Measurements of the Intrinsic Quantum Efficiency and Absorption

Total Page:16

File Type:pdf, Size:1020Kb

Measurements of the Intrinsic Quantum Efficiency and Absorption Eur. Phys. J. C (2018) 78:329 https://doi.org/10.1140/epjc/s10052-018-5807-z Regular Article - Experimental Physics Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime Christopher Benson1,2,a, Gabriel Orebi Gann1,2, Victor Gehman2 1 University of California, Berkeley, CA 94720, USA 2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Received: 18 September 2017 / Accepted: 13 April 2018 © The Author(s) 2018 Abstract A key enabling technology for many liquid noble and collecting the ionization signal. The specifics of the scin- gas (LNG) detectors is the use of the common wavelength tillation process in noble gasses means they are almost trans- shifting medium tetraphenyl butadiene (TPB). TPB thin films parent to their own scintillation light. Additionally, the time are used to shift ultraviolet scintillation light into the visible structure of that light is dependent on the incident particle spectrum for detection and event reconstruction. Understand- type, allowing for pulse shape analysis to distinguish nuclear ing the wavelength shifting efficiency and optical properties from electron recoils. of these films are critical aspects in detector performance and Detection of the vacuum ultraviolet (VUV) scintillation modeling and hence in the ultimate physics sensitivity of such light produced by noble gas targets is a critical challenge experiments. This article presents the first measurements of common to this class of detectors. As shown in Fig. 1,the the room-temperature microphysical quantum efficiency for scintillation wavelengths can range from 175 nm for Xenon vacuum-deposited TPB thin films – a result that is indepen- down to near 80 nm for Helium and Neon. Light of these dent of the optics of the TPB or substrate. Also presented wavelengths is strongly absorbed by most materials, includ- are measurements of the absorption length in the vacuum ing those commonly used for optical windows. Many exper- ultraviolet regime, the secondary re-emission efficiency, and iments sidestep the issue of directly detecting VUV light more precise results for the “black-box” efficiency across a though the use of wavelength shifting (WLS) films which broader spectrum of wavelengths than previous results. The absorb the VUV light and re-emit photons, typically in the low-wavelength sensitivity, in particular, would allow con- visible spectrum. The visible photons can then easily be struction of LNG scintillator detectors with lighter elements detected using photomultiplier tubes (PMTs). (Ne, He) to target light mass WIMPs. As experimental programs look toward lower energies, the use of helium and neon as a detecting medium is attractive. The scintillation wavelengths of these noble gases are around 1 Introduction and motivation 80 nm, deep into the VUV.This provides motivation to extend previous measurements of wavelength shifting materials into Noble-gas detectors are becoming important to numerous these extreme VUV regimes. experimental efforts involving: dark matter searches; neu- One commonly used WLS is tetraphenyl butadiene (TPB). trino and other particle detectors; searches for the neutron’s TPB thin films have been widely studied [16–26] and are electric dipole moment; and measurements of the neutron regularly used for many experimental programs [2–9] due lifetime [1–15]. The properties of these elements, particularly to their relatively high efficiency. TPB may also be easily in the liquid phase, are very attractive. They have exception- applied to surfaces using standard techniques, such as vac- ally high scintillation yield (20,000–40,000 photons/MeV), uum deposition in a thermal evaporator. The reemission spec- which results in excellent energy resolution and low thresh- trum of TPB has been measured and its shape well understood old. Their high density makes them more self-shielding than at cryogenic temperatures [22] and room temperature [16]. water or organic liquid scintillators. Tracking detectors can The wavelength shifting efficiency (WLSE) of thin films of be constructed by applying an electric field across the bulk TPB vacuum deposited on an acrylic substrate has been mea- sured, without reference to other materials, in the range of a e-mail: [email protected] 123 329 Page 2 of 19 Eur. Phys. J. C (2018) 78:329 Fig. 1 Scintillation wavelengths for various noble gases, along with the transmission of some commonly used optical windows [16] Fig. 2 A cartoon schematic of the experimental setup for the long wavelength configuration (Sect. 3.1) 120–250 nm [16]. The WLSE as defined in [16] is a “black- 2 Experimental apparatus box” definition of the efficiency that includes both the intrin- sic QE of the TPB as well as certain optical properties of The primary objective of this work is to measure the intrinsic the TPB film and substrate. The resulting quantity is the effi- QE of