Genome Evolution in Burkholderia Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
USDA/APHIS Environmental Assessment
Finding of No Significant Impact and Decision Notice Animal and Plant Health Inspection Service Issuance of Permit to Release Genetically-Engineered Burkholderia glumae The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) has received a permit application (APHIS number 06-111-01r) from Dr. Martin Rush at the Louisiana State University to conduct a field trial using strains of the bacterium Burkholderia glumae. Permit application 06-111-01r describes four Burkholderia glumae strains: Two wild-type strains endemic to the United States, one of which causes panicle blight on rice and the other naturally non-pathogenic, and two genetically engineered, non-pathogenic strains that share the same avirulent phenotype. A description of the field tests may be found in the attached Environmental Assessment (EA), which was prepared pursuant to APHIS regulations (7 CFR part 372) promulgated under the National Environmental Policy Act. The field tests are scheduled to begin in August 2007 in East Baton Rouge Parish, Louisiana. An EA was prepared and submitted for public comment for 30 days. One comment that raised 5 issues was received and the issues are addressed in an attachment to this document. APHIS proposed three different actions to take in response to the permit application: • the denial of the permit (Alternative A) • the granting of the permit with no Supplemental Permit Conditions (Alternative B) • the granting of the permit with Supplemental Permit Conditions containing duplicative safety measures and reporting requirements (Alternative C) APHIS chose Alternative C as its Preferred Alternative. Based upon analysis described in the EA, APHIS has determined that the action proposed in Alternative C will not have a significant impact on the quality of the human environment because: 1. -
Select Agents Fact Sheet
SELECT AGENTS FACT SHEET s e ion ecie s n t n p is ms n e e s tio s g s m to a a o u t Rang s p t tme to e th n s n m c a s a ra y a re ho Di P Ge Ho T S Incub F T P Bacteria Bacillus anthracis Humans, cattle, sheep, Direct contact with infected Cutaneous anthrax - skin lesion 2-5 days Fatality rate of 5-20% if Antibiotics: goats, horses, pigs animal tissue, skin, wool developing into a depressed eschar (5- untreated penicillin,ciprofloxacin, hides or their products. 20% case fatality); Inhalation - doxycycline, Inhalation of spores in soil or respiratory distress, fever and shock tetracylines,erythromyci Anthrax hides and wool. Ingestion of with death; Intestinal - abdominal n,chloram-phenicol, contaminated meat. distress followed by fever and neomycin, ampicillin. septicemia Bacteria Brucella (B. Humans, swine, cattle, Skin or mucous membrane High and protracted (extended) fever. 1-15 weeks Most commonly reported Antibiotic combination: melitensis, B. goats, sheep, dogs contact with infected animals, Infection affects bone, heart, laboratory-associated streptomycin, abortus ) their blood, tissue, and other gallbladder, kidney, spleen, and causes bacterial infection in tetracycline, and Brucellosis* body fluids. highly disseminated lesions and man. sulfonamides. abscess Bacteria Yersinia pestis Human; greater than Bite of infected fleas carried Lymphadenitis in nodes with drainage 2-6 days Untreated pneumonic Streptomycin, 200 mammalian species on rodents; airborne droplets from site of flea bite, in lymph nodes and and septicemic plague tetracycline, from humans or pets with inguinal areas, fever, 50% case fatality are fatal; Fleas may chloramphenicol (for plague pneumonia; person-to- untreated; septicemic plague with remain infective for cases of plague Bubonic Plague person transmission by fleas dissemination by blood to meninges; months meningitis), kanamycin secondary pneumonic plague Bacteria Burkholderia mallei Equines, especially Direct contact with nasal 1. -
Insights Into the Pathogenicity of Burkholderia Pseudomallei
REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice. -
Analysis of Sequence Variation at Two Helicobacter Pylori Genetic Loci Potentially Involved in Virulence
