.67/4.00GPA 2008,DoctorofPhilosophy,RutgersUniversity,DepartmentofEntomology Dissertation :MolecularandMorphologicalSystematicsofLibelluloidea(Odonata:Anisoptera) andDictyoptera.Advisors:MichaelMay,KarlKjer,MarkMcPeekandGeorgeHamilton.

Publications: ( *) Denotes papers coauthored with undergraduates, which was NSF REU funded. Refereed Publications: Baskinger,G., J. Ware ,Cornell,D.,M.May,K.Kjer.Aphylogeneticexplorationof Celithemis (Odonata:Libellulidae):thepennantsofNorthAmerica. Odonatologica .37(2):101109

Ware, J. L. ,Litman,J.,Klass,KD,Spearman,L.Resolvinginternalrelationshipswithinthe Dictyopteraposesnewquestions:difficultyintheplacementof Polyphaga . Systematic Entomology .33:429450 Ware, J. L., Ho,S.,Kjer,K.Divergencedatesoflibelluloiddragonflies(Odonata:Anisoptera) estimatedfromrRNAusingpairedsitesubstitutionmodels. Molecular Phylogenetics and Evolution , 47(1): 42632

Ware, J. L., M.L.May,K.M.Kjer.2007.PhylogenyofthehigherLibelluloidea(Anisoptera: Odonata):anexplorationofthemostspeciosesuperfamilyofdragonflies. Molecular Phylogenetics and Evolution 45(1): 289310 . Janmaat,AlidaF., Ware, Jessica ,Myers,Judy.2007.Effectsofcroptypeon Bacillus thuringiensis toxicityandresidualactivityagainst Trichoplusia ni ingreenhouses. Journal of Applied Entomology 131(5) :333337. KarlM.Kjer,FrankL.Carle,JesseLitmanand Jessica Ware .2006.Amolecularphylogenyof Insecta. Arthropod Systematics and Phylogeny 64(1):3544. Myers,J.H.and Ware, J .2002.Settingprioritiesforthebiologicalcontrolofweeds:Whattodo andhowtodoit.In: Proceedings, Hawaii Biological Control Workshop. Technical Report # 129 .

260

Denslow,J.E.,Hight,S.D.andSmith,C.W.(eds.)Honolulu:PacificcooperativeStudiesUnit, UniversityofHawaii.Pp.6274. In press publications: Nielsen,A., Ware, J. L., Mahar,J.,Hamilton,G. Entomological Society of America Student Biosecurity Debate, PRO Position .AmericanEntomologist.SubmittedFebruary2008. Ware, J. L .,Simaika,J.P.,Samways,M.Biogeographyanddivergenceestimationoftherelic CapedragonflygenusSyncordulia:globalsignificanceandimplicationsforconservation. Journal of Biogeography. SubmittedMay,2008.