Morphogenesis and Phylogenetic Relationships of Clitambonitidines, Ordovician Brachiopods

Total Page:16

File Type:pdf, Size:1020Kb

Morphogenesis and Phylogenetic Relationships of Clitambonitidines, Ordovician Brachiopods DISSERTATIONES GEOLOGICAE UNIVERSITATIS TARTUENSIS 11 MORPHOGENESIS AND PHYLOGENETIC RELATIONSHIPS OF CLITAMBONITIDINES, ORDOVICIAN BRACHIOPODS OLEV VINN TARTU 2001 DISSERTATIONES GEOLOGICAE UNIVERSITATIS TARTUENSIS 11 MORPHOGENESIS AND PHYLOGENETIC RELATIONSHIPS OF CLITAMBONITIDINES, ORDOVICIAN BRACHIOPODS OLEV VINN TARTU UNIVERSITY PRESS Institute of Geology, Faculty of Biology and Geography, University of Tartu, Estonia. The Faculty Council of Biology and Geography, University of Tartu, has on January 19, 2001 accepted this dissertation to be defended for the degree of Doctor of Philosophy (in Geology). Opponent: Prof. Lars Holmer, University of Uppsala, Sweden. The thesis will be defended at the University of Tartu, Estonia, on March 19, 2000. Publication of this dissertation is granted by the Institute of Geology, University of Tartu. © Olev Vinn, 2001 Tartu Ülikooli Kirjastuse trükikoda Tiigi 78, Tartu 50410 Tellimus nr. 80 DISSERTATIONES GEOLOGICAE UNIVERSITATIS TARTUENSIS CONTENTS LIST OF ORIGINAL PUBLICATIONS........................................................ 6 ABSTRACT ..................................................................................................... 7 INTRODUCTION ............................................................................................. 8 CHAPTER 1. GENERA AND DISTRIBUTION.......................................... 10 CHAPTER 2. MORPHOLOGY ..................................................................... 14 CHAPTER 3. CLASSIFICATION ................................................................. 19 CHAPTER 4. PALAEOBIOGEOGRAPHY AND PALAEOECOLOGY ... 30 CHAPTER 5. CONCLUSIONS ...................................................................... 31 ACKNOWLEDGEMENTS.............................................................................. 32 REFERENCES .................................................................................................. 33 SUMMARY IN ESTONIAN: Ordoviitsiumi klitambonitiidsete käsijalgsete morfogenees ja fülogeneetilised seosed..................................................... 36 PUBLICATIONS............................................................................................... 37 1 LIST OF ORIGINAL PUBLICATIONS The present thesis is based on the following original papers which are referred to by their Roman numerals: I Vinn, O. and Rubel, M. 2000. The spondylium and related structures in the clitambonitidine brachiopods. Journal of Paleontology 74 (3), pp. 439^443. II Vinn, O. and Spjeldnaes, N. 2000. Clitambonitidine Brachiopods from the Middle and Upper Ordovician of the Oslo Region, Norway. Norsk Geo- logisk Tidsskrift, 80, pp. 275-288. III Popov, L., Vinn, O., Nikitina, O. (in press). Brachiopods of the redefined family Tritoechiidae from the Ordovician of Kazakhstan and South Urals. Geobios. IV Vinn, O. (in press). The occurrence of new subspecies of the clitambo­ nitidine brachiopod Estlandia catellatus (Öpik) in the Middle Ordovician of Osmussaar Island, Estonia. TA Toimetised, Geoloogia. ABSTRACT Clitambonitidine brachiopods have been studied since the 19th century. They constitute a peculiar group of brachiopods, often endemic to the Baltic, and limited to the Ordovician. According to the latest classification in the Treatise, clitambonitidines embrace 32 valid genera and one new Korinevskia gen.n. The study of juvenile shells of clitambonitidines resulted in the discovery of growth patterns of their ventral muscle attachment structure (spondylium). Spondylium evolved not by convergence of dental plates as previously believed, but is de­ rived from free spondylium, which lack the supporting median septum charac­ teristic for protorthids. Spondylium bearing (without dental plates) clitamboni­ tidines dorsal articulation structures resembles also those of Middle Cambrian arctohedrids (portorthid brachiopods). The Clitambonitidina is not mono- phyletic: Clitambonitoidea and Polytoechoidea are derived distantly related ancestors. 