TPB and the characteristic VUV photon absorption ciency that a photon absorbed by the sample is reemitted length in TPB, and its dependence on incident wavelength. from the sample. This measurement is thus sample depen- Also measured are the room-temperature reemission spec- dent, including effects of scattering and absorption, and can- trum and the black-box WLSE, with its dependence on sam- not be directly applied to other apparatus. ple thickness and incident wavelength. These measurements This article presents the first ever measurement of the are performed by exposing TPB thin film samples to UV intrinsic quantum efficiency (QE) of TPB evaporated thin light of a known wavelength and intensity and measuring the films, defined as the probability that a photon absorbed by a amount and spectrum of light reemitted from fluorescence. TPB molecule is reemitted, and its dependence on incident A cartoon representation of the experimental apparatus wavelength. Also presented are measurements of the absorp- is shown in Fig. 2. The setup consists of a broad spectrum tion length of TPB in the VUV regime and a measurement of UV light source, filters, optical elements, a monochromator, the average efficiency of the secondary reemssion process, a sample mounting assembly and photon detectors. All of referred to as SQE, in the region where the TPB absorp- the apparatus components are installed within a windowless tion and reemission spectra overlap. As part of this work, vacuum chamber and held at vacuum. The setup is designed room temperature measurements of the reemission spectrum to produce and project monochromatic UV light onto thin of TPB as a function of incident wavelength are presented. film WLS samples in a repeatable fashion. A photodiode is The WLSE as defined in [16] is also studied, for the purpose used to separately measure the flux of photons incident on and of a direct comparison to this work. These results cover the reemitted by the samples. A spectrometer is used to measure spectral range studied by [16] with improved precision, while the reemission spectrum of the samples. extending the measurements down to 50 nm. Individual elements used in the experimental apparatus are Section 2 provides an overview of the hardware compo- described in this section. Because this work covers a wide nents of the experimental apparatus. Section 3 describes the range of wavelengths (50–250 nm), several distinct hardware various apparatus configurations used to cover the full wave- configurations are used. Each of these configurations are con- length region of interest (ROI). Section 4 describes the sam- structed from elements described in this section. The distinct ple fabrication. Section 5 describes the data acquisition meth- apparatus configurations are described in Sect. 3. ods. Section 6 contains descriptions of the analysis methods used to calculate the absolute WLS efficiency, the detailed Monte Carlo model used to simulate the setup, and the tech- 2.1 UV light source niques to extract the VUV QE, VUV absorption lengths and SQE. Section 7 presents results. Section 8 provides a compar- This work uses two distinct light sources. Each light source ison of this work to previous studies and discusses the impact is specialized to a subset of the entire 50–250 nm wavelength of various improvements to the measurements. Conclusions ROI. Only one light source may be attached to the setup at a are presented in Sect. 9. time. 123 Eur. Phys. J. C (2018) 78:329 Page 3 of 19 329 2.1.1 Deuterium light source pass optical filters which allow measurements of background levels (Sect. 5.1.4). The McPherson Model 623 light source, referred to as the Deuterium Light Source (DLS), produces light for measure- 2.2.2 Focusing mirror ments in the range of 125–250 nm. The DLS contains a sealed deuterium gas volume which is ionized to produce A McPherson Model 615 focusing elbow sits between the broad spectrum light with a bright UV component. The out- filter wheel and monochromator entrance slit. The focus- + put light passes through a circular 1” diameter MgF2 exit ing elbow contains a curved Al MgF2 focusing mirror window. The MgF2 window has a transmission cutoff wave- which focuses the light passing through the filter wheel onto length of 115 nm which drives the lower limit of emission the monochromator entrance slit. The focus of the mirror is for this source [27]. The DLS is powered using a McPherson adjusted using three set screws and is configured to maximize Model 732 power supply. the light output at the monochromator’s exit for wavelengths in the ROI. 2.1.2 Windowless light source 2.2.3 Monochromator The McPherson Model 629 Hollow Cathode Gas Discharge Source, referred to as the windowless light source, produces A McPherson Model 234/302 VacuumUltraviolet Monochro- light for measurements in the range of 45–150 nm. Unlike the mator is used to output monochromatic light of a selected DLS, the windowless light source does not have a window wavelength from a broad spectrum input.