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence George Warren Liechti College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Microbiology Commons, and the Molecular Biology Commons Recommended Citation Liechti, George Warren, "Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626867. https://dx.doi.org/doi:10.21220/s2-zrbg-b193 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Analysis of sequence variation atHelicobacter two pylori genetic loci potentially involved in virulence. George Warren Liechti Springfield, Virginia Bachelors of Science, College of William and Mary, 2003 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Biology The College of William and Mary May, 2008 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science George Warren Liechti Approved by^the Cq , April, 2008 Committee Chair Associate Professor Mark Forsyth, Biology, The College of William and Mary r Professor Margaret Saha, Biology, The College of William and Mary Associate Professor George Gilchrist, Biology, The College of William and Mary / J / ABSTRACT PAGE Helicobacter pylori colonizes the gastric mucosa of nearly half the world’s population and is a well documented etiologic agent of peptic ulcer disease (PUD) and a significant risk factor for the development of gastric cancer. -
Broad-Spectrum Antimicrobial Activity by Burkholderia Cenocepacia Tatl-371, a Strain Isolated from the Tomato Rhizosphere
RESEARCH ARTICLE Rojas-Rojas et al., Microbiology DOI 10.1099/mic.0.000675 Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Fernando Uriel Rojas-Rojas,1 Anuar Salazar-Gómez,1 María Elena Vargas-Díaz,1 María Soledad Vasquez-Murrieta, 1 Ann M. Hirsch,2,3 Rene De Mot,4 Maarten G. K. Ghequire,4 J. Antonio Ibarra1,* and Paulina Estrada-de los Santos1,* Abstract The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain- specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected. -
Dissertation Investigation of Innate Immunity, Mucosal
DISSERTATION INVESTIGATION OF INNATE IMMUNITY, MUCOSAL THERAPEUTICS AND PATHOGENESIS OF SELECT AGENT BURKHOLDERIA SPECIES. Submitted by Andrew Whitman Goodyear Department of Microbiology, Immunology and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Spring 2012 Doctoral Committee: Advisor: Steven W. Dow Herbert P. Schweizer Angelo A. Izzo Laurel L. Lenz ABSTRACT INVESTIGATION OF INNATE IMMUNITY, MUCOSAL THERAPEUTICS AND PATHOGENESIS OF SELECT AGENT BURKHOLDERIA SPECIES. Burkholderia mallei and B. pseudomallei are important human pathogens and cause the diseases glanders and melioidosis, respectively. Both organisms are gram-negative bacteria and due to their potential use as bioweapons both have been classified as category B select agents by the Centers for Disease Control and Prevention (CDC). Both bacteria are highly infectious when inhaled and are inherently resistant to many antimicrobials. The protective innate immune responses to Burkholderia infection, specifically B. mallei infection, are poorly characterized. The goal of these studies was to gain a better understanding of innate immunity and pathogenesis to improve development of therapeutics for treatment of both diseases. A mouse model of acute respiratory glanders was developed to investigate the role of monocytes following B. mallei infection. Mice lacking monocyte chemoattractant protein-1 (MCP-1), or chemokine receptor 2 (CCR2), and wild type (WT) mice treated with liposomal clodronate were all highly susceptible to B. mallei infection. Following B. mallei infection neutrophil recruitment and TNF-α production remained intact in CCR2-/- mice. However, CCR2-/- mice were unable to recruit monocytes or dendritic cells, and produced less IL-12 and IFN-γ than WT mice. -
Burkholderia Pseudomallei
B. pseudomallei Misidentifi ed 2. Currie BJ. Melioidosis: an important cause of pneumonia in resi- 7. Lowe P, Engler C, Norton R. Comparison of automated and non- dents of and travelers returned from endemic regions. Eur Respir J. automated systems for identifi cation of Burkholderia pseudomallei. 2003;22:542–50. DOI: 10.1183/09031936.03.00006203 J Clin Microbiol. 2002;40:4625–7. DOI: 10.1128/JCM.40.12.4625- 3. Brisse S, Stefani S, Verhoefn J, Van Belkum A, Vandamme P, Goes- 4627.2002 sens W. Comparative evaluation of the BD Phoenix and VITEK 8. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiol- 2 automated instruments for identifi cation of isolates of the Burk- ogy, and management. Clin Microbiol Rev. 2005;18:383–416. DOI: holderia cepacia complex. J Clin Microbiol. 2002;40:1743–8. DOI: 10.1128/CMR.18.2.383-416.2005 10.1128/JCM.40.5.1743-1748.2002 9. Peacock SJ, Schweizer HP, Dance DA, Smith TL, Gee JE, Wuthieka- 4. Maschmeyer G, Göbel UB. Stenotrophomonas maltophilia and nun V, et al. Management of accidental laboratory exposure to Burk- Burkholderia cepacia. In: Mandell GL, Bennett JE, and Dolin R, holderia pseudomallei and B. mallei. Emerg Infect Dis. 2008;14:e2. editors. Principles and practice of infectious diseases, 6th ed. Edin- DOI: 10.3201/eid1407.071501 burgh (UK): Churchill Livingstone; 2004. p. 2615–22. 10. Amornchai P, Chierakul W, Wuthiekanun V, Mahakhunkijcharoen Y, 5. Tomaso H, Scholz HC, Al Dahouk S, Eickhoff M, Treu TM, Wer- Phetsouvanh R, Currie BJ, et al. Accuracy of Burkholderia pseudo- nery R, et al. -
