Einselection from Incompatible Decoherence Channels

Total Page:16

File Type:pdf, Size:1020Kb

Einselection from Incompatible Decoherence Channels Einselection from incompatible decoherence channels Alexandre Feller,1, ∗ Guillaume Coeuret Cauquil,1 and Benjamin Roussel1, y 1Advanced Concepts Team, European Space Agency, Noordwijk, 2201 AZ, Netherlands Decoherence of quantum systems from entanglement with an unmonitored environment is to date the most compelling explanation of the emergence of a classical picture from a quantum world. While it is well understood for a single Lindblad operator, the role in the einselection process of a complex system-environment interaction remains to be clarified. In this paper, we analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators modeling decoherence in the number basis and dissipative decoherence in the coherent state basis. We study and solve exactly the problem using quantum trajectories and phase-space techniques. The einselection optimization problem, which we consider to be about finding states minimizing the variation of some entanglement witness at a given energy, is studied numerically. We show that Fock states remain the most robust states to decoherence up to a critical coupling. I. INTRODUCTION herence channels [12{15]. Interesting physical effects are coming from the subtle interplay between those incom- patible channels. For instance, the physics of a quantum The strangeness of the quantum world comes from the magnetic impurity in a magnetic medium can be modeled principle of superposition and entanglement. Explaining as an open quantum system problem in which the envi- the absence of those characteristic features in the classical ronment probes all three Pauli matrices, instead of only world is the key point of the quantum-to-classical tran- one as in the standard spin-boson model [16, 17]. De- sition problem. The fairly recent theoretical and experi- pending on the relative values of the coupling constants, mental progresses have largely reshaped our understand- different classical regimes emerge at low energy with one ing of the emergence of a classical world from quantum channel dominating the others. What's more, for some theory alone. Indeed, decoherence theory [1] has greatly fine tuned cases, the more interesting phenomena of de- clarified how quantum coherence is apparently lost for an coherence frustration occurs [17] where all channels con- observer through the entanglement of the system with a tribute to suppress the loss of coherence of the system at large unmonitored environment. At the same time, this all energy scales. This kind of subtleties in the einselec- interaction with the environment allows to understand tion process have also been studied in circuit QED [18{ the emergence of specific classical pointer states, a pro- 22] where, once again, the emergent classical picture is cess called einselection. strongly dependent on the structure of the environment However, in the case of complex environments, the and the relative strength of its decoherence channels. physics of decoherence can be much more involved. It is then necessary to consider the structure of the envi- Thus, in the case of several incompatible decoherence ronment. A recent approach exploring this path, called channels, the problem of the emergence of a privileged quantum Darwinism [2,3], considers an environment basis is far from trivial. In this paper, we analyze the composed of elementary fragments accessing a partial einselection process of a system in contact with two com- information about the system. While a lot of insights peting decoherence channels inspired by cavity QED ex- were originally model-based [4{8], it has been proved periments. The system a mode of the electromagnetic that some basic assumptions of the quantum Darwinism field confined in a high-quality cavity. The two sources approach, like the existence of a common objective ob- of decoherence, one in the coherent state family and the servable, come directly from the theoretical framework of other in the number basis, comes for the imperfections quantum theory [9{11]. of this cavity and the atoms used to probe the field that arXiv:2001.10851v2 [quant-ph] 9 Apr 2020 Another possible source of complexity comes from the are sent through the cavity. We base our analysis on the possibility that the environment can measure different Lindblad equation to describe the effective open quan- observables of the system. Formally, the effective dynam- tum dynamics. The problem is solved exactly using the ics of the system will be described by many Lindblad op- quantum trajectory, the characteristic function and the erators which may be non commuting. When right eigen- quantum channel approaches allowing to properly char- vectors of a Lindblad operator exist, which correspond to acterize the different parameter regimes. These methods exact pointer states, we say that the operator describes allow to go beyond the formal solution [14, 15] by offering a decoherence channel. Non-commuting Lindblad oper- a clearer physical representation of the dynamics and the ators will give rise to what we call incompatible deco- relevant timescales of the the problem. Still, the einse- lection problem, which is about finding the most robust (approximate) states to the interaction with the environ- ment, has to be solved numerically. We choose those ∗Electronic address: [email protected] states as the pure states that minimize the short-time yElectronic address: [email protected] variation of some entanglement witness (the purity) with 2 the environment at a given fixed energy. Depending on y bk; b the relative values of the coupling constant, we find the (a) k gk intuitive result that the einselected states interpolate be- χ(t) Atom Atom’s EM env (a) tween Fock and coherent states. However, we uncover !eg !k the remarkable fact that Fock states remain exactly the Cavity optimal einselected states up to a critical value of the (c) y g ck; c couplings that can be obtained analytically. Finally, in !c k k the long-term dynamics, the einselection process appears Cavity’s EM env (c) to be much more complicated. !k The paper is structured as follows. In Section II, we present a summary of techniques to derive the reduced FIG. 1: Dynamics of the cavity. The cavity is coupled to dynamics from the full system-environment unitary evo- its own electromagnetic environment and to an atom, itself lution. This section can be skipped if the reader accepts coupled to its own electromagnetic environment. We suppose Eq. (4). The core results are presented in Section III that the two electromagnetic baths are not coupled. Even- where the model is solved exactly. The einselection pro- tually, the coupling of the cavity to its bath leads to photon cess is analyzed in SectionIV and we present numerical losses. The coupling with the atom, in the dispersive regime, evaluation of the Wigner function of the system which leads to decoherence on the photon basis. are used to properly analyze the different einselection regimes. We conclude in SectionV by discussing how our analysis could be generalized and understood from mode on the coherent state basis of the electromagnetic a more abstract perspective through the algebraic struc- field [26], and introduces dissipation. ture of the jump operators. We thus have two natural decoherence channels in this experimental setup, one which selects photon number states and the other coherent states. However, those two basis are incompatible in the sense that they are asso- II. MOTIVATIONS FROM CQED ciated to complementary operators, the phase and num- ber operators. This strong incompatibility between those By managing to entangle a single mode of the electro- classical states motivates the question on which classical magnetic field and an atom, cavity quantum electrody- pictures, if any, emerge from such a constrained dynam- namics (CQED) is a nice experimental setup to explore ics. the foundations of quantum theory, quantum information Before analyzing this problem in details, let's first put and the physics of the quantum to classical transition. the previous discussion on firmer ground by deriving an One implementation of CQED [23] uses an electromag- open quantum system dynamics of the Lindblad form. netic mode trapped in high quality factor mirrors as a We use a Born-Markov approximation of an effective system which is probed by a train of atoms acting as two- Hamiltonian describing a CQED experiment represented level systems (qubits) conveniently prepared. The setup on Fig.1. As a starting point, consider the following can work in different regimes where the qubit is in reso- Hamiltonian: nance or not with the field. The off-resonance functioning mode, also called the dispersive regime, is particularly in- H = HS + HE + HSE ; (1a) teresting since the atoms can be thought as small trans- HS = ~!c N; (1b) parent dielectric medium with respect to the field with 1 X (c) X (a) an index of refraction depending on its state. The atom H = ! σ + ! cy c + ! by b E 2~ eg z ~ k k k ~ k k k is able to register some phase information about the field k k making it a small measurement device. In fact, a train X (a) y + σz · ~g (b + bk) ; (1c) of atoms can be thought as a non-destructive measure- k k k ment device probing the number of photons in the field. X (c) y Focusing our attention on the field itself, the atoms have HSE = ~χ(t) N · σz + a · gk ck + h:c: ; (1d) to be considered as part of the environment of the field k (even if it is well controlled by the experimentalist) giv- with (a; b; c) ladder operators of harmonic oscillators as- ing rise to a decoherence channel having the Fock states sociated to the system and two environments respec- as pointer states [23{25]. Similar experiments can also tively, N = aya the number operator for the system oscil- now be performed on circuit QED platforms [22].
Recommended publications
  • Arxiv:Quant-Ph/0105127V3 19 Jun 2003
    DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
    [Show full text]
  • Einselection Without Pointer States
    Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universit¨atW¨urzburg 2009-12-16 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 1 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity ? equal a priory probabilities Classical Mechanics ? [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics * Quantum Mechanics X [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 quantum mechanical orbitals discrete energy levels coherent superpositions hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 discrete energy levels hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals coherent superpositions C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals discrete energy levels coherent superpositions hopping C.