Recommended publications
  • Trex Measurements of Mineralogical Samples in the Psi Lab from the Vacuum-Uv to Thermal Infrared Wavelengths N.C
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 2842.pdf TREX MEASUREMENTS OF MINERALOGICAL SAMPLES IN THE PSI LAB FROM THE VACUUM-UV TO THERMAL INFRARED WAVELENGTHS N.C. Pearson1 R.N. Clark1, A.R. Hendrix1 and the TREX team. 1Plane- tary Science Institute, Tucson, AZ, 85719 USA , [email protected] Introduction: The Toolbox for Research and Ex- under vacuum. A single axis movable stage has been ploration (TREX) is a NASA SSERVI (Solar System installed that can be cooled using circulated liquid ni- Exploration Research Virtual Institute) node. TREX trogen, or heated with resistor. Two temperature (trex.psi.edu) aims to decrease risk to future missions, probes have been installed so that both ambient tem- specifically to the Moon, the Martian moons, and near- perature of the chamber, and the temperature of the Earth asteroids, by improving mission success and as- sample can be recorded, which when combined with suring the safety of astronauts, their instruments, and pressure sensor readings can used to estimate relative spacecraft. TREX studies will focus on characteristics humidity inside the chamber. Illumination of the sam- of the fine grains that cover the surfaces of these target ple comes from a vacuum-UV-visible spectrum deu- bodies – their spectral characteristics and the potential terium lamp, and a tungsten halogen lamp for the visi- resources (such as H2O) they may harbor. TREX stud- ble and near infrared. The deuterium lamp also acts to ies are organized into four Themes: lab studies [1], simulate the harsh UV exposure airless surfaces are ex- Moon studies [2], small-bodies studies [3], and field posed to in space.
    [Show full text]
  • Solar-Terrestrial Centre of Excellence Activity Report 2009
    STCE Activities Report 2009 Solar-Terrestrial Centre of Excellence Activity Report 2009 Table of Contents PART 1 ........................................................................................................................................... 4 A. Common Public Outreach and Science Communication .................................................. 4 A.1. Objectives .................................................................................................................................... 4 A.2. Progress and results ..................................................................................................................... 4 A.2.1. Internal communication ...................................................................................................... 4 A.2.2. Communication towards external entities ........................................................................... 5 A.2.3. The Sixth European Space Weather Week, ESWW6 ......................................................... 5 A.2.4. Salon du Bourget ................................................................................................................ 6 A.2.5. Open doors .......................................................................................................................... 7 A.2.6. PROBA2 ............................................................................................................................. 8 A.2.7. The Sun is NOT dead .......................................................................................................
    [Show full text]
  • 1M F.L. Soft X-Ray and Extreme UV Monochromator
    248/310 1m f.l. Soft X-ray and Extreme UV Monochromator The 248/310 is a 1000 mm focal length Rowland circle grazing incidence vacuum monochromator. It has 0.02 nm fwhm spectral resolution with 1200 g/mm grating. Its precision slits are micrometer adjustable from 0.005 to 0.5 mm. The 248/310 features a chord-length meter and manually operable wavelength drive for years of accurate and reproducible wavelength positioning. The scan controller provides computer/software control. The high performance instrument provides excellent performance from 1 nanometer up to 300 nm in the UV. Use the 248/310 for XUV, SXR or extreme UV applications. The compact housing is easily adapted to most experiments. We can provide it complete with vacuum pumps, microchannel plates and CCD detectors. 1 to 310nm range | Direct-CCD, scanning slit, MCP configurations | Large assortment of gratings Optical Design Rowland Circle Grazing Incidence Monochromator Angle of Incidence 87 degrees standard, 84 to 88 degrees optionally available Focal Length 1 meter Acceptance 20 mrad Wavelength Range refer to grating of interest for range Grating Size 20 x 25 mm (single, kinematic grating holder) Slits Continuously variable micrometer actuated width 0.01 to 0.5 mm. Settable height. Vacuum High vacuum 10E-6 torr standard, UHV optionally available Focal Plane 40 mm microchannel plate or 25 mm direct detection CCD Ordering Information Part Number: 181-104424 = Model 248/310 Rowland circle grazing incidence monochromator, 1m, 20 mrad, adjustable entrance and exit slits (requires
    [Show full text]
  • 4-Instruments for the Extreme Ultraviolet
