Commission on the Limits of the Continental Shelf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period. -
Sea of Japan a Maritime Perspective on Indo-Pacific Security
The Long Littoral Project: Sea of Japan A Maritime Perspective on Indo-Pacific Security Michael A. McDevitt • Dmitry Gorenburg Cleared for Public Release IRP-2013-U-002322-Final February 2013 Strategic Studies is a division of CNA. This directorate conducts analyses of security policy, regional analyses, studies of political-military issues, and strategy and force assessments. CNA Strategic Studies is part of the global community of strategic studies institutes and in fact collaborates with many of them. On the ground experience is a hallmark of our regional work. Our specialists combine in-country experience, language skills, and the use of local primary-source data to produce empirically based work. All of our analysts have advanced degrees, and virtually all have lived and worked abroad. Similarly, our strategists and military/naval operations experts have either active duty experience or have served as field analysts with operating Navy and Marine Corps commands. They are skilled at anticipating the “problem after next” as well as determining measures of effectiveness to assess ongoing initiatives. A particular strength is bringing empirical methods to the evaluation of peace-time engagement and shaping activities. The Strategic Studies Division’s charter is global. In particular, our analysts have proven expertise in the following areas: The full range of Asian security issues The full range of Middle East related security issues, especially Iran and the Arabian Gulf Maritime strategy Insurgency and stabilization Future national security environment and forces European security issues, especially the Mediterranean littoral West Africa, especially the Gulf of Guinea Latin America The world’s most important navies Deterrence, arms control, missile defense and WMD proliferation The Strategic Studies Division is led by Dr. -
5.2 Barents Sea Ecoregion – Fisheries Overview
ICES Fisheries Overviews Barents Sea Ecoregion Published 29 November 2019 5.2 Barents Sea Ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Introduction .................................................................................................................................................................................................. 1 Who is fishing ............................................................................................................................................................................................... 2 Catches over time ......................................................................................................................................................................................... 6 Description of the fisheries........................................................................................................................................................................... 8 Fisheries management ............................................................................................................................................................................... 12 Status of the fishery resources .................................................................................................................................................................. -
Norway in Respect of Areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea Executive Summary
Continental Shelf Submission of Norway in respect of areas in the Arctic Ocean, the Barents Sea and the Norwegian Sea Executive Summary 50˚00’ 85˚00’ 45˚00’ 40˚00’ 35˚00’ Continental shelf 30˚00’ 30˚00’ 200 nautical mile limit of Norway beyond 200 nautical 85˚00’ 25˚00’ 25˚00’ 20˚00’ 20˚00’ miles 15˚00’ 15˚00’ 200 nautical mile limits of other states 10˚00’5˚00’ 0˚00’ 5˚00’10˚00’ Bilateral maritime boundaries between Water depth Norway and other states 0 meter Computed median line between 500 meter Norway and the Russian Federation 1000 meter Western 80˚00’ Nansen Basin Preliminary line connecting continental 1500 meter shelf outer limit points of Norway and the Russian Federation 2000 meter Outer limit of the continental shelf 2500 meter beyond 200 nautical miles 3000 meter 2500 meter isobath 3500 meter 80˚00’ Yermak BARENTS Land boundaries between states 4000 meter Plateau Boundary between 200 nautical mile 4500 meter SEA 75˚00’ zones of Mainland Norway and around Svalbard 5000 meter 5500 meter Land Svalbard Continental shelf outer limit points Norwegian territory 60 nautical mile distance criterion Sediment thickness criterion Land, undifferentiated Knipovich Ridge Loop Greenland Hole Point of the Russian Federation 75˚00’ 70˚00’ GREENLAND SEA Bjørnøya 65˚00’ 70˚00’ Mohns Ridge Jan Mayen 60˚00’ NORWEGIAN 50˚00’ Lofoten Jan Mayen Fracture Zone SEA Basin Iceland SEAVøring Spur Jan Mayen Micro Continent Banana Hole Plateau Banana Hole 65˚00’ 45˚00’ Vøring Russian Federation Norway Plateau Basin 40˚00’ Iceland Finland 35˚00’ 60˚00’ 30˚00’ -
DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations. -
Kamchatka Peninsula and Salmon Research with Pro Plus