    [Show full text]
  • A Model-Theoretic Interpretation of Environmentally-Induced
    A model-theoretic interpretation of environmentally-induced superselection Chris Fields 815 East Palace # 14 Santa Fe, NM 87501 USA fi[email protected] November 28, 2018 Abstract The question of what constitutes a “system” is foundational to quantum mea- surement theory. Environmentally-induced superselection or “einselection” has been proposed as an observer-independent mechanism by which apparently classical sys- tems “emerge” from physical interactions between degrees of freedom described com- pletely quantum-mechanically. It is shown here that einselection can only generate classical systems if the “environment” is assumed a priori to be classical; einselection therefore does not provide an observer-independent mechanism by which classicality can emerge from quantum dynamics. Einselection is then reformulated in terms of positive operator-valued measures (POVMs) acting on a global quantum state. It is shown that this re-formulation enables a natural interpretation of apparently-classical systems as virtual machines that requires no assumptions beyond those of classical arXiv:1202.1019v2 [quant-ph] 13 May 2012 computer science. Keywords: Decoherence, Einselection, POVMs, Emergence, Observer, Quantum-to-classical transition 1 Introduction The concept of environmentally-induced superselection or “einselection” was introduced into quantum mechanics by W. Zurek [1, 2] as a solution to the “preferred-basis problem,” 1 the problem of selecting one from among the arbitrarily many possible sets of basis vectors spanning the Hilbert space of a system of interest. Zurek’s solution was brilliantly simple: it transferred the preferred basis problem from the observer to the environment in which the system of interest is embedded, and then solved the problem relative to the environment.
    [Show full text]
  • Decoherence and the Transition from Quantum to Classical—Revisited
    Decoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of start- ing from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the landscape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practic- 86 Los Alamos Science Number 27 2002 ing physicists as well as, beyond physics proper, by material scientists and philosophers.
    [Show full text]
  • Decoherence, Einselection, and the Quantum Origins of the Classical
    REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Decoherence, einselection, and the quantum origins of the classical Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B210, Los Alamos, New Mexico 87545 (Published 22 May 2003) The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ‘‘Schro¨ dinger-cat states.’’ The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between
    [Show full text]
  • 'Einselection' of Pointer Observables
    ‘Einselection’ of Pointer Observables: The New H-Theorem? Ruth E. Kastner † 16 June 2014 to appear in Studies in History and Philosophy of Modern Physics ABSTRACT. In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: ‘molecular chaos.’ The program of ‘Einselection’ (environmentally induced superselection) within Everettian approaches faces a similar ‘Loschmidt’s Paradox’: the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary ‘phase randomness’ to effect einselection of a pointer observable. The theoretically unjustified assumption of distinguishable environmental subsystems is the hidden premise that makes the derivation of einselection circular. In effect, it presupposes the ‘emergent’ structures from the beginning. Thus the problem of basis ambiguity remains unsolved in Everettian interpretations. 1. Introduction The decoherence program was pioneered by Zurek, Joos, and Zeh, 1 and has become a widely accepted approach for accounting for the appearance of stable macroscopic objects. In particular, decoherence has been used as the basis of arguments that sensible, macroscopic ‘pointer observables’ of measuring apparatuses are ‘einselected’ – selected preferentially by the environment. An important application of ‘einselection’ is in Everettian or ‘Many Worlds’ Interpretations (MWI), a class of interpretations that view all ‘branches’ of the quantum state as equally real. MWI abandons the idea of non-unitary collapse and allows only the unitary Schrödinger evolution of the quantum state. It has long been known that MWI suffers from a ‘basis arbitrariness’ problem; i.e., it has no way of explaining why the ‘splitting’ of worlds or of macroscopic objects such as apparatuses and observes occurs with respect to realistic bases that one would expect.