    4-instruments for the extreme ultraviolet Four instrument systems developed specifically for analytical and diagnostic spectral metrology of soft x-ray and ultrafast extreme ultraviolet photon sources and laser systems. These spectrometer instruments can make optical measurements from 0.5 to more than 500 nanometers. Working in the UV? McPherson has it covered. McPherson makes spectrometers proven to work at the shortest optical wavelengths. From wavelengths less than one nanometer, up to the visible light range, our analytical and diagnostic instruments fit to your application. They work in high harmonic generation (HHG) laser diagnostics. They work in advanced semiconductor extreme UV metrology and analytics. They work in high temperature soft x-ray plasma physics diagnostics. All are available for ultra high (UHV) or high-vacuum applications. McPherson manufactures numerous spectrometer models and optical designs. Here are those with staying power popular across many spectroscopy disciplines. 1. For measuring low energy deep-UV wavelengths (50-500nm) there is the Model 234/302. It’s a great instrument to transition from ultraviolet to wavelengths as short as 30 nanometers. Works equally well in scanning applications as with direct detection CCD for rapid collection of diagnostic spectra. If you need finer spectral resolution, consider Model 235 or Model 225 for the same wavelength range. 2. Do you need analysis and diagnostics with high energy spectra (1-300nm)? Then the vacuum ultraviolet (VUV) Model 248/310 fits the bill. It works with point detectors or as a scanning monochromator using concave spherical gratings. The slit or detectors scan along the Rowland circle. It works with direct- detection CCD, MCP intensifier, and when integrated with a spectral lamp, makes a tunable light source.
    [Show full text]
  • Thomas Pütterich Investigations on Spectroscopic Diagnostic
    Thomas Pütterich Investigations on Spectroscopic Diagnostic of High-Z Elements in Fusion Plasmas IPP 10/29 April 2006 Abstract Nuclear fusion of deuterium and tritium relies on the accomplishment of plasma temperatures in the range of 20 keV. In magnetic confinement fusion, the heat transport and radiation losses are compensated by plasma heating. This scheme relies on the control of the loss mechanisms and in particular the plasma radiation. Tungsten (W) is the main candidate for the first wall of a reactor due to its robustness against physical sputtering by the plasma ions, however, 4 when W reaches concentrations of 10− in the plasma, it causes unduly large plasma cooling by radiation. This implies restrictive impurity control for W, which needs reliable diagnostic by plasma spectroscopy. A pre-requisite for interpretation of the W-spectra is the availability of atomic data for W. The most intense spectral lines of highly ionized W are emitted in the VUV and soft X-ray range. To perform calculations on atomic data the code packages incorporated in the ADAS project are used. The electronic structure of nearly all W-ions is calculated by the Cowan-code (Hartree-Fock algorithm). In a second step, the cross sections for electron impact excitation are evaluated via the Cowan-code using the plane wave Born-approximation. A detailed collisional-radiative model is employed to calculate the model-spectra for each ion in equilibrium. Finally, ionization and recombination rates of W are evaluated by semi-empirical formulae, which make use of the electronic structure calculations of the Cowan-code.
    [Show full text]
  • VUV Spectrophotometer.Pdf
    Universal VUV Spectrophotometer Universal VUV Spectrophotometer .00005 McPherson presents unique systems to meet the requirements researchers across the world. .00004 McPherson’s Universal VUV Spectrophotometer is a versatile system optimized for Phosphors, but also .00003 Reflectance, Transmission or Fluorescence. .00002 Spectral Emission, Excitation and Luminescence Measurement ~ Optical Characterization .00001 • 120 to 1800nm wavelength range 0 • 5 sample positions 100 200 300 400 500 600 700 • Lifetime / Persistence measurement capability 110 – 750 nm • PMT (optionally cooled) with signal recovery • Tunable monochromatic Excitation Example Excitation/Emission Data: Eu phosphor • Tunable monochromatic Emission - optional CCD Excitation and Emission The excitation source is either a 30W or 150W CW Deuterium lamp with Magnesium Fluoride (MgF2) window. The lamp window seals the instrument vacuum vessel and all emitted wavelengths from about 120nm to 380nm can be used for excitation. The discrete excitation wavelength is selected by an optimized Vacuum UV McPherson Model 234/302 high through put 200mm scanning monochromator. Monochromatic excitation energy is collected and focused to the sample position. Alternate means of excitation are possible by use of accessory ports in the sample chamber, Excimer laser or x-ray sources for example. VUV (120 nm - Visible) Excited Phosphor System Emission spectrum is detected with a with VUV Emission (120 nm – Vis) McPherson Model 218 high resolution 300mm scanning monochromator. It can scan from 105nm to The McPherson VUV Spectrophotometer is far IR spectral region. If emission spectra are always designed for Transmission, Reflection and Emission >200nm, we substitute a Model 2035 high resolution measurements across a broad wavelength range. The scanning spectrometer. The sample emission is system has a usable wavelength range of 115nm to collected and focused to the entrance slit.