YSI Environmental Application Note Kamchatka Peninsula: Where the Waters Run Free and Salmon Thrive In Russia’s Far East lies the 1,250 km (780 mile) Kamchatka The habitat on the Kol is nearly ideal for salmon. The salmon run Peninsula. Situated between the Pacific Ocean and the Sea of includes over seven million fish returning to spawn. The fish fill Okhotsk, Kamchatka is home to Steller’s sea-eagles, brown bears, the river channel so fully that some sections block the view to the World Heritage List volcanoes, and a remarkable amount of Pacific river bottom. The Kol also has the world’s first whole-basin refuge salmon (genus Oncorhynchus) that are being studied, protected, and for the conservation of Pacific salmon - the Kol-Kekhta Regional even filmed for television. Experimental Salmon Reserve. Kamchatka may contain the world’s Research greatest diversity of salmonids including Along the Kol’s north bank is the Kol River chinook, chum, coho, seema, pink and Biostation established for the sole purpose sockeye salmon. Rainbow trout and dolly of serving as a binational research station varden char are also highly abundant. between Russia and the U.S. Researchers Biologists estimate at least 20% of all wild are studying the dynamics of the Kol Pacific salmon originates in Kamchatka. ecosystem and addressing the question of the importance of the salmon to the health The life of a salmon is far from easy as a of the entire river’s ecosystem. fish life goes. Millions of fry, roughly five inches long after a few months of growth, While there is no question to the have to navigate close to a hundred miles All six species of Pacific salmon spawn in the importance of the healthy ecosystem on to the sea. -
Carbon and Oxygen Fluxes in the Barents and Norwegian Seas
Carbon and oxygen fluxes in the Barents and Norwegian Seas: Production, air-sea exchange and budget calculations Caroline Kivimäe Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen August 2007 ISBN 978-82-308-0414-8 Bergen, Norway 2007 Printed by Allkopi Ph: +47 55 54 49 40 ii Abstract This thesis focus on the carbon and oxygen fluxes in the Barents and Norwegian Seas and presents four studies where the main topics are variability of biological production, air-sea exchange and budget calculations. The world ocean is the largest short term reservoir of carbon on Earth, consequently it has the potential to control the atmospheric concentrations of carbon dioxide (CO2) and has already taken up ~50 % of the antropogenically emitted CO2. It is thus important to study carbon related processes in the ocean to understand their changes in the past, present, and future perspectives. The main function of the Arctic Mediterranean, within which the study area lies, in the global carbon cycle is to take up CO2 from the atmosphere and, as part of the northern limb of the global thermohaline circulation, to convey surface water to the ocean interior. A carbon budget is constructed for the Barents Sea to study the carbon fluxes into and out of the area. The budget includes advection, air-sea exchange, river runoff, land sources and sedimentation. The results reviel that ~5.6 Gt C annually is exchanged through the boundaries of the Barents Sea mainly due to advection, and that the carbon sources within the Barents Sea itself are larger than the sinks. -
Description 3A. 3 Sea
2004 WORLD HERITAGE LIST NOMINATION ● JAPAN 3a. 3 Sea ice The nominated site is located on the Shiretoko Peninsula which juts out into the southern part of the Sea of Okhotsk. Due to topographical and geographical conditions, the Sea of Okhotsk is the most southern (lowest latitude) ocean in the world as a seasonal sea ice area. The coastal waters of the Shiretoko Peninsula support a marine ecosystem that is based on the abundant plankton supplied by sea ice. 3a. 3. 1 Formation of sea ice Sea ice forms in the coastal waters of the Shiretoko Peninsula but not along the Sea of Japan or the Pacific Ocean at the same latitude. This is due to three unique conditions affecting the Sea of Okhotsk. The first condition is the double-layered water structure of the Sea of Okhotsk. There is a surface layer and a lower layer with a large difference in salinity. This double-layered structure with different salinity is the primary reason that the Sea of Okhotsk is the southern limit for sea ice. The Amur, which is the longest river in northeastern Eurasia, drains a large volume of freshwater into the Sea of Okhotsk (approx. 37% of the freshwater supply). The freshwater creates a low salinity surface layer (salinity approx. 32.5‰ ) at about 50 meters in depth. This surface layer is unique to the Sea of Okhotsk (Aota and Ishikawa, 1991). Therefore, the salinity of the seawater increases significantly at about 50 to 60 meters below the surface. In addition, salt is discharged from sea ice as it forms and, as a result, the salinity of sea ice becomes far lower than Description seawater. -
The European Union and the Barents Region
The European Union and the Barents Region lt) (W) ........... v - . ww f () I '"../'::!")/-) -) U 'Ll7 n../c- V t./i ::I -, t../d' ~, <-?•'' )/ '1 What is the European Union? Growing from six Members States in 1952 to 15 by The European Commission, headed by 20 Commis 1995, the European Union today embraces more than sioners, is the motor of European integration. It 370 million people, from the Arctic Circle to Portugal , suggests the policies to be developed and also from Ireland to Crete. Though rich in diversity, the implements them. The Commission is the executive Member States share certain common values. By instrument of the European Union. It sees to it that the entering into partnership together, their aim is to Member States adequately apply the decisions taken promote democracy, peace, prosperity and a fairer and situates itself in the middle of the decision-making distribution of wealth. process of the European Union . The Members of the Commission operate with a clear distribution of tasks. After establishing a true frontier-free Europe by For example, Mr Hans van den Broek has overall eliminating the remaining barriers to trade among responsibility for external relations with European themselves, the Member States of t he European Countries and the New Independent States. Union have resolved to respond to the major economic and social challenges of the day - to The European Parliament represents the people of establish a common currency, boost employment and Europe. It examines law proposals and has the final strengthen Europe's role in world affairs. In so doing, word on the budget. -