    [Show full text]
  • Decoherence and Einselection in Equilibrium in an Adapted Caldeira Leggett Model
    Decoherence and einselection in equilibrium in an adapted Caldeira Leggett model Andreas Albrecht Center for Quantum Mathematics and Physics (QMAP) and Department of Physics UC Davis Seminar University of Nottingham April 4, 2019 Supported by the US Department of Energy 4/4/19 A. Albrecht Nottingham seminar 1 Outline 1. Motivations 2. Introduction to einselection and the toy model 3. Einselection in equilibrium (technical explorations and overall assessment) 4. Eigenstate Einselection Hypothesis (if there is time) 5. Conclusions 4/4/19 A. Albrecht Nottingham seminar 2 Outline 1. Motivations 2. Introduction to einselection and the toy model 3. Einselection in equilibrium (technical explorations and overall assessment) 4. Eigenstate Einselection Hypothesis (if there is time) With A. Arrasmith 5. Conclusions 4/4/19 A. Albrecht Nottingham seminar 3 Outline 1. Motivations 2. Introduction to einselection and the toy model 3. Einselection in equilibrium (technical explorations and overall assessment) 4. Eigenstate Einselection Hypothesis (if there is time) 5. Conclusions 4/4/19 A. Albrecht Nottingham seminar 4 Comments on the arrow of time in cosmology (at board) 4/4/19 A. Albrecht Nottingham seminar 5 Q: What features of the universe are correlated with classicality? • Arrow of time? • Locality? • Etc. 4/4/19 A. Albrecht Nottingham seminar 6 Q: What features of the universe are correlated with classicality? • Arrow of time? • Locality? • Etc. ➔ Explore the process of einselection in a toy model, relate to AoT, etc. 4/4/19 A. Albrecht Nottingham seminar 7 Q: What features of the universe are correlated with classicality? • Arrow of time? • Locality? • Etc.Related to the emergence of classical ➔ Explore the process of einselection in a toy model, relate to AoT, etc.
    [Show full text]
  • Decoherence: an Explanation of Quantum Measurement
    Decoherence: An Explanation of Quantum Measurement Jason Gross\ast Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139-4307 (Dated: May 5, 2012) The description of the world given by quantum mechanics is at odds with our classical experience. Most of this conflict resides in the concept of \measurement". After explaining the originsof the controversy, and introducing and explaining some of the relevant mathematics behind density matrices and partial trace, I will introduce decoherence as a way of describing classical measurements from an entirely quantum perspective. I will discuss basis ambiguity and the problem of information flow in a system + observer model, and explain how introducing the environment removes this ambiguity via environmentally-induced superselection. I will use a controlled not gate as a toy model of measurement; including a one-bit environment will provide an example of how interaction can pick out a preferred basis, and included an N-bit environment will give a toy model of decoherence. I. INTRODUCTION function over each independent observable. Moreover, the law of superposition, which states that any linear For any physicist who learns classical mechanics before combination of valid quantum states is also valid, gives quantum mechanics, the theory of quantum mechanics at rise to states that do not seem to correspond to any clas- first appears to be a strange and counter-intuitive wayto sical system anyone has experienced. The most famous describe the world. The correspondence between classical example of such a state is that of Schr\"odinger'shypo- experience and quantum theory is not obvious, and has thetical cat, which is in a superposition of being alive been at the core of debates about the interpretation of and being dead.
    [Show full text]
  • Decoherence and the Transition from Quantum to Classical—Revisited
    Decoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual struc- ture. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of starting from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the land- scape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practicing physicists as well as, beyond physics proper, by material scientists and philosophers.
    [Show full text]
  • Quantum Theory of the Classical
    QUANTUM THEORY OF THE CLASSICAL Wojciech Hubert Zurek (to be continued by Mike Zwolak and Jess Ridel) “BEYOND DECOHERENCE” Quantum Jumps (discrete outcomes from unitary evolutions) Quantum Origins of Probability (from entanglement) Quantum Darwinism (the origin of “objective reality”) WHZ, Nature Physics March 2009 Quantum Theory of the Classical PROGRAM: Take the core “quantum” postulates of textbook * quantum theory and investigate whether they can account for the quantum-classical transition. 0. State of a composite system is a vector in the Q tensor product of constituent Hilbert spaces. U C 1. States correspond to vectors in Hilbert space. A R (“Quantum Superposition Principle”) N E 2. Evolutions are unitary (e.g. generated by T D Schroedinger equation). (“Unitarity”) U O 3. Immediate repetition of a measurement } M yields the same outcome. (“Repeatability”) 4. (a) Outcomes are restricted to orthonormal states {|sk>} (eigenstates of the measured observable). (b) One outcome is seen each time. 2 5. Probability of an outcome |sk> given state |ƒ> is pk=|<sk|ƒ>| . (“Born’s Rule”) *Postulates according to Dirac DECOHERENCE, POINTER BASIS, AND EINSELECTION* S E H , σ σ = 0 [ SE i i ] ⎛ ⎞ Interaction α σ ⊗ ε = Φ t EntanglementH i i SE ( ) ΦSE (0) = ψS ⊗ ε0 = ⎜ α i σ i ⎟ ⊗ ε0 SE ∑ i ∑ i ⎝ i ⎠ 2 REDUCED DENSITY MATRIX ρS (t) = TrE ΦSE (t) ΦSE (t) = ∑α i σ i σ i € i EINSELECTION* leads to POINTER STATES Stable states, tend to appear near diagonal€ of ρ t after decoherence time; € S ( ) Pointer states are effectively€ classical! They preserve correlations: they are left unperturbed€ by the “environmental monitoring”.