    [Show full text]
  • Illumination for Coherent Soft X-Ray Applications: the New X1A Beamline at the NSLS
    395 J. Synchrotron Rad. (2000). 7, 395±404 Illumination for coherent soft X-ray applications: the new X1A beamline at the NSLS B. Winn,a H. Ade,b C. Buckley,c M. Feser,a M. Howells,d S. Hulbert,e C. Jacobsen,a K. Kaznacheyev,a J. Kirz,a* A. Osanna,a J. Maser,a² I. McNulty,f J. Miao,a³ T. Oversluizen,g S. Spector,a§ B. Sullivan,a} Yu. Wang,a²² S. Wiricka and H. Zhangb³³ aDepartment of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3800, USA, bDepartment of Physics, North Carolina State University, Raleigh, NC 27599, USA, cPhysics Department, King's College, London WC2R 2LS, UK, dAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, eNational Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA, fAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA, and gCreative Instrumentation, 412 South Country Road, East Patchogue, NY 11772, USA. E-mail: [email protected] (Received 19 July 2000; accepted 19 September 2000) The X1A soft X-ray undulator beamline at the NSLS has been rebuilt to serve two microscopy stations operating simultaneously. Separate spherical-grating monochromators provide the resolving power required for XANES spectroscopy at the C, N and O absorption edges. The exit slits are ®xed and de®ne the coherent source for the experiments. The optical design and the operational performance are described. Keywords: beamlines; microscopy; coherence; soft X-rays; undulators. 1. Introduction Skrinsky (1977) pointed out that the coherent intensity obtained by collimation from an incoherent source is Coherence in the visible range of the electromagnetic directly proportional to the source brightness, and that spectrum is routinely obtained using lasers.
    [Show full text]
  • Trex Uv-Vis Lab Measurements of Minerals and Mineral-Ice Mixtures
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 3088.pdf TREX UV-VIS LAB MEASUREMENTS OF MINERALS AND MINERAL-ICE MIXTURES. G. M. Holsclaw1 , M. M. Osterloo1, T. Munsat2, and A. R. Hendrix3, 1Laboratory for Atmospheric and Space Physics, Uni- versity of Colorado at Boulder, 1234 Innovation Dr, Boulder, CO 80303, USA ([email protected]), 2Department of Physics, University of Colorado, Boulder, Colorado 80309, USA, 3Planetary Science Institute, Tuc- son, AZ. Introduction: The Toolbox for Research and Ex- tionality (this or N2 purge necessary for measurements ploration (TREX) is a NASA SSERVI (Solar System < 200 nm). A base pressure of 5x10-6 torr was demon- Exploration Research Virtual Institute) node. TREX strated by the vendor, without inclusion of any geolog- (trex.psi.edu) aims to decrease risk to future missions, ic samples. The useable wavelength range is 115-600 specifically to the Moon, the Martian moons, and near- nm. Earth asteroids, by improving mission success and A 30 W deuterium (D2) lamp provides illumination assuring the safety of astronauts, their instruments, and for the spectral range 115-250 nm. Longer wave- spacecraft. TREX studies will focus on characteristics lengths are attained with either a 100 W quartz- of the fine grains that cover the surfaces of these target tungsten-halogen (QTH) lamp or a 150 W xenon arc bodies – their spectral characteristics and the potential lamp; which of these sources to baseline is currently resources (such as H2O) they may harbor. TREX stud- under evaluation. A condenser using a concave mirror ies are organized into four Themes: lab studies [1], images a source to the spectrometer entrance slit.