7 INTRODUCTION Clitambonitidines form a distinctive group of brachiopods limited to rocks of Ordovician age. Although widely distributed in the shallow seas of the time, clitambonitidines are particularly associated with the Baltic fauna of Estonia and western Russia (Ingria), which are key areas for the study of these brachiopods (Rubel and Wright 2000). The globally widespread clitambonitid brachiopods have been recognised for a long time, first described in the Baltic in the 19th century. Conceptions of the taxonomic content and evolutionary ideas of this group have changed through­ out more than a hundred years of research. Thus, Baltic clitambonitids were described as endemic brachiopods to this region. However, claims have been made that similar Ordovician brachiopods are related to Baltic clitambonitids. Several stocks have been included and excluded from the clitambonitids, so there has been no generally accepted concept of what constitutes a clitambo­ nitid. In his basic monograph “Über Klitamboniten,” Öpik (1934) established the systematics and basic concept of clitambonitid morphology. According to the Opik’s vision, the clitambonitidines in addition to the Baltic representatives, Estlandiidae, Kullervoidea, Clitambonitiidae sensu Öpik (1934) also include the following non-Baltic, somewhat different Polytoechiidae, Finkelnburgiidae and Skenidiidae. Interestingly, the presence of a raised spondylium triplex-like ventral muscle field in Polytoechia led Öpik to include this genus in the family Estlandiidae (see Öpik 1934, p. 76). The next wholesale revision of the clitambonitidines was by Williams (1965), in which three types of spondylium were introduced, and groups with some orthid features (finkelnburgiids and skenidioids) were excluded. Recently, Wright and Rubel (1996) revised the morphology of clitambo­ nitids to reflect the relationships between themselves as well as with other early •barchiopods. However, in a subsequent classification, Rubel and Wright (2000), proposed only two clades, Polytoechioidea and Clitambonitoidea, the latter with two families, Clitambonitidae and Gonambonitidae, leaving open the use of other structures as well as their phylogenetic analysis with recent tools. The task of this research was to describe clitambonitidine morphological diversity by encompassing all morphological features in all genera, and to study the critical yet poorly understood ontogeny of the shell using available and new collections, especially those of the earliest representatives, in order to clarify phylogenetic relationships between the clitambonitidines themselves and their possible ancestors. The revision of the morphological structures was based on rich and excep­ tionally well-preserved collections of Baltic clitambonitoids and related brachiopods which allowed re-evaluation of the understanding of some struc­ tures (spondylium, delthyrial covers, shell material, cardinalia, vascular marks) including their ontogeny on direct observations of neanic specimens, serial sectioning and SEM microscopy. The main collections on the Clitambonitoidea studied include those of the Baltic and Ingermanland Ordovician housed in the geological museum of The University of Tartu, Geological Institute of Tallinn Technical University, State University of Petersburg, The Natural Museum of London, and The Museum of Natural History in Stockholm. The following were described from new collections: Middle Ordovician clitambonitoids from Norway (Vinn and Spjeldnaes 2000 — PAPER П), Ordovician polytoechioids from Kazakhstan and the southern Urals (Popov et al. in press — PAPER Ш), as well as one Middle Ordovician species from Estonia (Vinn in press — PAPER IV). 3 9 CHAPTER 1. THE GENERA AND DISTRIBUTION Williams (1965) recorded 31 generic names that had been ascribed to clitambo­ nitidines, of which 23 were considered to be valid. According to the data set of Rex Doescher, recently modified by Thomas Dutro and Maurice Grolier, Smithsonian Institution, Washington D. C., 43 generic names are currently ascribed to the Clitambonitidina. Of these the genus Eosotrematorthis Wang (1955, p. 336, type species E. sinensis) was transferred to the suborder Orthidina soon after its description (see Williams, 1965). Similarly, the genus D jin d ella Menakova (1991, p. 26, type species D. p la n a ) with its bifurcated cardinal process and pseudopunctate shell substance is associated more appro­ priately with strophomenid brachiopods. The systematic position of the genus Anomalorthis Ulrich and Cooper (1936, p. 622, type species A. utahensis) may be the most controversial, and its relationship with other