Appendix a Bacteria
Appendix A Complete list of 594 pathogens identified in canines categorized by the following taxonomical groups: bacteria, ectoparasites, fungi, helminths, protozoa, rickettsia and viruses. Pathogens categorized as zoonotic/sapronotic/anthroponotic have been bolded; sapronoses are specifically denoted by a ❖. If the dog is involved in transmission, maintenance or detection of the pathogen it has been further underlined. Of these, if the pathogen is reported in dogs in Canada (Tier 1) it has been denoted by an *. If the pathogen is reported in Canada but canine-specific reports are lacking (Tier 2) it is marked with a C (see also Appendix C). Finally, if the pathogen has the potential to occur in Canada (Tier 3) it is marked by a D (see also Appendix D). Bacteria Brachyspira canis Enterococcus casseliflavus Acholeplasma laidlawii Brachyspira intermedia Enterococcus faecalis C Acinetobacter baumannii Brachyspira pilosicoli C Enterococcus faecium* Actinobacillus Brachyspira pulli Enterococcus gallinarum C C Brevibacterium spp. Enterococcus hirae actinomycetemcomitans D Actinobacillus lignieresii Brucella abortus Enterococcus malodoratus Actinomyces bovis Brucella canis* Enterococcus spp.* Actinomyces bowdenii Brucella suis Erysipelothrix rhusiopathiae C Actinomyces canis Burkholderia mallei Erysipelothrix tonsillarum Actinomyces catuli Burkholderia pseudomallei❖ serovar 7 Actinomyces coleocanis Campylobacter coli* Escherichia coli (EHEC, EPEC, Actinomyces hordeovulneris Campylobacter gracilis AIEC, UPEC, NTEC, Actinomyces hyovaginalis Campylobacter -
Melioidosis Cases and Selected Reports of Occupational Exposures to Burkholderia Pseudomallei — United States, 2008–2013
Morbidity and Mortality Weekly Report Surveillance Summaries / Vol. 64 / No. 5 July 3, 2015 Melioidosis Cases and Selected Reports of Occupational Exposures to Burkholderia pseudomallei — United States, 2008–2013 U.S. Department of Health and Human Services Centers for Disease Control and Prevention Surveillance Summaries CONTENTS Introduction ............................................................................................................2 Methods ....................................................................................................................3 Results .......................................................................................................................4 Discussion ................................................................................................................5 Conclusion ...............................................................................................................8 References ................................................................................................................8 Front cover photo: Typical colony morphology of Burkholderia pseudomallei on Ashdown’s selective agar after incubation at 37°C for four days. The MMWR series of publications is published by the Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30329-4027. Suggested citation: [Author names; first three, then et al., if more than six.] [Title]. MMWR Surveill -
Glanders Glanders Is a Serious Zoonotic Bacterial Disease That Primarily Affects Horses, Mules and Donkeys