North Atlantic Water in the Barents Sea Opening, 1997 to 1999
North Atlantic Water in the Barents Sea Opening, 1997 to 1999 Jane O’Dwyer, Yoshie Kasajima & Ole Anders Nøst North Atlantic Water (NAW) is an important source of heat and salt to the Nordic seas and the Arctic Ocean. To measure the transport and vari- ability of one branch of NAW entering the Arctic, a transect across the entrance to the Barents Sea was occupied 13 times between July 1997 and November 1999, and hydrography and currents were measured. There is large variability between the cruises, but the mean currents and the hydrography show that the main inflow takes place in Bjørnøyrenna, with a transport of 1.6 Sv of NAW into the Barents Sea. Combining the flow field with measurements of temperature and salinity, this results in mean heat and salt transports by NAW into the Barents Sea of 3.9×1013 W and 5.7×107 kg s-1, respectively. The NAW core increased in temperature and salinity by 0.7 ºC yr-1 and 0.04 yr-1, respectively, over the observation period. Variations in the transports of heat and salt are, however, domi- nated by the flow field, which did not exhibit a significant change. J. O’Dwyer, Y. Kasajima & O. A. Nøst, Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromsø, Norway. The influence of the flow of warm and saline the Barents and Norwegian seas, and the var- North Atlantic Water (NAW) into the Nordic seas iability of these exchanges. This is the motiva- and the Arctic Ocean has long been recognized tion for the VEINS (Variability of Exchanges in (Helland-Hansen & Nansen 1909; Hansen & Northern Seas) project, which had the objective of Østerhus 2000). -
Holocene Sea-Level Changes and Glacio-Isostasy in the Gulf of Finland,Baltic Sea Arto Miettinen* Department of Geology, P.O
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto ARTICLE IN PRESS Quaternary International 120 (2004) 91–104 Holocene sea-level changes and glacio-isostasy in the Gulf of Finland,Baltic Sea Arto Miettinen* Department of Geology, P.O. Box 64, University of Helsinki, FIN-00014 Helsinki, Finland Abstract Shoreline displacement in the eastern part of the Gulf of Finland during the past 9000 radiocarbon years was reconstructed by studying a total of 10 isolated lake and mire basins located in Virolahti in southeastern Finland and on the Karelian Isthmus,and in Ingermanland in Russia. Study methods were diatom analyses,sediment lithostratigraphical interpretation and radiocarbon dating. In southeastern Finland,the marine (Litorina) transgression maximum occurred ca. 6500–6200 14C yr BP (7400–7100 cal. yr BP). In areas of the slower land uplift rate on the Karelian Isthmus and in Ingermanland,the transgression maximum occurred ca. 6400– 6000 14C yr BP (7300–6800 cal. yr BP). The highest Litorina shoreline is located at ca. 23 m above present sea-level in southeastern Finland,whereas in the eastern part of the Karelian Isthmus,near St. Petersburg,it is located at ca. 8 m above present sea-level. The amplitude of the Litorina transgression in Virolahti area is ca. 4 m,whereas on the Karelian Isthmus and in Ingermanland the amplitude has varied between 5 and 7 m. The regional differences between areas are solely due to different glacio-isostatic land uplift rates. The seven basins studied in this research were connected to the Baltic Sea basin during the Litorina Sea stage and their diatom and lithostratigraphical records indicate a single,smooth Litorina transgression. -
USSR (Pacific Ocean, Sea of Japan, Sea of Okhotsk, and Bering Sea)
2 On February 7, 1984, the Soviet Council of Ministers declared a system of straight baselines for the Soviet east coast, including its coasts facing the Pacific Ocean, Sea of Japan, Sea of Okhotsk, and Bering Sea.1 A translation of this decree follows. 4604 U.S.S.R. Declaration Of the baselines for measuring the breadth of the territorial sea, exclusive economic zone and continental shelf of the U.S.S.R. off the continental coast and islands of the Pacific Ocean, the Sea of Japan, the Sea of Okhotsk and the Bering Sea. A decree of the U.S.S.R. Council of Ministers of February 7, 1984, approved a list of geographic coordinates of points which define the position of straight baselines from which the breadth of the territorial sea, exclusive economic zone and continental shelf of the U.S.S.R. off the continental coast and islands of the Pacific Ocean, the Sea of Japan, the Sea of Okhotsk and the Bering Sea is measured. The list is published below. LIST of geographic coordinates of points that determine the position of the straight baselines from which the breadth of the territorial sea, exclusive economic zone (U.S.S.R. fishing zone) and continental shelf of the U.S.S.R. off the continental coast and islands of the Pacific Ocean, the Sea of Japan, the Sea of Okhotsk and the Bering Sea is measured. A listing of geographic coordinates is then given. This list is provided in Annex 1 to this study. Following the list of coordinates the following concluding sentence appears in the decree: The same decree establishes that the waters of the Penzhinskaya Inlet north of the line connecting the southern islet off Cape Povorotnyy with Cape Dal'niy are, as waters of an historical bay, internal waters.