clitambonitidines, especially genera Progonambonites and Oslogonites (see Williams 1965, p. H355), has not been confirmed by analysis of overall similarity and phyloge­ netic relationships. According to its orthid cardinalia, exceptionally fine radial costellation and fibrous shell substance with atypical pseudopunctae, the affinities of this genus are more likely to lie with the orthidines rather than the clitambonitidines (see Cooper 1956, p. 391; Wright and Rubel 1996). There are four objective and four subjective synonyms among the remaining 40 generic names. The generic rank and content of species of the genus H em i- p ro n ite s Pander, 1830 have been changed from that of Schuchert and Cooper (1932) to the concepts of Öpik (1934) and Williams (1965). The well-preserved deltidial covers in some specimens of the genus Progonambonites Öpik 1934 suggests it is congeneric with the genus Gonambonites Pander 1830
Recommended publications
  • Smithsonian Miscellaneous Collections Volume 149, Number 7
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 149, NUMBER 7 Cfjarlefii IB. anb jMatp "^aux aHalcott 3Re2(earcl) Jfunb SILICIFIED ORDOVICIAN BRACHIOPODS FROM EAST-CENTRAL ALASKA (With 3 Plates) By REUBEN JAMES ROSS, JR. and J. THOMAS DUTRO, JR. U. S. Geological Survey Denver, Colorado, and Washington, D. C. (Publication 4654) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MARCH 4, 1966 LIBRARY OF THE AHEftlCAN MUSELfM Of SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 149, NUMBER 7 CJarleg JB. anb iWarj> Vmx OTaUott Ees^earcfi jFunb SILICIFIED ORDOVICIAN BRACHIOPODS FROM EAST-CENTRAL ALASKA (With 3 Plates) By REUBEN JAMES ROSS, JR. and J. THOMAS DUTRO, JR. U. S. Geological Survey Denver, Colorado, and Washington, D. C. (Publication 4654) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MARCH 4, 1966 PORT CITY PRESS, INC. BALTIMORE, MD., U. S. A. CONTENTS Page Abstract 1 Introduction 1 Correlation 3 Taxonomic Descriptions 5 Literature Cited 19 Explanation of Plates 21 Cfjarlesf 29. anb iWarp ^aux OTalcott 3^efi!eartf) jFunb SILICIFIED ORDOVICIAN BRACHIOPODS FROM EAST-CENTRAL ALASKA^ By REUBEN JAMES ROSS, JR. and J. THOMAS DUTRO, JR U.S. Geological Survey, Denver, Colo., Washington, D. C. ABSTRACT Silicified brachiopods from the Tatonduk River area, central east- ern Alaska along the Canadian border, are possibly of late Middle or early Late Ordovician age. The assemblage closely resembles one described by Schuchert and Cooper (1930) and Cooper and Kindle (1936) from Perce, Quebec, Canada. Many elements are also pres- ent in the classical Caradoc section of Girvan, Scotland. Species of Dicoelosia, Ptychopleurella, Cyclospira, Ptychoglyptus, Diambania, and Christiania are very like those from Quebec.
    [Show full text]
  • Fission-Track Dating of Lower Paleozoic Volcanic Ashes in British Stratotypes
    (aoo) UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Fission-track dating of Lower Paleozoic volcanic ashes in British stratotypes By R . J . R o s s i J r . i C . W . N a e s e P / and G. A. Izett, U.S. Geological Survey Ass i s t od by_ Professor H . B . winttington/ Chairman/ D e p t . of Geology/ Cambridge University C. P. Hughes/ R. B. Rickards/ Jan Zalasievnczf P. R. Sheldon/ a n d C . J . J e n k i n s i Cambridge University L . R . H . Cocks. British Museum (Natural History) London M. G. Bassett. National Museum of Wales* Cardiff Peter T o g h i I I , University of Birmingham/ Church Stretton W . T . Dean/ Geological Survey of Canada/ Ottawa J . K . I n g h a m i H u n t e r i a n \-\ u s e u m » Glasgow Open-file repo.rt 1977 This report is preliminary and has not boon edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. INTRODUCTION » In order to establish a radiometric geochronoLogy based on Lower Paleozoic British stratotypes* 41 collections of bentonites and other volcanically derived rocks were collected in five main areas of Ordovician and Silurian outcrops in Wales* England* and Scotland in September 1976. These are the areas studied by Sedgwick* Murchison* and Lapworth in establishing the Lower Paleozoic Systems on which our modern work is based. Although only 12 of the 41 samples collected have been analyzed* they have provided minimum ages for the lower Arenig* lowest L I a n d e i I o * and upper Caradoc Series of the Ordovician System* and for the lower Wenlock* uppermost Wenlock/ and middle Ludlow Series of the Silurian System.