    [Show full text]
  • 38782 3681 Scientific Equip-Spectrometers
    NEW YORK STATE OFFICE OF GENERAL SERVICES PROCUREMENT SERVICES GROUP 38th Floor - Corning Tower Building Empire State Plaza Albany, New York 12242 http://www.ogs.state.ny.us Contract Award Notification Title : Group 38782 - SCIENTIFIC EQUIPMENT - SPECTROMETERS, SPECTROPHOTO- METERS, RELATED EQUIPMENT AND ACCESSORIES Award Number : 3681-G (Replaces 1470) Contract Period : March 1, 1999 - February 28, 2001 Bid Opening Date : November 6, 1998 Date of Issue : March 22, 1999 Specification Reference : As Incorporated in the Invitation for Bids Address Inquiries To: All State Agencies Non-State Agencies Name : Sue Wolslegel Name : Judy Gibbons Title : Purchasing Officer Title : Purchase Coordinator Phone : 518-473-9441 Phone : 518-474-6717 Fax : 518-474-1563 Fax : 518-474-2437 E-mail : [email protected] E-mail : [email protected] Description This award covers several manufacturers lines of spectrometers, spectrophotometers, related equipment and accessories. Some dedicated instruments using spectrophotometric techniques (eg. CN, Hg, TOC analyzers) are also included. PR # 9525-T (continued) 9525ta.doc/5map/sw GROUP 38782 - Scientific Equipment - Spectrometers, AWARD PAGE 2 Spectrophotometers, Related Equipment and Accessories ________________________________________________________________________ CONTRACT # CONTRACTOR & ADDRESS TELEPHONE # FED.IDENT.# PC54762 AMERSHAM PHARMACIA (800) 526-3593 36-2656030 BIOTECH INC. (732) 457-8000 800 Centennial Ave. Maria Hush Piscataway, NJ 08855 FAX: (800) 329-3593 (732) 457-8310 Web site: www.apbiotech.com PC54763 BECKMAN COULTER, INC. (800) 742-2345 95-1040600 4300 N. Harbor Blvd., E-28-C Gerald Reynolds Fullerton, CA 92834-3100 FAX: (800) 643-4366 PC54764 BRUKER AXS, INC. (800) 234-9729 39-1908020 6300 Enterprise Lane (608) 276-3000 Madison, WI 53719 David Melton (608) 276-3006 PC54765 BRUKER INSTRUMENTS, INC.
    [Show full text]
  • 320-Channel Dual Phase Lock-In Optical Spectrometer
    Cleveland State University EngagedScholarship@CSU Physics Faculty Publications Physics Department 2005 320-Channel Dual Phase Lock-in Optical Spectrometer Petru S. Fodor Cleveland State University, [email protected] S. Rothenberger University of Pittsburgh J. Levy University of Pittsburgh Follow this and additional works at: https://engagedscholarship.csuohio.edu/sciphysics_facpub Part of the Physics Commons How does access to this work benefit ou?y Let us know! Repository Citation Fodor, Petru S.; Rothenberger, S.; and Levy, J., "320-Channel Dual Phase Lock-in Optical Spectrometer" (2005). Physics Faculty Publications. 199. https://engagedscholarship.csuohio.edu/sciphysics_facpub/199 This Article is brought to you for free and open access by the Physics Department at EngagedScholarship@CSU. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of EngagedScholarship@CSU. For more information, please contact [email protected]. 320-channel dual phase lock-in optical spectrometer P. S. Fodor, S. Rothenberger, and J. Jevy Citation: Rev. Sci. Instrum. 76, 013103 (2005); doi: 10.1063/1.1830013 View online: http://dx.doi.org/10.1063/1.1830013 View Table of Contents: http://aip.scitation.org/toc/rsi/76/1 Published by the American Institute of Physics REVIEW OF SCIENTIFIC INSTRUMENTS 76, 013103 (2005) 320-channel dual phase lock-in optical spectrometer P. S. Fodor,a) S. Rothenberger, and J. Jevy Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, Pennsylvania 15260 (Received 6 May 2004; accepted 11 October 2004; published online 20 December 2004) The development of a multiple-channel lock-in optical spectrometer (LIOS) is presented, which enables parallel phase-sensitive detection at the output of an optical spectrometer.