Importance Glanders Glanders is a serious zoonotic bacterial disease that primarily affects horses, mules and donkeys. Some animals die acutely within a few weeks. Others become chronically Farcy, infected, and can spread the disease for years before succumbing. Glanders also occurs Malleus, occasionally in other mammals, including carnivores that eat meat from infected Droes animals. Although cases in humans are uncommon, they can be life threatening and painful. Without antibiotic treatment, the case fatality rate may be as high as 95%. Glanders was a worldwide problem in equids for several centuries, but this Last Updated: February 2015 disease was eradicated from most countries by the mid-1900s. Outbreaks are now uncommon and reported from limited geographic areas. In non-endemic regions, Minor update: January 2018 cases may be seen in people who work with the causative organism, Burkholderia mallei, in secure laboratories. An infection was reported in a U.S. researcher in 2000. Glanders is also considered to be a serious bioterrorist threat: B. mallei has been weaponized and tested against humans, and it was also used as a biological weapon against military horses in past wars. Etiology Glanders results from infection by Burkholderia mallei, a Gram negative rod in the family Burkholderiaceae. This organism was formerly known as Pseudomonas mallei. It is closely related to and appears to have evolved from the agent of melioidosis, Burkholderia pseudomallei. Species Affected The major hosts for B. mallei are horses, mules and donkeys. Most other domesticated mammals can be infected experimentally (pigs and cattle were reported to be resistant), and naturally occurring clinical cases have been reported in some species. -
The Panicle Rice Mite, Steneotarsonemus Spinki Smiley, a Re-Discovered Pest of Rice in the United States
ARTICLE IN PRESS Crop Protection xxx (2009) 1–14 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Review The panicle rice mite, Steneotarsonemus spinki Smiley, a re-discovered pest of rice in the United States Natalie A. Hummel a,*, Boris A. Castro b, Eric M. McDonald c, Miguel A. Pellerano d, Ronald Ochoa e a Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Building, Baton Rouge, LA 70803, USA b Dow AgroSciences, Western U.S. Research Center, 7521W. California Ave., Fresno, CA 93706, USA c USDA-APHIS, PPQ, Plant Inspection Facility, 19581 Lee Road, Humble, TX 77338, USA d Department of Horticulture, National Botanical Garden, Moscoso, Santo Domingo, Dominican Republic e Systematic Entomology Laboratory, ARS, PSI, USDA, BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705, USA article info abstract Article history: The panicle rice mite (PRM), Steneotarsonemus spinki Smiley, was reported in 2007 in the United States in Received 23 December 2008 greenhouses and/or field cultures of rice ( Oryza sativa L.) in the states of Arkansas, Louisiana, New York, Received in revised form and Texas. PRM had not been reported in rice culture in the United States since the original type 17 March 2009 specimen was collected in Louisiana in association with a delphacid insect in the 1960s. PRM is the most Accepted 20 March 2009 important and destructive mite pest attacking the rice crop worldwide. It has been recognized as a pest of rice throughout the rice-growing regions of Asia since the 1970s. Historical reports of rice crop damage Keywords: dating back to the 1930s also have been speculatively attributed to the PRM in India. -
Canine Disease Exposure Routes
Canine—Aerosol Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Aspergillus spp. Blastomyces dermatitidis Bordetella bronchiseptica Canine Distemper Virus Canine Parvovirus 2 Coccidioides immitis Cryptococcus neoformans Glanders (Burkholderia mallei) Histoplasma capsulatum Infectious Canine Hepatitis (CAV-2) Melioidosis (Burkholderia pseudomallei) Nipah Virus Plague (Yersinia pestis) Pneumocystis carinii Q Fever (Coxiella burnetii) Tuberculosis (Mycobacterium spp.) Tularemia (Francisella tularensis) www.cfsph.iastate.edu Canine—Oral Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Botulism (Clostridium botulinum) Brucellosis (Brucella canis) Campylobacter jejuni Canine Coronavirus Canine Parvovirus 2 Coccidiosis (Isospora spp.) Cryptosporidium parvum Echinococcus granulosus Escherichia coli (E. coli) Giardia spp. Glanders (Burkholderia mallei) Helicobacter pylori Hookworms (Ancylostoma spp., Uncinaria stenocephala) Leptospirosis (Leptospira spp.) Listeria monocytogenes Melioidosis (Burkholderia pseudomallei) Neospora caninum Pseudorabies Roundworms (Toxocara spp.) Salmon Poisoning (Neorickettsia helminthoeca) Salmonella spp. Strongyles (Strongyloides spp.) Tapeworms (Dipylidium caninum, Echinococcus spp.) Tuberculosis (Mycobacterium spp.) Tularemia (Francisella tularensis) Verminous Myelitis (Baylisascaris procyonis) Whipworms (Trichuris vulpis) www.cfsph.iastate.edu Canine—Fomite Transmission foreign animal disease zoonotic disease Anthrax