    [Show full text]
  • South and North Barents Triassic-Jurassic Total Petroleum System of the Russian Offshore Arctic
    U. S. Department of the Interior U. S. Geological Survey South and North Barents Triassic-Jurassic Total Petroleum System of the Russian Offshore Arctic On-Line Edition by Sandra J. Lindquist1 Open-File Report 99-50-N This report is preliminary and has not been reviewed for conformity with the U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1999 1 Consulting Geologist, Contractor to U. S. Geological Survey, Denver, Colorado Page 1 of 22 South and North Barents Triassic-Jurassic Total Petroleum System of the Russian Offshore Arctic2 Sandra J. Lindquist, Consulting Geologist Contractor to the U.S. Geological Survey, Denver, CO October, 1999 FOREWORD This report was prepared as part of the World Energy Project of the U.S. Geological Survey. In the project, the world was divided into 8 regions and 937 geologic provinces. The provinces have been ranked according to the discovered oil and gas volumes within each (Klett and others, 1997). Then, 76 "priority" provinces (exclusive of the U.S. and chosen for their high ranking) and 26 "boutique" provinces (exclusive of the U.S. and chosen for their anticipated petroleum richness or special regional economic importance) were selected for appraisal of oil and gas resources. The petroleum geology of these priority and boutique provinces is described in this series of reports. A detailed report containing the assessment results will be available separately, if such results are not reported herein. The priority South Barents Basin Province ranks 35th in the world, exclusive of the U.S.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Treatise on Invertebrate Paleontology
    PART H, Revised BRACHIOPODA VOLUMES 2 & 3: Linguliformea, Craniiformea, and Rhynchonelliformea (part) ALWYN WILLIAMS, S. J. CARLSON, C. H. C. BRUNTON, L. E. HOLMER, L. E. POPOV, MICHAL MERGL, J. R. LAURIE, M. G. BASSETT, L. R. M. COCKS, RONG JIA-YU, S. S. LAZAREV, R. E. GRANT, P. R. RACHEBOEUF, JIN YU-GAN, B. R. WARDLAW, D. A. T. HARPER, A. D. WRIGHT, and MADIS RUBEL CONTENTS INFORMATION ON TREATISE VOLUMES ...................................................................................... x EDITORIAL PREFACE .............................................................................................................. xi STRATIGRAPHIC DIVISIONS .................................................................................................. xxiv COORDINATING AUTHOR'S PREFACE (Alwyn Williams) ........................................................ xxv BRACHIOPOD CLASSIFICATION (Alwyn Williams, Sandra J. Carlson, and C. Howard C. Brunton) .................................. 1 Historical Review .............................................................................................................. 1 Basis for Classification ....................................................................................................... 5 Methods.......................................................................................................................... 5 Genealogies ....................................................................................................................... 6 Recent Brachiopods .......................................................................................................
    [Show full text]
  • The Viruan (Middle Ordovician) of Öland
    The Viruan (Middle Ordovician) of Öland By Valdar Jaanusson ABSTRACT.-The stratigraphy and lithology of the Viruan (Middle Ordovician) Iimestones of the bed-rock of Öland are described based on three bares and on field work in the outcrop area. A combined litho- and bio-stratigraphic classification (termed topo-stratigraphic) is introduced for the described sequence. The names of the Estonian stages (Aserian, Lasnamägian, Uhakuan, and Kukrusean) are used as chrono-stratigraphic references instead of the previous Swedish names of the units of stage category (Platyurus, Schroeteri, Crassicauda, and Ludibundus, re­ spectivcly). New topo-stratigraphic divisions are Segerstad Limestone (of Aserian age), Skärlöv, Seby, and Folkeslunda Limestones (of Lasnamägian age), Furudal, Källa, and Persnäs Lime­ stones (of Uhakuan age), and Dalby Limestone (of Kukrusean age in the bed-rock of Öland). The Aserian Lasnamägian topo-stratigraphic divisions have the same lithological characteris­ and tics throughout Öland. The Uhakuan beds are developed as calcilutites (Furudal Limestone) on southern Öland continuing as a tongue (Källa Limestone) on northern Öland. The middle and upper part of the Uhakuan beds of northern Öland consist of calcarenites (Persnäs Limestone) lithologically indistiguishable from the Kukrusean Dalby Limestone which forms the bed-rock only on northern Öland. Within the Segerstad Limestone two zones are distinguished (z. of Angelinoceras latum and z. of Illaenus planifrons).H ouvr ' s zones of Lituites discors, L. lituus, and L. perfectus are of Lasna­ mägian age, and their stratigraphic position and fauna! characteristics are described. Contents Introduction . 207 Methods .............. 209 Classification of the Viruan rocks of Öland 2I2 Historical survey . 2I9 Taxonornie and nomenclatural notes 22I Viruan rocks of northern Öland .