    [Show full text]
  • High Resolution Spectrometer Model
    Model 209 High Resolution Spectrometer SPECIAL FEATURES • Exceptional Spectral Resolution • Patented "Snap-In" gratings • Large focal plane • Imaging Optics • Multiple slit locations • Rugged Construction • Extended wavelength range setting • Double Pass optics (option) • Echelle gratings(option) • Prism predisperser (option) DETAIL SPECIFICATION AND GRATING SELECTION Focal Length 1.33-meter, Czerny Turner design Spectrometer with Patented "Snap-In" gratings Slit Locations Axial and lateral with optional extra entrance and exit port selection mirrors f No. 9.4 (11.6 with smaller grating) Grating Size 120 x 140-mm (or 110 x 110-mm) - Echelle gratings up to 220-mm wide Accuracy 0.05 nm (with 1200-g/mm grating) Reproducibility ±0.005 nm (with 1200-g/mm grating) Focal Plane 50-mm maximum width, multiply dispersion by the width of your detector for range Wavelength Range refer to grating of interest for range, in extended position increase top limit 20% Grating Groove Density (g/mm) 3600 2400 1800 1200 600 300 150 75 Resolution** (nm) 0.004 0.005 0.007 0.01 0.02 0.04 0.08 0.16 Dispersion (nm/mm) 0.21 0.31 0.41 0.62 1.24 2.48 4.96 9.92 Wavelength Range 185 - 185 - 185 - 185 - 185 - 185 nm 185 nm 185 nm 430 nm 650 nm 860 nm 1300 nm 2600 nm 5.2 um 10.4 um 20.8 um Available Grating Holographic* Holographic* Holographic* Holographic* Holographic* Blazes 240 240 400 250 300 300 300 2 um 300 500 300 500 500 500 3 um (* Holographic gratings are 500 750 750 1.25 um 8 um available where noted.) 750 1 um 1 um 2.5 um 10 um 1 um 1.85 um 3 um 4 um 12 um 4 um 6 um 8 um ** Spectral resolution typically measured at 313.1 nm All specifications are for single pass operation.
    [Show full text]
  • Master Catalog
    Spectrometers, Monochromators & Spectrographs Soft X-ray Extreme Ultraviolet Vacuum Ultraviolet Deep UV Ultraviolet Visible Near Infrared Mid-wave Infrared Long-wave Infrared Master Catalog Spectral analysis systems Astrophysics Calibration Atomic Emission in Vacuum UV Cathodoluminescence Microscopy Chemiluminescence Since 1953 Double Spectrometers for Radiometry Fluorescence, Steady State and Dynamic Flow High Throughput Spectrometers Imaging Spectrometers Photoluminescence Phosphorescence Raman, Triple Stage Research Tools Raman, Single Stage Analytical Tools Reflectometry Remote Spectral Sensing Spectral Test Stations Spectrophotometry UV-Visible and Infrared Spectrophotometry Vacuum Ultraviolet Micro Spectroscopy Cathodoluminescence Ultrafast Compensated Path Spectrometers Instruments Made to Measure Light, for a You have choices when it comes to selecting tools to measure Solution oriented systems provide for fluorescence, Raman, light. Our mission is to make your choice simple, to provide luminescence, microscopy, thermonuclear fusion diagnostics, solutions for challenging spectroscopy applications, to deliver astrophysics calibration and more. You are the scientific ex- quality equipment you can rely on, and information to help perts. We hope to influence your work by delivering high make your buying decisions simple. quality, unique and effective instrumentation that improves every result. Application: Raman Spectroscopy What to use: Triple Spectrometer 2035 Subtractive + Model 207 = UV capable, tunable, awesome rejection of scatter and phenomenal f/4.8 aperture. The best light gathering power. (more about our Triple Monochromators on page 11) Application: Vacuum Ultraviolet Spectroscopy What to use: 234/302 Model 234/302 simplifies work from 30-nm to the Visible. It is good all around. Its affordable and works with CCD & scanning detectors. (more about our vacuum spectrometers on page 21) 2 World of Applications.
    [Show full text]