    [Show full text]
  • Arxiv:2105.14040V1 [Quant-Ph] 28 May 2021 (ACL) Model
    Adapted Caldeira-Leggett Model Andreas Albrecht∗ and Rose Baunachy Center for Quantum Mathematics and Physics and Department of Physics and Astronomy UC Davis, One Shields Ave, Davis CA. Andrew Arrasmithz Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM USA. (Dated: June 1, 2021) We preset a variant of the Caldeira-Leggett (CL) model of a harmonic oscillator coupled to an environment. The CL model is a standard tool for studying the physics of decoherence. Our \adapted Caldeira-Leggett" (ACL) model is built in a finite Hilbert space which makes it suitable for numerical studies. Taking a numerical approach allows us to avoid the limitations of standard approximation schemes used with the CL model. We are able to evolve the ACL model in a fully reversible unitary manner, without the built-in time asymmetry and other assumptions that come with the master equation methods typically used. We have used the ACL model to study new topics in the field of decoherence and einselection where the full unitary evolution is essential to our work. Those results (reported in companion papers) include an examination of the relationship between einselection and the arrow of time, and studies of the very earliest stages of einselection. This paper provides details about the ACL model and our numerical methods. Our numerical approach makes it straightforward to explore and plot any property of the physical system. Thus we believe the examples and illustrations we present here may provide a helpful resource for those wishing to improve their familiarity with standard decoherence results, as well as those looking to probe the underpinnings of our companion papers.
    [Show full text]
  • Decoherence and the Classical Limit of Quantum Mechanics
    Universit´a degli Studi di Genova Dipartimento di Fisica Scuola di Dottorato Ciclo XIV Decoherence and the Classical Limit of Quantum Mechanics Valia Allori December 2001 2 Contents 1 Introduction 7 1.1 What Converges to What? ...................... 8 1.2 The Appeal to Decoherence ..................... 11 1.3 Beyond Standard Quantum Mechanics ............... 12 1.4 Classical Limit as a Scaling Limit .................. 13 1.5 Organization of the Thesis ...................... 15 1.6 Acknowledgments ........................... 16 2 Bohmian Mechanics 17 2.1 What is Quantum Mechanics About? ................ 17 2.2 The State of a System and The Dynamical Laws .......... 19 2.3 Bohmian Mechanics and Newtonian Mechanics ........... 20 2.4 Nonlocality and Hidden Variables .................. 21 2.5 The Quantum Equilibrium Hypothesis ............... 23 2.6 The Collapse of the Wave Function ................. 24 2.7 Bohmian Mechanics and the Quantum Potential .......... 26 3 Classical Limit in Bohmian Mechanics 29 3.1 Motion in an External Potential ................... 30 3.2 Conjecture on Classicality ...................... 32 3.3 Closeness of Laws and Closeness of Trajectories .......... 38 3.4 On the Hamilton-Jacobi Formulation ................ 41 4 Special Families 43 4.1 Quasi Classical Wave Functions ................... 43 3 4 CONTENTS 4.2 Slowly Varying Potentials ...................... 45 4.3 Convergence of Probability Distributions .............. 48 4.4 Propagation of Classical Probability Distributions ......... 49 5 Local Plane Wave Structure 53 5.1 The Notion of Local Plane Wave .................. 53 5.2 Local Plane Waves and the Quantum Potential .......... 56 5.3 The Ehrenfest–Goldstein Argument ................. 57 5.4 Some Remarks on L ......................... 59 5.5 Some Simple Examples of L ..................... 60 5.6 Refinement of the Conjecture ...................
    [Show full text]