    [Show full text]
  • Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, South-West Libya
    This is a repository copy of Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/125997/ Version: Accepted Version Article: Abuhmida, F.H. and Wellman, C.H. (2017) Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, south-west Libya. Palynology, 41. pp. 31-56. ISSN 0191-6122 https://doi.org/10.1080/01916122.2017.1356393 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Palynology of the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya Faisal H. Abuhmidaa*, Charles H. Wellmanb aLibyan Petroleum Institute, Tripoli, Libya P.O. Box 6431, bUniversity of Sheffield, Department of Animal and Plant Sciences, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK Twenty nine core and seven cuttings samples were collected from two boreholes penetrating the Middle Ordovician Hawaz Formation in the Murzuq Basin, southwest Libya.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • Diversity and Biostratigraphic Utility of Ordovician Brachiopods in the East Baltic.', Estonian Journal of Earth Sciences., 67 (3)
    Durham Research Online Deposited in DRO: 11 June 2018 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hints, L. and Harper, D.A.T. and Pa§skevi§cius,J. (2018) 'Diversity and biostratigraphic utility of Ordovician brachiopods in the East Baltic.', Estonian journal of earth sciences., 67 (3). pp. 176-191. Further information on publisher's website: https://doi.org/10.3176/earth.2018.14 Publisher's copyright statement: c 2018 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International Licence (http://creativecommons.org/licenses/by/4.0). Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 http://dro.dur.ac.uk Estonian Journal of Earth Sciences, 2018, 67, 3, 176–191 https://doi.org/10.3176/earth.2018.14 Diversity and biostratigraphic utility of Ordovician brachiopods in the East Baltic Linda Hintsa, David A.
    [Show full text]
  • Single-Zircon Pb-Evaporation and 40Ar/39Ar Dating of the Metamorphic and Granitic Rocks in North-West Spitsbergen
    Single-zircon Pb-evaporation and 40Ar/39Ar dating of the metamorphic and granitic rocks in north-west Spitsbergen Yoshihide Ohta, Alexander N. Larionov, Alexander M. Tebenkov, Claude Lepvrier, Henri Maluski, Michael Lange & Barbara Hellebrandt North-west Spitsbergen consists of a complex of Caledonian and Gren- villian crystalline rocks, situated at the north-west corner of the Barents Shelf. The aim of this study is to understand the extent of pre-Caledonian basement rocks and their protoliths. Micas and zircon grains from six rocks from north-west Spitsbergen have been dated by the 40Ar/39Ar and single-zircon Pb-evaporation methods. Two grey granites yielded Late Caledonian mica 40Ar/39Ar and zircon ages of ca. 420 - 430 My, with inherited zircon grains as old as 1725 My. Zircon grains from a gneissose granite xenolith in a grey granites gave crystallization ages of ca. 960 My; some grains from a migmatite neosome show similar ages. Zircon grains yielding Archean and late Palaeoproterozoic ages (1600 - 1800 My) are interpreted as xenocrysts of detrital origin. The youngest ages obtained from detrital zircon grains from a greenschist facies quartzite of the Signehamna unit are ca. 1800 My. Similar schists are included as xenoliths in the 960 My old gneissose granite; therefore, the sedimentary protoliths of the unit are Mesoproterozoic. The dating results suggest a significant tectonothermal event during Grenvillian time; subsequent Caledonian events had less extensive thermal effects. However, it is still a matter of debate whether Grenvillian or Caledonian metamorphism produced the majority of the migmatites. A large population of zircon grains with Late Palaeoproterozoic ages suggests a wide surface exposure of rocks of this age in the source area, with some Archean zircons.
    [Show full text]
  • Clitambonitoid Brachiopods from the Middle and Upper Ordovician of the Oslo Region, Norway
    Clitambonitoid brachiopods from the Middle and Upper Ordovician of the Oslo Region, Norway OLEV VINN & NILS SPJELDNÆS Vinn, O. & Spjeldnæs, N. Clitambonitoid brachiopodsfrom the Middle and Upper Ordovician of the Oslo Region, Norway. Norsk Geologisk Tidsskrift, Vol. 80, pp. 275-288. Oslo 2000. ISSN 0029-196X. Nine species of clitambonitoid brachiopods have been described from the Middle and Upper Ordovician of the Oslo Region, Norway. They include, Hemipronites? sp., Clitambonites schmidti, Clinambon anomalus, llmarinia dimorpha, Vellamo oandoensis, Kullervo hibernica, Kullervo aff. parva, Kullervo aff. punctata and Kullarvo cf. lacunata. The palaeobiogeography and palaeoecology of the Upper Ordovician clitambonitoid brachiopods are discussed. The species found in the northem and western parts of the Oslo Region are mostly related to those of the Balti c carbonate platform, despite surprisingly large differences in lithology. The foreland basin (the Oslo-Scania confacies belt of Jaanusson & Bergstrøm, 1980) has a different fauna, dorninated by pandernic species of Kullervo. Thisgenus is supposed to have developed in parallel in Avalonia (pandernic species and the North American species) and Baltica (all endernic species to Baltica), from an early kullervo of either Baltic or Avalonian origin. The rapid spread of the genus in the North Atlantic area is linked -in time - to the large bentonite in the Middle Caradocian. Olev Vinn, Institute of Geology, University of Tartu, Vanemuise 46, 50090 Tartu, Estonia (e-mail: [email protected]); Nils Spjeldnæs, Department of Geology, University of Oslo, P.O. Box 1047, Blindern, N-0316 Oslo, Norway (e-mail: [email protected]) Introduction distribution within the Baltica and beyond. The term Middle Ordovician is used here for the interval from the base of Tripodus laevis conodont Biozone to the top of The Lower Ordovician clitambonitoids of the Oslo Region Nemagraptus gracilis graptolite Biozone, or in terms of (Fig.
    [Show full text]
  • Internal and External Relationships of the Ordovician Roberts Arm Group in Part of the Springdale (Nts 12H/8) Map Area, West–Central Newfoundland
    Current Research (2003) Newfoundland Department of Mines and Energy Geological Survey, Report 03-1, pages 73-91 INTERNAL AND EXTERNAL RELATIONSHIPS OF THE ORDOVICIAN ROBERTS ARM GROUP IN PART OF THE SPRINGDALE (NTS 12H/8) MAP AREA, WEST–CENTRAL NEWFOUNDLAND B.H. O’Brien Regional Geology Section ABSTRACT In the Loon Pond–Rocky Pond area southeast of Halls Bay, the Ordovician Roberts Arm Group is tectonically attenuat- ed. There, it occurs in the regional hanging-wall sequence of a southeast-directed, folded, imbricate fault system that forms part of the Red Indian Line structural zone. Volcanic rocks assigned to Unit 4 and Unit 6 form the bulk of two, regionally extensive, non-contiguous, fault-bounded lithostratigraphic panels. They may represent different tectonic levels of the original Roberts Arm Group. However, only the northeastern tract (Unit 4) is known to be in direct contact with the Crescent tholeiite belt and, therefore, only it is thought to underlie the younger sedimentary rocks of the Crescent Lake Formation. The tectonomagmatic evolution of the Early Ordovician Hall Hill complex, west of the Mansfield Cove Fault, mostly pre- dates that of the Roberts Arm Group. By comparison, the Early and Middle Ordovician Sops Head Complex records coeval and younger intervals of deposition than those documented in the Roberts Arm Group. Immediately east of the Tommys Arm Fault, the unbroken formations of the Sops Head Complex show a more complex metamorphic and plutonic history than seen in most of the Roberts Arm Group. This suggests that the Hall Hill complex and the Roberts Arm Group adjacent to the Sil- urian Springdale Group had a different orogenic development from the Roberts Arm Group adjacent to the Sops Head Com- plex.
    [Show full text]